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Abstract: The Actuator Disk (AD) model is widely used in Large-Eddy Simulations (LES) to simulate
wind turbine wakes because of its computing efficiency. The capability of the AD model in predicting
time-average quantities of wind tunnel-scale turbines has been assessed extensively in the literature.
However, its capability in predicting wakes of utility-scale wind turbines especially for the coherent
flow structures is not clear yet. In this work, we take the time-averaged statistics and Dynamic
Mode Decomposition (DMD) modes computed from a well-validated Actuator Surface (AS) model as
references to evaluate the capability of the AD model in predicting the wake of a 2.5 MW utility-scale
wind turbine for uniform inflow and fully developed turbulent inflow conditions. For the uniform
inflow cases, the predictions from the AD model are significantly different from those from the AS
model for the time-averaged velocity, and the turbulence kinetic energy until nine rotor diameters
(D) downstream of the turbine. For the turbulent inflow cases, on the other hand, the differences in
the time-averaged quantities predicted by the AS and AD models are not significant especially at
far wake locations. As for DMD modes, significant differences are observed in terms of dominant
frequencies and DMD patterns for both inflows. Moreover, the effects of incoming large eddies,
bluff body shear layer instability, and hub vortexes on the coherent flow structures are discussed in
this paper.

Keywords: wind turbine wake; actuator disk model; actuator surface model; dynamic mode
decomposition; coherent structures; wake meandering

1. Introduction

Nowadays, large wind farms are constructed to respond to the increasing demand of renewable
energy. In these wind farms, turbines are installed in cluster to meet the geographical restriction and to
reduce the cable and maintenance cost. A turbine may influence its downwind neighbors significantly
with the wake effect, leading to a loss of the power production and an increase of the unsteady load on
the structure [1]. Therefore, a need to better understand the wake behavior and its influence on the
downwind turbines arises.

Understanding turbine wakes in a wind farm is challenging because of its multi-scale nature.
For example, the boundary layer on a wind turbine’s blade has a thickness of the centimeters, which is
orders of magnitudes smaller than the diameter of the rotor (≈100 m) and the thickness of the
Atmospheric Boundary Layer (ABL; ≈1000 m) [2]. Among others, the difficulty in accurately modeling
the flow around the blade of a real wind turbine blade arises both in wind tunnel experiments (due to
scale effect [3]) and in numerical simulations (due to the resolution requirement).
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Facing this challenge, it is often assumed that the actual geometry of the rotor is of less
importance [4] if only the far wake and its influence on downwind turbines are of interest, so that the
wind turbine can be approximated by equivalent models. In experiments, the simplest model is the
porous disk model, which is broadly used [5,6]. Validations in wind tunnels have demonstrated that
porous discs can provide time-averaged wake properties with satisfactory accuracy in the region further
than 3.5 rotor diameters downstream, especially when the turbulence of the ABL is concerned [7–9].

In numerical simulations, a series of blade approximated actuator type models representing
the turbine blades using equivalent distributed forces have been proposed. The way in which these
forces are calculated and distributed distinguishes different models. The simplest is the Actuator
Disk (AD) model, which is the numerical equivalence of a porous disk. The thrust on the disk is
calculated with one-dimensional momentum theory and is usually distributed uniformly over the
rotor swept area with the rotation effects neglected. The Actuator Line (AL) method was proposed to
take into account the effects of individual rotating blades [10]. The AL models a wind turbine blade
by a rotating line with lift and drag forces determined from tabulated geometric and aerodynamic
data of airfoil. To better take into account the geometrical effects of wind turbine blades, the Actuator
Surface (AS) method has been proposed, which models a blade as a two dimensional surface with zero
thickness [11,12]. Because of its simplicity and computational efficiency, the AD has been widely used
in turbine wake simulations especially in farm-scale simulations [13–16]. The capability of the actuator
disk model in predicting turbine wakes, especially in the far wake region, has been widely validated in
the literature [14,17,18]. However, besides the thrust, experiments revealed that the rotor’s rotation also
influences both the power output and the wake characteristics significantly [19] and including these
rotational effects in the actuator disk model can improve the model’s accuracy [20]. In [21], the authors
showed that the actuator disk model can reasonably predict the mean velocity profiles but underpredict
the turbulence kinetic energy (TKE) for the wake of an axial-flow hydrokinetic turbine. It is noticed
that most of the validation studies were focused on time-averaged quantities without probing into the
dynamic behavior of turbine wakes, e.g., coherent flow structures and the wake meandering, for which
the dataset is difficult to obtain from utility-scale wind turbines [22]. Furthermore, inconsistent results
were observed in wind tunnel experiments on the dynamic behavior of turbine wakes when different
turbine models were used. For instance, regarding the origin of wake meandering, Medici et al. [3,23]
found the wake meandering was related to the bluff body vortex shedding in the experiment of a
small scale wind turbine, whereas Espana et al. [6] claimed that the meandering was attributed to
the inflow large eddies by carrying out an experiment by representing the turbine with a porous disk.
These wind tunnel measurements already make it questionable whether the AD (or the porous disk)
model can predict correctly the dynamics of small scale wind turbine wakes. Less is known when
applying such a model to utility-scale wind turbines.

To this end, the present study employs simulation results from the well-validated AS model
proposed in [11] to examine the capability of the AD model in predicting the dynamic behavior of a
utility-scale wind turbine under uniform and fully developed turbulent inflow conditions. Large-Eddy
Simulation (LES) is employed for turbulent flow simulations. For both models, exactly the same
computational setup is employed. We first compare the time-averaged quantities and then employ the
dynamic mode decomposition (DMD) to facilitate the comparison of the most dominant dynamic flow
structures and the frequency spectra between the AD and AS models.

The remainder of this paper is structured as follows. Section 2 presents the theory of the AD and
the AS models together with a brief description of the LES solver and the DMD method. In Section 3
the simulation setup is provided. Section 4 depicts the simulation results and the DMD analysis in
both uniform and ABL conditions. A discussion is provided in Section 5 before the final conclusion in
Section 6.
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2. Numerical Methods

This section describes the concept of the AD and the AS wind turbine model, the LES flow solver
employed in this study, and the dynamic modal decomposition (DMD) employed to analyze the
dynamic flow structure from the simulations.

2.1. Wind Turbine Models

2.1.1. Actuator Disk Model

The AD model neglects the geometry detail of individual wind turbine blades. It represents the
rotating blades as a fixed 2D porous disk exerting a uniform thrust on the flow, which is the numerical
reflection of the perforated disk model usually used in wind tunnel experiments. Neither the rotational
effect nor the non-uniform force distribution are considered in the model employed in this work.
The axial thrust force fT per unit area is uniformly distributed over the entire rotor disk surface A and
is expressed with the thrust coefficient CT and the inflow velocity Vref:

fT =
1
2

ρV2
refCT. (1)

where ρ is the density of air. The reference velocity Vref is defined to be equal to the freestream
velocity in uniform inflow condition. In turbulent inflow simulations, the present work approximately
calculates Vref by averaging the velocity on a disk of the rotor’s size at one diameter in front of the real
turbine. The trust coefficient CT remains to be determined according to the turbine operation state.
In this work, CT is set to be equal to that of the AS simulations to ensure a fair comparison between the
two models.

2.1.2. Actuator Surface Model

The AS model represents the geometry of an individual wind turbine blade with a simplified two
dimensional surfaces of zero thickness, which is formed by chords at different radial locations [11,12].
In the actuator model employed in this work, the aerodynamic forces on the surface vary with the
radial position and are determined by the tabulated airfoil data in the same ways as the AL model
as follows:

L =
1
2

ρCLc|Vref|2eL (2)

and
D =

1
2

ρCDc|Vref|2eD, (3)

where L and D are the lift and drag force per unit length, ρ is the density of air, c is the chord length,
Vref is the flow velocity relative to the rotating blade, eL and eL are unit directional vectors for lift and
drag forces. CL and CD are the lift and the drag coefficients defined in 2D airfoil tables as a function of
Reynolds number and the angle of attack. Corrections including the 3D stall delay model of Du and
Selig [24] and the tip loss correction of Shen et al. [25,26] are applied.

After calculating L and D, the force f per unit area on the surface model is calculated by:

f = (L + D)/c. (4)

The reacting forces exerting by the blade on the air are then distributed to the background Eulerian
grid points with a smoothed discrete delta function [27].
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2.2. Flow Solver

The turbulent flow is solved with a three dimensional LES code, dubbed as virtual flow simulator
(VFS-Wind) [28], in which the governing equations are the filtered Navier–Stokes equations for
incompressible flows, which read in the compact tensor form as (i, j, k, l = 1, 2, 3):

J
∂Ui

∂ξ i = 0, (5)

1
J

∂U j

∂t
=

ξ i
l

J

(
− ∂

∂ξ j

(
U jul

)
+

µ

ρ

∂

∂ξ j

(
gjk

J
∂ul

∂ξk

)
− 1

ρ

∂

∂ξ j

(
ξ

j
l p
J

)
− 1

ρ

∂τl j

∂ξ j + fl

)
, (6)

where ξi is the curvilinear coordinates, ξ i
l = ∂ξi/∂xl is the transformation metrics with xl the Cartesian

coordinates, J denotes the Jacobian of the geometric transformation, Ui =
(
ξ i

l/J
)

ul is the contravariant
volume flux with ul the velocity in Cartesian coordinates, µ is the dynamic viscosity, ρ is the density,
gjk = ξ

j
l ξ

k
l is the components of the contravariant metric tensor, p is the pressure, fl is the body forces

exerted by the actuator models, and τij is the sub-grid stress (SGS) resulted from the filtering operation
and is modeled with the Smagorinsky SGS model [29] as follows,

τij −
1
3

τkkδij = −µtSij, (7)

where µt is the eddy viscosity and Sij is the large-scale strain-rate tensor with (·) denoting the grid
filtering operator. The eddy viscosity is computed by

µt = Cs∆2|S|, (8)

where ∆ is the filter width, |S| = (2SijSij)
1/2 is the magnitude of the strain-rate tensor with Cs the

Smagorinsky constant computed via the dynamic procedure of [30].
A second-order accurate central differencing scheme is used for space discretization. The time

integration uses the fractional step method [31]. The momentum equation is solved with a matrix-free
Newton–Krylov method [32] . The pressure Poisson equation is solved with a Generalized Minimal
Residual (GMRES) method with an algebraic multi-grid acceleration [33].

2.3. Dynamic Mode Decomposition

DMD is an equation-free, data-driven method for data analysis and behavior prediction of
complex dynamical systems. It was first proposed by Schmid [34] to analyze the high-dimensional fluid
dynamics data by decomposing it into coherent spatial structures that oscillate at distinct frequencies.
Thanks to its ability both to analyze and to predict, it has gained successes not only in fluid mechanics,
but also in other fields, including video processing and finance, where high-dimensional complex
dynamic systems are involved [35].

For fluid mechanics applications, the input of DMD analysis is a sequence of snapshots of the
flow field. The snapshot xi is a column vector of dimension n containing all the interested variables
at measure points in the flow field at time t = ti. The snapshots are taken at a fixed time interval ∆t.
With total m snapshots, the snapshot matrix of the dataset can be written as:

Xm
1 =

 | | |
x1 x2 ... xm

| | |


n×m

. (9)
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where the sub and sup indexes indicate the starting and the ending index of snapshots. The DMD
approximates the dynamic system by a time-independent linear matrix A representing the temporal
evolution from one snapshot to the next, as follows,

Xm
2 = An×nXm−1

1 . (10)

In practice, the spatial dimension n is usually very large, which makes the direct solution of
An×n difficult. Instead, the reduced-order Proper Orthogonal Decomposition (POD) projection matrix
Ãr×r with r � n is used. r is the number of the most energetic modes kept in the singular value
decomposition of Xm−1

1 , defined as follows,

Xm−1
1 ≈ Un×rΣr×rVT

r×(m−1), (11)

where the left singular vectors in U are POD modes, the right singular vectors in V are time coefficient
of these modes, and Σ is a diagonal matrix containing the first r largest singular values. U and V are
orthonormal. Ã is defined as

Ã = UTAU = UTXm
2 VΣ−1. (12)

The next step is to calculate the eigenvalues and eigenvectors of Ã,

ÃW = WΛ, (13)

where Λ is a diagonal matrix containing r eigenvalues and W contains r eigenvectors of unit length.
The snapshots xk = Axk−1 = Ak−1x1 can be written as

xk = UWΛk−1W−1UTx1 = ΦΛk−1b, (14)

where Φ = UW contains the DMD modes (φi) and b = W−1UTx1 contains the amplitudes (bi) of these
modes in the first snapshot. Each mode φi has a corresponding eigenvalue λi in Λ. The oscillating
frequency ( fi) of mode φi is equal to

fi = |
=(log(λi))

2π∆t
|, (15)

and the growth rate gi is equal to

gi =
<(log(λi))

∆t
. (16)

For a stable oscillating system, all the growing rate should be equal to 0. A positive growing rate
(gi > 0) indicates that the mode φi has an amplitude bi increasing with time; a negative growing rate
(gi < 0), in contrast, indicates a mode damping with time.

With the amplitudes bi, the most energetic DMD modes in the first snapshot can be easily identified
and remain the same for other snapshots when the system is stable. In contrast, when growing and
damping modes are concerned, the modes should be ordered by the time-averaged amplitudes
b′i . To calculate the time-averaged amplitudes, the eigenvalue-weighted method proposed by
Kou and Zhang [36] is selected for its simplicity and computational efficiency among others [37].
The eigenvalue-weighted amplitudes b′i are calculated as,

b′i =

m
∑

j=1
|biλ

j−1
i |

m
. (17)

3. Simulation Setup

The AD is compared against the AS models by simulating a three-blade Clipper Liberty 2.5 MW
wind turbine located at the EOLOS wind energy research field station in University of Minnesota, USA.
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The rotor diameter is D = 96 m, the hub height is zhub = 80 m, and the nacelle has a near cuboidal
shape with dimensions of 5.3 m× 4.7 m× 5.5 m. The tower as a cylindrical form with a diameter
of 3.0 m at the top and 4.1 m at the bottom, respectively. The readers can find more information
about this wind turbine in previous works [22,38,39]. Because of proprietary issues, the details of
the blade geometry cannot be released in this paper. Interested readers can contact the EOLOS wind
energy consortium (Email: eolos@umn.edu, Address: St. Anthony Falls Laboratory, 2 Third Avenue
SE, Minneapolis, MN 55414, USA) at the University of Minnesota for these details.

The capability of the employed AS model has been evaluated for different aspects previously.
In [40], the employed method was validated against wind tunnel measurements for the time-averaged
flow quantities in the wake, such as the velocity deficit and turbulent intensity. Moreover,
validations using the same Clipper wind turbine have shown that the AS model is able to predict
accurately the near-wake vortex structures as compared with the field measurement using snow-based
super-large-scale particle image velocimetry (SLPIV) [41]. Due to these previous validations, in this
work, we consider the AS simulation results as references for evaluating the AD model.

Here we present the computational setup for the simulations carried out in this work. In both AD
and AS cases, the size of the computational domain is set as Lx × Ly × Lz = 14D × 7D × 10D,
where x, y, z represent the stream-wise, the span-wise, and the vertical directions, respectively.
The domain is discretized with a Cartesian grid of Nx × Ny × Nz = 281 × 281 × 143. The grid
size is uniform in the x, y directions with ∆x = D/20 and ∆y = D/40. In z direction, the mesh is
uniform with ∆z = D/40 in z ∈ (0, 2D) region to resolve the wind turbine wake and the interaction
with the ground, and is gradually stretched to the top of the computational domain.

Figure 1 shows the disk and the surface discretized with unstructured triangular surface mesh.
Please note that a nacelle model [11] is employed in both AD and AS cases, otherwise there will be
a non-realistic jet flow behind the empty rotor center for the AS method. Furthermore, the vortex
shedding from the nacelle plays an important role in the wake evolution because of its interaction
with the root vortex and the tip shear layer [21]. Although it would be ideal to take the tower into
account to have a complete representation of a realistic wind turbine. However, including the tower
(diameter = 3.0 m at the top) gives rise to numerical difficulties since the present study (and most
numerical studies on the wind turbine’s wake as well) employs a grid which is too coarse to resolve
the flow details around the tower, and thus complicates the comparison between the AD and AS
models. Furthermore, it was shown in [42] that the effect of tower is limited to the near wake region.
For these reasons, the tower was not considered and we focus on the differences caused by the two
rotor models.

In the AS simulations, the turbine rotates at a fixed tip speed ratio (TSR = ΩR/U = 8, where Ω is
the rotor rotational speed, R is the rotor radius and U is instantaneous streamwise velocity averaged
over a disk of radius R located 1D upstream of the turbine). The thrust is recorded at each time step
and then averaged to calculate the thrust coefficient CT for the AD model. In the AD simulations,
the thrust coefficient, which is computed from the corresponding AS simulations, is employed to
compute the thrust on disk using Equation (1).

The simulations are conducted with two inflow conditions, i.e., a uniform and a fully developed
turbulent inflow. In both cases, the streamwise velocity at the rotor’s hub height is Uhub = 9 m/s.
The Reynolds number based on D and Uhub is equal to Re = DUhub/ν = 5.7× 107. For the turbulent
inflow case, the turbulence density is σu/Uhub = 0.08 at the hub height. The flow at inlet boundary is
computed from a precursory LES with a larger computational domain of L

′
x × L

′
y × L

′
z = 62D× 46D×

10D to capture large scale eddies in the incoming flow. In this inflow generation approach, the velocity
fields on a y-z plane are first saved for each time step in the precursory simulation and then applied at
the inlet of the turbine simulation. If the mesh and the size of time step employed in the precursory
simulation are different from those in the wind turbine simulations, linear interpolations in both space
and time are carried out to obtain the inflow velocity for the turbine simulations. Periodical boundary
condition is applied in the horizontal directions. The upper boundary condition is the free slip. The wall



Energies 2020, 13, 3574 7 of 18

model based on the logarithmic law is applied on the ground (the roughness length is z0 = 5× 10−3 m
for the present cases). For the uniform inflow cases, the boundary condition on the lateral walls is the
free slip.

X
Y

Z

(a)

X
Y

Z

(b)

Figure 1. The unstructured triangular mesh of wind turbine models. (a) AD model. (b) AS model.

The simulations use the same fixed time step for both AS and AD cases, which is equal to 1/200
of the rotor rotational period. The time simulated in the turbulent inflow case for time-averaged
quantities is equal to 280 rotor revolutions, which is long enough to take into account the influence
of the low-frequency large-scale disturbance in the ABL. For the uniform inflow condition, a shorter
simulation of 40 rotor revolutions is carried out, for which large-scale eddies are absent in the inflow.

An extra inflow only simulation with an empty computational domain is carried out with the
same setups of the turbulent inflow case to help identify the contribution of turbulent large eddies.

4. Results

In this section, the simulation results are presented. The uniform inflow cases are presented in the
first place and are followed by the turbulent inflow simulations. For each inflow condition, we compare
instantaneous flow fields, time-averaged flow fields and DMD modes from the AD simulations with
those from the AS simulations. In this section, u, v, w denote the instantaneous flow velocity in the
streamwise, spanwise and vertical direction, respectively, with U, V, W for the time-averaged values.

4.1. Uniform Inflow

4.1.1. Instantaneous Flow Field

Figure 2 depicts the simulated instantaneous velocity fields behind the AD and the AS wind
turbine models on the z = zhub plane. For the streamwise velocity contour in Figure 2a,b, it is found
that both wake boundaries are first stable in a small distance behind the turbine and then show
fluctuations in the far wake. Inside the wake away from the nacelle, the velocity deficit behind the
AD model is more evenly distributed along the radial direction than the AS model, since the tip and
the root losses and the radial variation of blade sections are not considered in the AD model. In the
hub region, the wake of the nacelle is observed in both models. However, a jet which encompasses the
nacelle’s wake appears uniquely behind the AS model. Figure 2c,d show the spanwise velocity field.
Fluctuations appear behind both wind turbine models. In the near wake region, a Kármán vortex street
pattern is observed in the centerline of the near wake due to the nacelle. A significant discrepancy
emerges in 2 < x/D < 3 region, where the AD model’s result shows a regularly oscillating pattern on
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the wake boundary as observed for both streamwise and spanwise velocities (Figure 2a,c). It is also
noticed that the spanwise velocity fluctuations in this region are stronger near the wake boundary
than those in the wake center. In contrast, the wake behind the AS model does not have this oscillatory
boundary, and the vortex shed from the nacelle grows gradually and starts to influence the wake
boundary at x ≈ 4D. In the far wake (x > 6D), the spanwise velocity behind the AS model seems to
be more energetic than that of the AD model. Quantitative comparisons shall be conducted in the next
section to confirm this observation.

Figure 2. Uniform inflow: contours of the instantaneous velocity field behind the wind turbine on the
horizontal plane at hub height. (a) streamwise velocity using AD; (b) streamwise velocity using AS;
(c) spanwise velocity using AD; (d) spanwise velocity using AS. The solid black line at x = 0 illustrates
the location and the diameter of the wind turbine.

4.1.2. Time-Averaged Flow Field

In Figure 3 we compare the time-averaged flow field computed from the AD and the AS simulations.
As seen in Figure 3a, the mean velocity profiles of both models show an overall agreement in the far
wake (x = 9D). However, immediately behind the wind turbine, the two velocity profiles differ
significantly. The profile of AD is almost uniform (except for the region near the nacelle). In contrast,
the profile of AS shows a clear radial variation, which is remarked by a weaker deficit behind the
nacelle due to the root loss (y = 0) and a smoother transition on the wake boundary due to the tip loss
(y = ±0.5D) at x = 1D. In the near wake, the thickness of the shear layer on the wake boundary is
smaller for AD, but it grows faster than that in the AS simulation. At x = 5D, it is obvious that this
transitional region is thicker for the AD than the AS. This faster growing of wake boundary thickness
denotes a quicker recovery and expansion of the wake of the AD. By comparison, this transitional
region has no remarkable development in the result of AS until x = 7D and expands faster from 7D
to 9D. In Figure 3b,c, the turbulence kinetic energy (TKE; k) and the primary Reynolds stress (<u′v′>)
both indicate that the AD model shows stronger turbulent effects on the wake boundary in the x < 5D
region and is surpassed by the AS in the far wake (x > 7D). At x = 9D the velocity profile of the
two models are in reasonable agreement, while the wake computed by the AS model contains more
turbulence kinetic energy and larger Reynolds stress. This result confirms the observation from the
instantaneous flow field in Figure 2.
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Figure 3. Uniform inflow: horizontal profiles at hub height (z = zhub) of the time-averaged
(a) streamwise velocity, (b) turbulence kinetic energy, and (c) the primary Reynolds stress <u′v′>
at different downstream location.

4.1.3. DMD Analysis

DMD is conducted to analyze the dynamic coherent structures in the wakes. The velocity field on
the horizontal plane at the hub height (z = zhub) is analyzed. Figure 4 depicts the DMD amplitude
spectra and the most dominants modes.

In Figure 4a,e, only the modes with Strouhal number less than three (St = f D/Uhub < 3)
are plotted although the entire spectra are much longer, because the most energetic modes are
within this low frequency range. First, these amplitude spectra reveal a significant difference in
the energy distribution over the frequencies of the AD and the AS models’ wake. The wake from the
AS simulations contains generally more energy in the low frequency range below St < 1.5 and shows a
trend of concentration around St ≈ 0.7 (marked with φ1 in Figure 4e). However, such a concentration
trend does not appear in the spectrum in the AD’s case, whose DMD modes are of almost the same
amplitudes in 0 < St < 2 region, except for a distinct peak at St ≈ 1.8 (marked with φ1 in Figure 4a).
Secondly, when comparing the amplitudes between the two cases, it is found that modes of the AS
have slightly larger amplitudes than that of the AD, especially in the low frequency region, showing
the wake of AS contains more energetic low frequency oscillations. Thirdly, no energy concentration
around the vortex shedding frequency of the bluff body (St ≈ 0.168) is observed in both spectra.

Figure 4b–d,f–h show the three most energetic modes of the AD and the AS cases, respectively.
Overall, the spatial scale of the oscillation patterns enlarges as the Strouhal number decreases. However,
the results from the AD and the AS models have very different dominant modes. Figure 4b shows the
mode of the largest amplitude of the AD case. A spatial energy concentration on the wake boundary
around 2D < x < 4D is found, which is in agreement with the instantaneous flow field (Figure 2c).
Interestingly, no apparent source of disturbance can be traced in the upstream. It suggests that this
mode should perhaps be related to the instability of the thin shear layer on the wake boundary that
amplifies tiny disturbances in the flow field. It is noticed that this mode dominates for 2D < x < 4D,
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but becomes weak in the far field. In contrast, the other two modes of the AD (Figure 4c,d) both stem
from the nacelle and dominate the far wake.

Figure 4. Uniform inflow: Dynamic mode decomposition (DMD) analysis of the velocity field on the
horizontal plane at the hub height (z = zhub). (a,e) the eigenvalue-weighted amplitudes of the DMD
modes for the AD and the AS models; (b–d) the largest three DMD modes ordered by amplitude of
AD; (f–h) the largest three DMD modes ordered by amplitude of AS. DMD modes are shown with the
spanwise velocity contour.

As to DMD modes in the AS case (Figure 4f–h) all the three modes stem from the upstream nacelle
and develop until the far wake. They differ from each other by the frequency and the wave length as
shown by the spanwise velocity field. No AS mode similar to φ1 of the AD is found after checking all
the modes of the AS (including those not shown in the figure). This observation suggests that for the
uniform inflow condition, the wake computed from the AS model is strongly affected by the vortex
shedding behind the nacelle, while the AD model predicts a unique mode related to the shear layer
instability near the wake boundary, which may not exist in real wind turbine wakes.

4.2. Turbulent Inflow

This section presents the simulation results from the AD and AS cases under the fully developed
turbulent inflow condition.

4.2.1. Instantaneous Flow Field

Figure 5 depicts instantaneous velocity fields computed from (a) the AD and (b) the AS models
and (c) the inflow case on the z = zhub plane at the same instant. As seen, the wake shapes and the
spanwise velocity contours from the AD and AS cases show a reasonably good agreement, except for
some differences, such as the jet flow behind the hub of the AS model. Compared with the uniform
inflow condition, strong effects of inflow turbulence is observed. For instance, a much stronger
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spanwise velocity is observed for the turbulent inflow (Figure 5d,e) when compared with that from the
uniform inflow (Figure 2c,d). When comparing with the only inflow case (Figure 5f), we can observe
an interesting phenomenon, that the patterns of the spanwise velocity computed from the AD and AS
model, are very similar to that from the only inflow case. Moreover, it is noticed that both AD and
AS models amplify the spanwise velocity fluctuations as the velocity magnitude is larger in the wake
than in the inflow. Apart from this, no more information can be extracted with confidence from this
instantaneous flow field yet.

Figure 5. Turbulent inflow: contours of the instantaneous velocity field behind the wind turbine on
the horizontal plane at hub height. (a) streamwise velocity using AD; (b) streamwise velocity using
AS; (d) spanwise velocity using AD; (e) spanwise velocity using AS. The solid black line at x = 0
illustrates the location and the diameter of the wind turbine; (c,f) streamwise and spanwise velocity of
the turbulent inflow without wind turbine.

4.2.2. Time-Averaged Flow Field

Figure 6 shows the profiles of time-averaged flow quantities. Before the following detailed
analysis, it is clear that the results from the AD model are in an overall good agreement in the far wake
(x > 7D) for turbulent inflow condition, in contrast to Figure 3 of the uniform inflow condition. For the
streamwise velocity, differences between the AD and the AS models are only observed in the near wake
region (x < 3D) and become insignificant at far wake locations as shown in Figure 6a. The wakes
computed by both models slightly skew towards the −y direction due to the insufficient simulation
time, which causes the inflow not perfectly symmetric with respect to y = 0. The spanwise profiles
of TKE are shown in Figure 6b. As seen, the TKE is concentrated near the hub (y = 0) and the wake
boundary (y± 0.5D) at x = 1D with larger TKE near the hub and near the boundary for the AS and
AD models, respectively. The region of high TKE increases and expands as the wake travels from
(3D < x < 5D) and the TKE computed by the AS model develops faster and surpasses that computed
by the AD after (x > 3D). At further turbine downwind locations, the two models show consistent
results. Similar trends are observed for the Reynold’s stress <u′v′> as shown in Figure 6c. In Figure 6d,e,
the vertical distribution of streamwise velocity and the turbulence intensity also confirms the above
conclusion that the two models agree well in the far wake and the differences only manifest in the near
wake region.

To this extend, the AD model can reasonably predict the time-averaged flow quantities in the far
wake for turbulent inflow conditions.
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Figure 6. Turbulent inflow: Horizontal profile of time-averaged (a) streamwise velocity, (b) turbulence
kinetic energy, and (c) the primary Reynolds stress <u′v′> at different downstream location at hub
height (z = zhub); vertical profile of time-averaged (d) streamwise velocity and (e) turbulence intensity
on the plane y = 0.

4.2.3. DMD Analysis

Figure 7 depicts the DMD amplitude spectra and the most dominants modes. Figure 7a shows
the spectrum computed by the AD model with three distinct peaks remarked. As seen, the Strouhal
number of the first peak (φ1) is 0.17, which falls in the range of the bluff body vortex shedding
frequencies. This dominant mode, illustrated by Figure 7b, shows that the transversal velocity in the
wake alters the direction regularly in a way resembling to the wake behind a circular cylinder [43].
The other two modes of the AS illustrated in Figure 7c,d are at higher frequency. The spatial scale of
the oscillation decreases as the Strouhal number increases. These two modes have larger amplitudes
on the wake boundary than in the wake center. For the second mode φ2, stronger velocity amplitude is
observed in the far wake, whereas φ3 shows a local concentration of energy in 2D < x < 6D.
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On the other hand, the spectrum of the AS case (Figure 7e) shows a dominant peak close to
the bluff body vortex shedding frequency at St = 0.23, which is the second larger peak in the DMD
spectrum with the largest mode at St = 0.08. The first mode of the AS case (wavelength ≈ 9D) is
significantly larger as shown in Figure 7f. The second mode from the AS case (Figure 7g), on the other
hand, is close to the first mode from the AD case, although the wavelength of φ2 from the AS case
is smaller. Moreover, it is observed that the spectrum from the AS case has larger energy at the low
frequency range than that of the AD. The two modes of higher frequency (φ2 and φ3) computed from
the AS model are both stronger in the far wake than in the near wake with both larger spatial scales
when compared with the AD case.

It is also worth noting that the influence of the nacelle on the far wake is less evident compared
to the uniform inflow case, that two (the AS case) or three (the AD case) dominant DMD modes are
obviously related to the nacelle for the uniform inflow cases, while only the third dominant mode
from the AS case (Figure 7h) seems to be magnified by the nacelle for the turbulent inflow cases.
Detailed space-time correlation study [44] is needed to further examine the effect of nacelle on wake
dynamics under turbulent inflows.

Figure 7. Turbulent inflow: Dynamic mode decomposition (DMD) analysis of the velocity field on the
horizontal plane at the hub height (z = zhub). (a,e) the eigenvalue-weighted amplitudes of the DMD
modes for the AD and the AS models; (b–d) the largest three DMD modes ordered by Strouhal number
of AD; (f–h) the largest three DMD modes ordered by Strouhal number of AS. DMD modes are shown
with the spanwise velocity contour.

5. Discussion

The previous section has shown the differences between the wakes computed from the AD and
AS models for both uniform and turbulent inflow conditions.
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For the uniform inflow cases, external perturbations are excluded and the wakes computed by
both models develop on their own properties. The differences are easily identified already on the
instantaneous and the time-averaged flow field: the instability near the wake boundary develops earlier
for the AD model and results in a faster growth of turbulence near the wake boundary and quicker wake
expansion and recovery in the near to intermediate turbine downwind locations. This phenomenon
can be explained with the classical linear stability theory of shear flow [45]. According to this theory,
the optimal spatial scale of perturbation to destabilize a shear flow is proportional to the transitional
thickness so the sharp transition between the freestream flow and the wake of the AD case (as the tip
loss effect is neglected) is more sensitive to small perturbations. This sharp transition across the wake
boundary and the resultant stronger mixing and expansion in the near wake of the AD model are in
accordance with previous wind tunnel experiments of Lignarolo et al. [8,46]. In the DMD analysis,
we have compared the two models with the energy spectra and the dominant modes. For both models,
a clear influence of the nacelle on the far wake is shown by the DMD modes, which is in agreement with
previous numerical studies [21]. However, obvious disparities are also found that the spectrum of the
AS case is concentrated in a lower frequency range, whereas that from the AD case has a distinct high
frequency dominant mode corresponding to the shear layer instability. Moreover, the wake computed
from the AS model has larger coherent structures and oscillates at a lower frequency than that from
the AD model, which may also due to the differences of the shear layer near the wake boundary.

For turbulent inflow cases, the velocity deficit recovers faster than the uniform case due
to the inflow turbulence, which is in agreement with previous studies [16,47]. In our test cases,
the time-averaged streamwise velocity, TKE, and primary Reynold’s stresses computed by the AD
model reasonably agree with the AS model starting from x = 7D. This generally good agreement
of the AD and the AS in turbulent inflow condition is in accordance with previous studies [2,17,48].
Furthermore, the DMD analysis shows inflow turbulence shifted the energy spectrum significantly
to lower frequency ranges for both models. These findings are in accordance with previous studies
where the wake is analyzed using Fourier Transform [6,49]. Compared with the Fourier Transform,
the DMD analysis provides additional insightful information about the spatial scale of the coherent
structures. These coherent structures reveal that for the turbulent inflow condition, the wakes are
dominated by DMD modes of larger scale coherent structures related to the inflow eddies and some
DMD modes are enhanced by the hub vortex. Moreover, a mode similar to the bluff-body vortex
shedding at Strouhal number St = 0.17 is found to be dominant uniquely in the wake behind the
AD model, which, on the other hand, happens at St = 0.23 for the AS model. The most dominant
mode of the AS case appears at lower frequency of St = 0.08 and has larger scale coherent flow
structures, which shall be related to the passive advection of the wake by the large scale inflow eddies.
The origin of these large-scale motions of turbine wakes is often attributed to two different mechanisms,
namely the bluff body shear layer instability [23] and the inflow large eddies [6], which convect turbine
wake as passive scalars. Recent field measurements [50] and computational studies [49] suggested
the co-existence of these two mechanisms. Furthermore, the hub vortex behind the nacelle is shown
to have a significant impact on the start and enhancement of wake meandering [21,51]. A recent
review on the meandering of turbine wakes can be found in [52]. In this work we observed a complex
interaction between the turbine and the inflow eddies: (i) the modes at low frequencies are less affected
by the turbine (Figure 7f); (ii) the DMD modes close to the bluff body vortex shedding frequency seem
to be enhanced (Figure 7b,g); (iii) some DMD modes seem to be amplified by the hub vortex behind
the nacelle (Figure 7c,h); (iv) the instability within the shear layer also seems to be a key factor for
some modes (Figure 7d). Although the present work still can not provide a direct answer to the origin
of the wake meandering, it suggests that the dynamic structures are different in wakes computed from
the AD and the AS models. Due to this difference, the AD model should be used with more attention
when the wake dynamics are of interest, e.g., to study the wake meandering, because the AD model
can lead to different wake meandering patterns.
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6. Conclusions

In this work, we evaluate the capability of an actuator disk model in predicting the wake dynamics
of a utility-scale wind turbine by comparing its results with those from an actuator surface model.
In the AD model, the same thrust coefficient as that in the AS model is employed. A nacelle model
is incorporated into both models. Turbulent flows are simulated using LES with the same mesh and
time step for both AD and AS cases. Two inflow conditions are considered, i.e., a uniform inflow and a
fully developed turbulent inflow. The wakes computed using the AD model is compared with that
from the AS model via the time-averaged field and the DMD analysis. It is found that time-averaged
velocity and turbulence kinetic energy computed by the AD model are significantly different from
those computed by the AS model until nine turbine rotor diameters downstream for the uniform
inflow condition; for fully developed turbulent inflow, the differences between the two models are
less significant and agree with each other from seven turbine rotor diameters downstream. The DMD
analysis of the uniform inflow cases shows that the vortex shed behind the nacelle triggers the shear
layer instabilities on the wake boundary behind both models but of different spatial scales. With a
thinner shear layer, the wake predicted by the AD model contains smaller spatial scale oscillations at
higher frequency. For the fully developed turbulent cases, the DMD analysis shows that the spectra of
both models shift to a lower frequency range and the coherent structures also increase in size. The DMD
analysis also reveals significant differences between the two models in the far wake: a bluff-body
vortex shedding pattern at St = 0.17 appears uniquely in the wake of the AD model as the most
dominant DMD mode, whereas the wake computed by the AS model has the most dominant DMD
mode of lower energy and at lower frequency St = 0.08 which is related to the passive transport by
the inflow turbulence large eddies, and with the second dominant mode at a frequency St = 0.23 close
to the bluff body vortex shedding frequency. It is concluded that the dynamic coherent structures in
the wake predicted by the AD model are significantly different from those predicted by the AS models
and shall be used with more attention when the dynamics of the wake are of interest. In the present
work, the thrust coefficient employed in the AD model is the same as that computed by the AS model.
However, since the blade rotation is not modeled in the current AD model, the power coefficient from
the AD model is not exactly the same as that from the AS model (the CP from the AD is approximately
5% to 10% higher). In the current AD model, the thrust coefficient and the power coefficient cannot be
specified at the same time. Further studies on how the differences in the power coefficient affect wake
evolutions will be carried out using more advanced AD models considering the effect of blade rotation
(e.g., [20]).
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