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Abstract: Power transformers are one of the most important devices in electrical networks. The safety
operation of the transformers directly affects the reliability of the power system. To diagnose the
internal deformation of the transformer as soon as possible is of great significance. As a new
technique, sweep frequency impedance (SFI) method has been used to detect the short-circuit fault of
the transformer winding. However, the SFI method is still in the early stage and more experimental
tests are needed to further demonstrate its accuracy in the detection of other types of winding faults.
Therefore, in this paper, the SFI method is investigated to diagnose an open-circuit fault of an onsite
transformer. By deeply analyzing the SFI curves and SFI values at power frequency obtained by the
SFI test, the open-circuit fault of this transformer winding is determined. Meanwhile, the accuracy
of the diagnostic results based on the SFI method is validated by introducing the results of the
short-circuit impedance (SCI) and winding resistance measurements. The application of the SFI
method on the detection of the open-circuit fault within the transformer winding not only enrich the
SFI method research but also provide valuable practical guidance significance for the fault detection.

Keywords: sweep frequency impedance (SFI); transformer winding; short-circuit impedance (SCI);
winding resistance measurement

1. Introduction

Transformers are indispensable equipment in power systems. The safety operation of the
transformers is to provide uninterrupted services for the transmission and distribution of electrical
power. However, transformers in the power networks will inevitably suffer from the short-circuit
current. The interaction of short-circuit current and the flux produces a massive electromagnetic
force which is dozens or 100 times larger than the normal electromagnetic force. If the strength of
the internal support in the transformer winding cannot withstand it, the mechanical deformation of
the winding will occur, such as free buckling, hoop buckling, winding tilting, displacements between
primary and secondary windings, shorted turns, open-circuit, partial winding collapse, loosened
clamping structures, core movement, and faulty grounding of core [1,2]. In addition, lightning strikes,
switching transients, earthquakes, and incorrect transportation also may lead to the permanent damage
of the winding [3]. A study that collected 964 transformer accidents in 21 countries around the
world, including Japan, Germany, Canada, Australia, and Brazil, from 1996 to 2010, shows that the
winding related failures appear to be the largest contributor of major failures, as shown in Figure 1 [4].
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Consequently, detecting and diagnosing the transformer winding faults in the early stage is of great
significance to the power system.
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Among the existing regular non-destructive diagnosis, frequency response analysis (FRA) method
is a powerful tool to detect the internal mechanical integrity of winding without any needs to dismantle
the unit [5–8]. It has turned out to be an accurate and effective method through numerous significant
works [9–14]. As a comparison method, the fault condition of the winding is determined by analyzing
the variation of the FRA results before and after deformation over a wide frequency domain. Over recent
years, the Power Industry Bureau of China, the International Council on Large Electric systems (CIGRE)
Working Groups, the IEC Project Team, and the IEEE Transformer Frequency Response Group [15–18]
have respectively published a Chinese standard, technical brochure, and international standards on
the procedures and configurations for performing the FRA tests, common test-influencing factors,
and analysis and interpretation of the FRA results. In addition, as a traditional method, short-circuit
impedance (SCI) method has been used for many years to diagnose the defects of the winding by
measuring the value of the SCI of the winding [19]. Since the SCI depends on the geometry of the
winding, the alteration of the winding’s geometry caused by deformation will lead to a deviation of the
SCI. The standard IEEE std. C57.62 published by IEEE Power and Energy Society stipulates that the
transformer winding should be considered significant when the changes of SCI are more than ±3% in
comparison with the nameplate [20]. According to the above analysis, it can be seen that the diagnosis
criteria of the FRA and SCI methods are the variation of the FRA curves and the change of the SCI,
respectively. Obviously, there is only one diagnosis criterion in the FRA or SCI method. The sweep
frequency impedance (SFI) method, which is developed by taking advantage of the benefits of the
SCI and FRA methods, is first introduced in [21] to study internal winding short-circuit faults of a
self-designed transformer. However, as a new technique, the SFI method is in a stage of development
and it still needs more practical measurements and applications to further demonstrate its feasibility
and accuracy in the detecting of different types of faults of the onsite power transformer. Therefore,
in this paper, the SFI method is employed to diagnose an onsite 110 kV transformer. Based on the
SFI method, the open-circuit fault of this transformer winding is determined by SFI measurement.
Meanwhile, the accuracy and effectiveness of the SFI method are validated through SCI and winding
resistance measurements.

The remainder of this paper is organized in the following manner. The principles of SFI method,
the similarities and differences between the SFI method and the SCI method, similarities and differences
between the SFI method and the FRA method are introduced in Section 2, respectively. The SFI method
is applied to an onsite 110 kV transformer and the experimental results are comprehensively analyzed
in Section 3. In Section 4, the SCI and winding resistance measurement methods are used to further
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verify the accuracy of the diagnostic results that are obtained by the SFI method. Finally, the conclusion
is given in Section 5.

2. SFI Method

2.1. The Basic Principle and Measurement System of the SFI Method

The SFI measurement system consists of a sweep frequency signal generator, a power amplifier, a
data acquisition device, a computer, and two test fixtures with 50 Ω matched impedances, as shown in
Figure 2. For the measurement of SFI, a series of sinusoidal low voltage signals changed from 10 Hz
to 1MHz are produced by the signal generator. Then, the amplitudes of the low voltage signals are
enlarged by the power amplifier. The amplified sweep frequency signals are injected into one terminal
of the high voltage (HV) winding and the response signals are received by the data acquisition device
from another terminal of the HV winding, with the low voltage (LV) winding shorted. Afterwards, the
SFI value at each frequency point is obtained. Finally, all the SFI values can be drawn as a curve, which
represents the inter impedance characteristic of the winding.
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where, the symbol “·” stands for the phasor. Uin and Uout are the input and the response voltage
phasors of the primary winding, respectively. I1 is the current in the primary winding and it can be
obtained as:
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The data acquisition device not only collects the amplitude values of the input and output voltage
signals but also records the phase values of the input and output voltage signals. Therefore, based
on the Cosine Law, Equation (3) can be changed into Equation (4) by considering corresponding
phase values.
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where, θ1 and θ2 are the phases of the input and output voltages, respectively.
In order to clearly describe the SFI characteristic of the winding, Equation (4) can be presented in

dB scales, as shown in Equation (5).

SFIMagnitude = 20 log10(|Zk|) (5)

Through SFI measurement, the SFI curve, which contains the SFI values in the frequency range
from 10 Hz to 1 MHz, can be obtained. Thus, two different diagnosis criteria are directly formed
to detect the faults of the winding. The first criterion is the SFI value at power frequency (50 Hz),
which is equal to the SCI value measured through the SCI method. By comparing the SFI value at
power frequency and the SCI value in the nameplate, the state of the transformer winding can be
determined. Since the SCI value in the nameplate is usually given in the form of the percentage
impedance, the SFI value at power frequency can be transformed into the percentage impedance, as
shown in Equation (6) [21,22].

Zk% =

√
3× |Zk|Ir

ur
× 100% (6)

where, Ur and Ir are the rated voltage and rated current of the transformer, respectively.
The second criterion is the SFI curve. Since the SFI curve is similar to the FRA curve, the numerical

indices that are used in FRA field, such as the change ratio (CR) [23], absolute sum of logarithmic error
(ASLE) [24,25], and relative factor RF [15,19], can also be used to quantify the variations of the SFI
signatures caused by winding deformation.

2.2. SCI vs. SFI

The SCI method is a conventional technique to detect winding deformation and core displacement
of a transformer. In the SCI test, the voltage is usually applied to the HV winding and the LV winding
is short-circuited. The ratio of the fundamental component of the voltage and the current applied to the
HV winding is the SCI of the transformer under test. The schematic diagram of the SCI measurement
is illustrated in Figure 3.
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Figure 3. The schematic diagram of the short-circuit impedance (SCI) measurement.

It is obviously seen that the connection schemes of the SFI and SCI measurements are the same by
comparing Figures 2 and 3. Differently, the input signal of the SCI measurement is a power frequency
sinusoidal low voltage, but the input signal of the SFI test is a series of sinusoidal low voltages. It makes
the output of the SFI test contain a lot of impedance values in the sweep frequency range rather than
only one impedance value. Hence, the SFI method can get more characteristic information of the
transformer and it is more conducive to detecting the faults of the transformer.

2.3. FRA vs. SFI

The FRA method is a very sensitive tool to detect the winding movement or deformation. The FRA
results measured after the occurrence of faults are compared with the original FRA signature to
determine if any difference appears. The changes of the FRA curves, such as the shifting of resonant
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frequencies, are usually used as the key features for diagnosis of the winding movement or faults.
The magnitude of FRA results of a transformer winding is calculated as the ratio of the output voltage
to the input voltage, as shown in Equation (7).

FRAMagnitude = 20 log10(

∣∣∣∣∣uout

uin

∣∣∣∣∣) (7)

By comparing Equations (5) and (7), the first difference between the FRA method and SFI method
is revealed. That is the form of the results. The FRA results are the voltage ratios, but the SFI results
are the impedances. It needs to be emphasized that, although the resulting forms of these two methods
are different, the values of both results depend only on the structural parameters of the transformer
winding and both methods can be used to diagnose the state of the transformer.

The second difference is that the SCI value obtained by the SFI test can be treated as a diagnostic
criterion, but the FRA test does not provide this important feature. It means that the SFI method
can provide more internal feature information of the transformer to improve the ability to detect the
mechanical defects of the transformer winding.

The FRA measurement system with the end to end open-circuit connection, which is the most
widely used connection scheme, is shown in Figure 4a. In addition to this connection way, there are
three other FRA test connection schemes available recommended by the standards [14–16]. They are end
to end short-circuit, transfer voltage, and inductive inter-winding connections. In the four connections,
the end to end short-circuit connection, as shown in Figure 4b, is similar to the connection scheme of
the SFI test in Figure 2. Apart from the connection, the most significant difference between the SFI and
FRA test systems is the power amplifier. The use of the power amplifier in the SFI test system can
improve the signal-to-noise ratio (SNR) to reduce the external interferences of the onsite test. It makes
the SFI measurement have a better anti-interference performance and it is more suitable for the onsite
test. In FRA method, since the increased input current will make the core saturated and change the
FRA curve in the low frequency range, to get the accurate FRA results of the winding, amplifying the
input voltage is not needed.
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3. SFI Measurement and Results Analysis of an Onsite Transformer

3.1. Experiment Setup

The experiment object in this study is an 110 kV onsite transformer, which contains HV, LV, and
medium voltage (MV) windings, is shown in Figure 5. Detailed parameters of this transformer are
listed in Table 1.
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Figure 5. The 110 kV transformer.

Table 1. Parameters of the 110 kV transformer.

Parameter Value

Rated power (kVA) 31,500
Rated voltage (kV) 110 ± 8 × 1.5%/38.5 ± 2 × 2.5%/6.3

Configuration YN, yn0 d11
Percentage Impedance of “HV to MV” (%) 9.82
Percentage Impedance of “HV to LV” (%) 17.45
Percentage Impedance of “MV to LV” (%) 6.9

3.2. Results Analysis of the SFI Measurement

According to the measurement principle of the SFI method, it can be known that SFI measurements
should be conducted on the HV winding with the LV winding shorted. For this transformer, because
voltages of the HV and MV windings are both larger than that of the LV winding and voltage of HV
winding is also larger than that of the MV winding, so there will be three different SFI measurement
modes for this experimental transformer, i.e., “HV to MV”, “MV to LV”, and “HV to LV”. It is “HV
to MV” mode when the HV winding is measured with MV winding shorted. To clearly explain the
“HV-MV”, “MV-LV”, and “HV-LV” measurement connections, the schematic diagram of “HV to LV”,
“MV to LV”, and “HV-LV” modes is presented in Figure 6.

Energies 2020, 13, x FOR PEER REVIEW 6 of 13 

 

 
Figure 5. The 110kV transformer. 

Table 1. Parameters of the 110 kV transformer. 

Parameter Value 
Rated power (kVA) 31,500  
Rated voltage (kV) 110 ± 8 × 1.5%/38.5 ± 2 × 2.5%/6.3 

Configuration YN, yn0 d11 
Percentage Impedance of “HV to MV” (%) 9.82 
Percentage Impedance of “HV to LV” (%) 17.45 
Percentage Impedance of “MV to LV” (%) 6.9 

3.2. Results Analysis of the SFI Measurement 

According to the measurement principle of the SFI method, it can be known that SFI 
measurements should be conducted on the HV winding with the LV winding shorted. For this 
transformer, because voltages of the HV and MV windings are both larger than that of the LV 
winding and voltage of HV winding is also larger than that of the MV winding, so there will be three 
different SFI measurement modes for this experimental transformer, i.e., “HV to MV”, “MV to LV”, 
and “HV to LV”. It is “HV to MV” mode when the HV winding is measured with MV winding 
shorted. To clearly explain the “HV-MV”, “MV-LV”, and “HV-LV” measurement connections, the 
schematic diagram of “HV to LV”, “MV to LV”, and “HV-LV” modes is presented in Figure 6.  

 

 

Figure 6. The schematic diagram of “high voltage (HV) to low voltage (LV)”, “medium voltage (MV) 
to LV”, and “HV-LV” modes. 

As SFI measurements have not been conducted on this transformer before, there is no original 
SFI reference data. Therefore, the comparison of the SFI test results can be made between the phases 
due to the symmetry. This comparison way is called construction-based method and it is suggested 
by [18]. The SFI curves of three phases of the transformer winding under the three modes are shown 

Figure 6. The schematic diagram of “high voltage (HV) to low voltage (LV)”, “medium voltage (MV)
to LV”, and “HV-LV” modes.

As SFI measurements have not been conducted on this transformer before, there is no original
SFI reference data. Therefore, the comparison of the SFI test results can be made between the phases
due to the symmetry. This comparison way is called construction-based method and it is suggested
by [18]. The SFI curves of three phases of the transformer winding under the three modes are shown in
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Figures 7–9, respectively. At the same time, to accurately analyze the variations of the SFI curves, the
numerical index RF used in FRA field is applied. The calculated values of RF for the phases under
three modes are, respectively, shown in Tables 2–4. The detailed calculation equations of the RF and
relationship between deformation degree and the corresponding values of RF are given in Appendix A.
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Table 2. The values of RF under “HV-MV” mode.

Relative Factor LF MF HF

RFAB 0.7749 0.8973 1.5508
RFBC 0.7570 0.9813 1.6033
RFCA 2.0126 1.6520 1.6848

AB, BC, and CA represent the comparison of phases A and B, the comparison of phases B and
C, and the comparison of phases C and A, respectively.

Table 3. The values of RF under “MV-LV” mode.

Relative Factor Low Frequency Medium Frequency High Frequency

RFAB 0.3962 0.6440 0.5489
RFBC 0.4024 0.6505 0.5381
RFCA 2.1259 1.6197 1.0366

Table 4. The values of RF under “HV-LV” mode.

Relative Factor Low Frequency Medium Frequency High Frequency

RFAB 2.1203 1.6349 1.5215
RFBC 2.0232 1.6548 1.3452
RFCA 2.0699 1.7810 1.6985

Here, the RF of the SFI curve under different modes and the percentage impedance results obtained
from the SFI test will be comprehensively analyzed to determine the deformation of the winding. In
Figure 7, the SFI curves of phase A and phase C under “HV-MV” mode have good consistency in the
whole frequency range. Additionally, in Table 2, the values of RFCA in the low frequency (LF), medium
frequency (MF), and high frequency (HF) ranges all satisfy the RF values of the normal winding
according to the relationship between deformation degree and the values of RF in Table A1. The above
results indicate that HV or LV winding of phase A and phase C may be healthy. Differently, the SFI
results of phase B at low frequencies from 10 Hz to 9 kHz in Figure 6 are larger than that of the other
two phases and the values of RFAB and RFBC in the LF and MF ranges all conform to the RF values of
the moderate deformation. It means that HV or MV winding of phase B may be faulty.

To obtain the accurate diagnosis results, the SFI curves in Figures 8 and 9 and the values of RF
under “MV-LV” and “HV-LV” modes in Tables 3 and 4 are deeply analyzed. In Figure 8, the SFI curves
of phase A under “MV to LV” mode is also in good agreement with those of phase C, which is similar to
the SFI curves of phases A and C in Figure 7. Additionally, the values of RFCA in the whole frequency
range show the MV or LV windings of phases A and C are healthy. However, the SFI curve of phase B
under “MV to LV” mode shows a big difference from the SFI results of phase A and phase C. Especially,
the changing trend of this SFI curve from 10 Hz to 40 kHz is opposite to those of phase A and phase C
and the impedance values of phase B in this range are extremely large. The values of RFAB and RFBC in
the whole frequency range are very small and they indicate that severe failure may occur in MV or LV
windings of phases A, B, and C. However, since MV or LV windings of phases A and C are healthy,
only MV or LV winding of phase B seems to be faulty.

According to the results in Figure 9 and Table 4, it can be easily seen that all the SFI curves of
three phases under “HV to LV” mode are in good agreement with each other and the values of RF
are normal. Hence, it shows that HV and LV windings of three phases are all healthy. At this point,
summarizing the above analysis results, it can be obtained that HV and LV windings of three phases
and MV windings of phase A and phase C are healthy, but MV winding of phase B deforms severely.

In addition to the SFI curves, the SFI value at power frequency simultaneously measured by the
SFI test also can be used to further determine the fault. The comparison of the percentage impedance
at power frequency obtained from the SFI test and the nameplate are given in Table 5. The deviation
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of the percentage impedance of “HV to LV” at power frequency measured by the SFI test is close to
that obtained from the nameplate. It shows that the HV and LV winding are healthy. However, the
deviations of the percentage impedance of “HV to MV” and “MV to LV” at power frequency are 62.42%
and 176.09%, respectively, which are much larger than the maximum permitted change value (3%).
Combining our judgment on the state of HV and LV windings, we can get that only MV winding faults
occur. This diagnostic result is similar to the result obtained through analysis of the SFI curve.

Table 5. A comparison of percentage impedance at power frequency obtained from the SFI test and
the nameplate.

Test Method
Percentage Impedance (Zk%)

“HV to MV” “MV to LV” “HV to LV”

SFI 15.95 19.05 17.56
Nameplate 9.82 6.90 17.45

Deviation (%) 62.42 176.09 0.63

Finally, based on the changing law of the SFI curve under “HV to MV” and “MV to LV” modes and
the significantly increased percentage impedances of “HV to MV” and “MV to LV” at power frequency,
we can determine that an open-circuit fault occurs in the MV winding of phase B. The reason is given
through analysis of the simplified equivalent circuit of the transformer, as shown in Figure 10. For the
SFI test under “HV to MV” mode, when the MV winding of phase B is open-circuit, the SCI of the
winding mainly depends on the magnetizing inductance Lm and resistance Rm, which are much larger
than the reduction inductance L2e and resistance R2e of the MV winding from the HV side. Therefore,
the percentage impedance of “HV to MV” measured by SFI test is larger than the normal value in the
nameplate. For the SFI test under “MV to LV” mode, when the MV winding of phase B is open-circuit,
the output voltage measured from one terminal of the MV winding will be a very small inductive voltage
and it will increase with the increasing of the frequency. Therefore, according to the relationship between
the impedance and the input/output voltage expressed in Equation (3), the SFI value greatly increases and
the SFI curve in Figure 8 shows a very different changing trend at 10 Hz to 10 kHz.
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4. The Validation of the SFI Results by SCI and Winding Resistance Measurement Methods

In this section, first, the accuracy of the SFI values at power frequency obtained by SFI test is
validated by means of the SCI test. Second, the winding resistance measurement is used to verify the
accuracy of the above diagnostic results.

4.1. Results of the SCI Measurement

The comparison of the percentage impedance at power frequency obtained from the SFI test and
the SCI test is shown in Table 6. It can be observed that deviation of the percentage impedance at
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power frequency is very small. The SFI value at power frequency measured by SFI test is accurate.
Consequently, it can be considered as an important feature value to assess mechanical condition of
the transformer.

Table 6. A comparison of percentage impedance at power frequency obtained from the SFI test and the
SCI test.

Test Method
Percentage Impedance (Zk%)

“HV-MV” “MV-LV” “HV-LV”

SCI 16.08 19.21 17.71
SFI 15.95 19.05 17.56

Deviation (%) 0.81 0.83 0.85

4.2. Results of the Winding Resistance Measurement

The winding resistance measurement is a very useful and sensitive approach to detect the integrity
of the conductive loop, breakage of wires, loose connection, and tap changer contact condition [26].
The measured winding resistance is needed to compare with the historical data or between phases.
Variations of more than 5% may indicate a damaged conductor in a winding [27]. It should be noticed
that, first, since the winding resistance varies with temperature, the temperature should be recorded
during each resistance test and the measured resistance must be converted to the reference temperature
for the future comparison. Second, since the winding resistance test may generate residual magnetism
inside the transformer winding, the resistance winding test should be carried out after the SFI and
SCI tests.

The measured winding resistances and the comparison between phases are shown in Table 7.
It is easily seen that the unbalanced coefficients of three phases in HV winding and LV winding are
very small, which are less than 5%. It indicates the resistance values of HV and LV windings are
normal. However, surprisingly, when the resistance test is conducted on the MV winding of phase
B, the test current cannot be loaded on the winding successfully and the test device always shows
“current loading failed”. This phenomenon clearly indicates that the conductive loop of MV winding
of phase B is not closed. The MV winding of phase B is open-circuit. This diagnostic result is consistent
with the result obtained by SFI method in Section 3.

Table 7. A comparison of the winding resistance between phases (20 ◦C).

Value
HV MV LV

AO BO CO Am Bm Cm ax by cz

Resistance (mΩ) 623.56 623.63 623.82 77.46 — 77.17 3.182 3.132 3.157
Average (mΩ) 623.67 — 3.167

Unbalanced Coefficient (%) 0.04 — 0.79

5. Conclusions

In this paper, the SFI method was used to detect the deformation of an onsite 110 kV transformer.
By analyzing the SFI curve and SFI value at power frequency, which are simultaneously obtained
through an SFI test, the open-circuit fault of the MV winding of phase B was determined. Meanwhile,
the accuracy of the diagnostic result obtained by the SFI method was sufficiently validated by the SCI
and winding resistance measurements. The experimental study performed in this paper demonstrates
that the SFI method is capable of assessing the typical deformation of the onsite transformer winding
effectively and accurately. Besides, the contribution of this paper not only can enrich and extend the
SFI method research which is in the early stage but also could provide the technician with the analysis
method of the open-circuit fault of the winding based on the SFI results.
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Appendix A

The calculation equations of the RF are expressed in Equations (A1) to (A5) [15]. Additionally, the
relationship between the deformation degree and the corresponding values of RF is given in Table A1.

RFXY =

{
10, 1− PXY < 10−10

− log10(1− PXY), otherwise
(A1)

where, the PXY is the normalization covariance factor. It can be calculated as:

PXY =
CXY
√

DXDY
(A2)

CXY =
1
N

N∑
i=1

X(i) −
1
N

N∑
i=1

X(i)


2Y(i) −

1
N

N∑
i=1

Y(i)


2

(A3)

DX =
1
N

N∑
i=1

X(i) −
1
N

N∑
i=1

X(i)


2

(A4)

DY =
1
N

N∑
i=1

Y(i) −
1
N

N∑
i=1

Y(i)


2

(A5)

where, X(i) and Y(i) are the ith elements of the fingerprint and measured SFI traces, respectively, and N
is the number of the frequency points.

Table A1. The relationship between the degree of the deformation and the values of the corresponding
relative factor (RF) [15,21].

Degree of the Deformation Relative Factor

Severe RFLF < 0.6
Moderate 1.0 > RFLF ≥ 0.6 or RFMF < 1.0

Slight 2.0 > RFLF ≥ 1.0 or 0.6 ≤ RFMF < 1.0
Normal winding RFLF ≥ 2.0, RFMF ≥ 1.0, and RFHF ≥ 0.6

LF, MF, and HF are 1 kHz–100 kHz, 100 kHz–600 kHz, and 600 kHz–1000 kHz, respectively.
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