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Abstract: This paper addresses the issue of optimal sizing reliability applied to a fuel cell/battery
hybrid system. This specific problem raises the global problem of strong coupling between hardware
and control parameters. To tackle this matter, the proposed methodology uses nested optimization
loops. Furthermore, to increase the optimal design relevance, a reliability assessment of the optimal
sizing set is introduced. This new paradigm enables showing the early impact of the reliability criteria
on design choices regarding energetic performance index. It leads to a smart design methodology
permitting to avoid complexity and save computing time. It considerably helps design engineers set
up the best hybridization rate and enables practicing tradeoffs, including reliability aspects in the
early design stages.

Keywords: optimal sizing; reliability assessment; design methodology; hybrid power source;
fuel cell/battery

1. Introduction

The automotive industry is perpetually setting their focus on the development of alternative
energy sources to reduce oil dependence, greenhouse gas emissions and noise pollution. In this context,
powertrain electrification provides the most promising solution and allows the transition to new
mobility services. In most cases, it uses more than one power source in order to improve the vehicle
efficiency and reliability. Several hybrid architectures are under development to power the electric
powertrain. The hybrid electric vehicle (HEV) uses different storage solutions and different energy
sources, mainly fuel cells, batteries, flywheels and ultracapacitors [1–3]. The storage device is the key
of a successful powertrain electrification since it enhances the system capability with both high power
and high energy densities.

Hybridization unfortunately increases the complexity of the drivetrain, involving further
multiphysics and multidisciplinary problems with additional parameters and constraints, strong
interaction and interdependence between the system constituents, new driving modes, etc. In order
to deal with the full complexity of the system, many performance indices must be integrated [3–6].
The project designer has to consider the most suitable components, their optimal size, and the related
energy management strategy. It is, therefore, an industrial challenge to optimize the design of such
a system.

In this context, developing a suitable engineering methodology has received a significant amount
of attention. In the literature, the numerous works dedicated to achieve an efficient HEV design can be
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subdivided into two categories: empirical approaches and computational approaches [6]. The former
are mainly based on experience feedback using the designer’s expertise. They also include reasoning
and direct analytic processes forming a sequence of design steps. These approaches have proved their
effectiveness and performances for simple and conventional cases. However, facing a complexity
increase requires using computational techniques. They use algorithmic processes mainly based on
optimization routines. The standard approach provides a limited and restricted solution around an
operating point of the typical range of the system; the rated one is commonly used. In order to improve
its performance, several works have considered a wide range of operating points [7,8]. They generally
use a systematic approach either based on a sequential process based on several individual optimizations
or relying a multi-objective optimization [9–14]. Their performances are impacted by the trade-off

between formulation complexity, computational time and exploration capabilities.
A set of new approaches are emerging [15–18] based on combined and mixed methods concepts

to address the increasing complexity of the system, by considering the major parameters affecting the
system performances. They can be classified in three categories: iterative, simultaneous and nested
(bi-level) approaches. Regarding interaction between sizing and control designs, several works have
demonstrated the relevance and performance of simultaneous and nested approaches [19,20].

Simultaneous approaches optimize both the sizing and control variables in the same optimization
formulation, which gives rise to complex analytical structures and presents a challenge to practical
resolution (formulation, computation time, type of problems). Conversely, nested ones maintain
decomposition principles using dynamic coupling to ensure system optimality. They enable quick,
practical and simple implementation. Moreover, a new nested methodology for complex system
design has been suggested, able to tackle large search spaces [17]. It simultaneously tunes and designs
the energy management and component sizing by optimizing the main powertrain parameters in
conformity with the specifications. Technically, it uses two nested loops, combining the particle
swarm optimization (PSO) technique’s performance [21,22] and the rapid Pontryagin optimal control
algorithm (PMP Pontryagin’s Minimum Principle) [23–25]. The former permits addressing vast search
spaces for design component parameters while the latter enables considering energy management
behaviour. This strategy achieves faster convergence to the global optimal design solution and provides
a good accuracy and robustness.

For electrical vehicle (EV) applications, the reliability is a key constraint. Most of design
processes integrate reliability assessments in the post-design phase, i.e., during the control scheme’s
synthesis [3,26–28]. At this late step, it becomes difficult to eliminate all risk of unfeasibility. Practical
remedies to this issue include either the development of optimal control together with degraded modes
monitoring [27–31] or the use of an oversized system. None of these solutions provides a really efficient
solution and ensures the system reliability in real-time operating conditions. In recent works [27,28],
degraded modes of the power management system have been introduced to optimize fuel cell/battery
hybrid system availability and reliability. These studies have shown that the battery degradation
and its lifetime reduction highly depends on the considered sizing. Consequently, to increase the
optimal design relevance and match to industrial challenges, a reliability assessment process has to be
introduced at the same level as the design approach. This new paradigm enables showing the early
impact of the reliability criteria on design choices regarding energetic performance index.

To put this notion to the test, the present work considers a fuel cell hybrid vehicle (FCHV) which
is one of the attractive HEV architectures. It combines the most appropriate technologies for vehicles
nowadays, a hydrogen fuel cell PEMFC (proton exchange membrane fuel cell) with a Li-ion battery.
The fuel cell is controlled to ensure the required energy supply, whereas the transient power requirement
and braking energy are provided by the battery. Subsequently, the battery operates under harsh and
severe conditions and its durability has to be closely considered [1,3]. Hence, a battery reliability
assessment is considered. The battery is modelled according to Wöhler damage representation.
The battery state of health (SOH) is represented by a linear trend extrapolation which can be easily
integrated into the optimization approach and respect computation time constraints. It constitutes a
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major advance compared with the current standard approaches which commonly introduce reliability
constraints once the whole system is designed [32,33]. The latter leads to complex implementations
based on extensive tests and, thus, expensive and time-consuming processes. Conversely, the suggested
approach is based on a linear trend extrapolation of battery SOH enabling to study in the early steps of
design how the reliability aspect may impact the hybrid power system sizing. Additionally, the present
study also aims at finding new recommendations regarding the cost functions and the constraints of
the design optimization approach.

The rest of this paper is organized as follows. Section 2 presents the proposed optimal design
approach, the studied use case (fuel cell/battery hybrid system) and its related requirements. Section 3
introduces the extrapolation of lifetime modelling of the system under study and the proposed battery
reliability assessment. This is followed by a detailed description of the reliability process integration in
the next section. Section 5 gives the simulation results and discussion. Finally, the last section provides
the conclusion and perspectives.

2. Optimization Sizing Approach

2.1. Principle of Sizing Approach

The optimal design aims at setting the value of the key parameters influencing system design
based on one or more performance indices. Considering the interdependence between sizing and
control parameters, the combined methodology is appropriate. The proposed approach is built on
nested optimizations as presented in Figure 1. This global methodology is detailed in [17].
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Figure 1. Overview of the suggested design optimization.

It relies on a two-level optimization scheme; the external loop permits to optimize the architecture
sizing which means that it enables to define the optimal powertrain parameters with respect to the
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hybrid architecture specifications. PSO technique use permits to address large design space while
leading to a simple and time-saving calculation implementation [21,22].

The control tuning parameters is considered; by introducing an energy consumption criterion
in the internal loop (Figure 1), enabling to optimize the consumption of the designed architecture
according to the total driving cycle. For this issue, the PMP based optimal control is introduced with
the ability to compute and optimize a single trajectory of the cost function called the Hamilton function.
This leads to reduced computational time and accelerates the convergence, even for large design space
exploration, which is a key figure for the proposed approach [23–25].

Unlike conventional methodologies, the new proposed paradigm allows to maximize the space
design exploration for more potential design candidates, and offering the best trade-off between
computing time and optimal design.

In summary, the proposed approach uses two nested optimization loops: the external one searches
the main optimal parameters of the architecture sizing according to the specifications (constraints
and criteria) defined by the expert user, while the internal loop makes the external criterion using the
energy management optimization. This internal loop evaluates the energetic performance of each
tested architecture sizing, which provides the cost function of the external loop. Figure 2 illustrates the
workflow involved for the proposed design approach.
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2.2. Use Case

The selected system is a parallel hybrid fuel cell/battery source including a DC/DC converter for
each source. It offers a high freedom degrees that is relevant and suited for optimal design (sizing and
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energy management) [34]. Figure 3 illustrates the functional diagram of this architecture, with the fuel
cell as the main energy source and the battery as the auxiliary power source. The vehicle specifications
considered are related to a city car, similar to a Renault Zoe.

Energies 2020, 13, x FOR PEER REVIEW 5 of 18 

 

and energy management) [34]. Figure 3 illustrates the functional diagram of this architecture, with 
the fuel cell as the main energy source and the battery as the auxiliary power source. The vehicle 
specifications considered are related to a city car, similar to a Renault Zoe. 

 
Figure 3. Parallel hybrid power source architecture. 

The FCEV demand power is computed according to the longitudinal dynamics equation of the 
vehicle considering the vehicle speed V and forces due to vehicle acceleration, drag and friction, and 
road slope, as follows: 

 𝑃 (𝑡) = 𝐶  𝑀 𝑔 𝑐𝑜𝑠(𝛼) 𝑉(𝑡) + 𝑀 𝑔 𝑠𝑖𝑛(𝛼) 𝑉(𝑡) + 𝑀 𝑑𝑉𝑑𝑡  𝑉(𝑡) + 12 𝜌 𝑆 𝐶  𝑉 (𝑡)  (1) 

where PDem is power demand, Cr and Cx are the friction and aerodynamic coefficients, respectively, ρ 
is the air density, S is the front surface area, M is vehicle mass, g is gravity acceleration and α is slope 
of the road. 

In order to consider the randomness feature of real driving cycle (stochastic characteristic), 
different road conditions are discussed including WLTC, US Highway and US 06. 

3. System Reliability Approach 

This study concerns the reliability assessment of fuel cell/battery hybrid power source. This 
powertrain configuration aims at letting the fuel cell provide the main energy autonomy and the 
battery provide transient power demand. The focus is made on battery storage device, which is 
mainly impacted by durability concerns in a typical automotive application [26]. It is considered that 
the fuel cell, whose performance depends mainly on membrane behaviour (gas pressure and velocity, 
thermal and water management, etc.) is well managed and operates under low dynamics conditions, 
which is a positive factor for its lifetime [35]. Battery degradation leads to capacity loss and internal 
resistance increase, which limit the energy availability and the power capability, respectively. State 
of health (SOH) reflects the battery degradation along its lifetime. This indicator enables to obtain an 
appropriate reliability impact figure which can be integrated into the optimization approach. The 
SOH equation is defined in Equation (2): 𝑆𝑂𝐻 =  𝐶 ,𝐶 ,   (2) 

where SOH is BAT state of health, CBAT,C and CBAT,Init are the current and initial battery capacities, 
respectively. 

Lithium-ion battery performances decline with use and time. Their lifetime degradation is a 
complex process and subject to different factors and mechanisms (electrical, thermal, humidity, 
mechanical and chemical parameters). Among these, the thermal aspect mainly drives the aging 
effects [36–41]. Technically, various studies have shown that the main effects on battery expected 
lifetime are: the calendar aging effect and the cycling effect [41,42]. 

First, the calendar aging effect [36,37] mainly depends of the storage conditions as the ambient 
temperature and the battery state of charge (SOC). The SOC equation is defined in (3): 

Figure 3. Parallel hybrid power source architecture.

The FCEV demand power is computed according to the longitudinal dynamics equation of the
vehicle considering the vehicle speed V and forces due to vehicle acceleration, drag and friction,
and road slope, as follows:

PDem(t) = Cr M g cos(α) V(t) + M g sin(α) V(t) + M
dV
dt

V(t) +
1
2
ρ S Cx V3(t) (1)

where PDem is power demand, Cr and Cx are the friction and aerodynamic coefficients, respectively,
ρ is the air density, S is the front surface area, M is vehicle mass, g is gravity acceleration and α is slope
of the road.

In order to consider the randomness feature of real driving cycle (stochastic characteristic),
different road conditions are discussed including WLTC, US Highway and US 06.

3. System Reliability Approach

This study concerns the reliability assessment of fuel cell/battery hybrid power source.
This powertrain configuration aims at letting the fuel cell provide the main energy autonomy and
the battery provide transient power demand. The focus is made on battery storage device, which is
mainly impacted by durability concerns in a typical automotive application [26]. It is considered that
the fuel cell, whose performance depends mainly on membrane behaviour (gas pressure and velocity,
thermal and water management, etc.) is well managed and operates under low dynamics conditions,
which is a positive factor for its lifetime [35]. Battery degradation leads to capacity loss and internal
resistance increase, which limit the energy availability and the power capability, respectively. State of
health (SOH) reflects the battery degradation along its lifetime. This indicator enables to obtain an
appropriate reliability impact figure which can be integrated into the optimization approach. The SOH
equation is defined in Equation (2):

SOH =
CBAT, C

CBAT, Init
(2)

where SOH is BAT state of health, CBAT,C and CBAT,Init are the current and initial battery
capacities, respectively.

Lithium-ion battery performances decline with use and time. Their lifetime degradation is
a complex process and subject to different factors and mechanisms (electrical, thermal, humidity,
mechanical and chemical parameters). Among these, the thermal aspect mainly drives the aging
effects [36–41]. Technically, various studies have shown that the main effects on battery expected
lifetime are: the calendar aging effect and the cycling effect [41,42].

First, the calendar aging effect [36,37] mainly depends of the storage conditions as the ambient
temperature and the battery state of charge (SOC). The SOC equation is defined in (3):
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SOC = SOC0 +
ηBAT

CBAT

∫
iBATdt (3)

where SOC and SOC0 are, respectively, the current and initial state of charge. ηBAT, CBAT and iBAT are
battery efficiency, capacity and current, respectively.

Second, the cycling aging is related to several elements depending on battery usage [38,39,43] and
energy management optimization (power sharing). The main stress factors are the number of cycles,
the depth of discharge (DOD), the battery temperature and the average demanded power.

Considering different studies in literature [38–43], usually battery aging and SOH are evaluated
according to calendar and cycling extensive tests to establish physical modelling or empirical modelling.
For example, in [4,44], the degradation factors of the Li-ion battery are estimated using a semi-empirical
model according to the manufacturer’s data, by considering the instantaneous capacity loss evolution
as a function of rated current. To model the battery degradation mechanism, Leng et al. [45] and
Zou et al. [46] propose an analytical and electrical models, respectively. They both consider the influence
of the operating temperature on the batteries lifetime for HEVs. Zou et al. [46] and Ecker et al. [47]
performed a set of experiments to estimate the key aging factors affecting batteries lifetime.

These different solutions are complex and require specific experiment tests, leading to an expensive
and time-consuming process. Moreover, they do not adequately take into account stochastic automotive
driving cycle. Accordingly they are not suitable for a good design approach.

The major test data provided by studies in [38,39,46,47] were obtained using the following
procedures:

- For the DOD study the cycle was a CCCV (constant current constant voltage) charge at 1C,
followed by a 30 min break and then a CC (constant current) discharge to the desired DOD at 1C
and, finally, a 5 min break. The details of this procedure is presented in [38,39].

- For the C-rate study, the cycle was a 100% DOD performed at a different C-rate in a continuous
fashion. For more details, see [38,39].

Against this background, both calendar and cycling test data provided by studies in [38,39,46,47]
are analysed to establish mathematical relationships between the monitored parameters influencing
battery aging, such as temperature, SOC and rated current. It allows an extrapolation for reliability
assessment. First, the SOH evolution could be modelled using the number of cycles and the related
electrical operating conditions. It reveals to be a relevant metric to assess the ageing rate of a lithium-ion
battery (Figures 4 and 5). It uses the concept of the Wohler curve describing the relation between stress
level and the number of cycles to failure. This criteria has initially been introduced for mechanical
fatigue concerns and later widely adopted in varied fields of application. This makes possible the
estimation of the residual lifetime (SOH change) by identifying the remaining number of cycles.

For EV application, the end-of-life (EOL) of a battery is related to capacity performance and can be
determined until loss of battery capacity reaches 20% which leads to a certain number of cycles [4,48,49].
The experimental data demonstrates that the SOH stays relatively stable and exhibits a quasi-linear
behaviour for different operating condition until EOL is reached (Figures 4 and 5). Thus, there is
obviously a proportional relationship between the number of cycles and DOD level as well as the
rated current, with the same trend as illustrated in Figures 6 and 7. The SOH model is thus expressed
through the following equations and remains valid until EOL; Equation (4) is defined for a given rated
current and Equation (5) is defined for a given DOD obtained from the experimental process. SOHDOD(%) = 100− DOD(%)

γ ·NCycle,DOD

NCycle,DOD = α·DOD(%) + β
(4)

{
SOHIc(%) = 100− Crate

δ ·NCycle,Ic
NCycle,Ic = ρ ·Crate + σ

(5)
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where SOHDOD and SOHIc are state of health as a function of DOD and rated current, respectively. NCycle,
DOD and NCycle,Ic are number of cycles according to a DOD level and a ratted current, respectively.
Crate is charging/discharge current. α, β, γ, δ, ρ and σ are fitting parameters.Energies 2020, 13, x FOR PEER REVIEW 7 of 18 
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The study is carried with full range variation of the SOC from 20% to 90%, which leads to a DOD
of 70%.

It is important to extend this degradation model developed under specific experimental operating
conditions to real-life driving conditions. For this purpose, a similar principle is applied to describe the
SOH. It assumes that the variation of the stress factors follows its average values until EOL is reached.
In this framework, the idea is to link the battery’s entire lifetime to the energy exchanged by the battery
until EOL. To cover up the dynamic of the operating conditions, the exchanged energy is weighted by
a degradation degree coefficient. This is later deduced from the SOH test dataset.

In sum, the reliability assessment is obtained by estimating the residual lifetime, depicted by the
weighted of cumulative energy exchanged according to the power density of cycle. Figure 8 shows the
different steps of the proposed reliability assessment approach.
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First, the total exchange energy is cumulated by simple counting for the considered driving cycle
(WLTC) and calculated by: {

EBAT(J) =
∑∣∣∣ PBAT (W) ·TS (s)

∣∣∣
EBAT,Tot,Init(J) = EBAT·NCycle,Init

(6)

where EBAT and PBAT are battery cumulated energy and power, respectively. EBAT,Tot,Init and NCycle,Init
are total initial battery energy and number of cycle, respectively. TS is sample time.

Then, a power density histogram is introduced and can be set according to various power levels
(from 10% to 100% in increments of 10%). This is accomplished by counting the energy exchanged for
each power level normalized to the available energy of cycle.

VPDi=1...10 =
(
∑

PBAT, i × TS)

EBAT
·100 (7)

This enables to identify a vector of power distribution (VPD) for a specific driving cycle, the WLTC
one is given by:

VPDWLTC = [VPD1 VPD2 VPD3 VPD4 VPD5 VPD6 VPD7 VPD8 VPD9 VPD10 ]

= [ 25% 18% 17% 15% 11% 9% 4% 1% 0% 0% ]
(8)

Finally, each power distribution level is weighted as a result of the variation of dynamic operating
conditions (power level/rated current) according to the lifetime experimental data. For this use case,
a linear regression is considered, which can be customized depending on the results data (for example
non-linear trend). A weighting vector (WV) is thus achieved and expressed as:

WV =
[1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
3

10
3

]
(9)

Finally, there remains to assess the degradation degree coefficient related to the total exchange
energy. It symbolizes the degradation degree (D) of the battery calculated as follows:

D = Mean (WV · VPD) (10)

Total battery degradation is expressed as a percentage value for lifetime loss (LLoss) or consumed
energy. This procedure is repeated until depletion, which means EOL conditions, through the
following equation:

LLoss(%) =
EBAT·D·100
EBAT,Tot,Init

(11)

The approach’s flexibility enables direct adaptation to different battery technologies by updating
their lifetime data. It produces very fast results with sufficient accuracy suitable for the optimisation
sizing approach. The following section considers reliability process integration to analyse its impact
on the hybrid power system sizing based on an energy performance index.

4. Reliability Process Integration

A reliability process integration is introduced to assess the reliability impact on the sizing of
the hybrid power system under the energy performance index. This process supports the proposed
reliability assessment approach and a reliability assessment of the set of solutions.

Figure 9 represents the reliability process integration using the following steps:

- Design optimization step: the proposed combined design approach gives a consistent set
of solutions whatever the driving cycle. The mapping of designed solutions is depicted by
a bowl shape surface. It shows clearly a trade-off between component sizing and energy
saving. The hybrid system design is mainly affected by the load average power and the load
power dynamics.



Energies 2020, 13, 3510 10 of 17

- Reliability assessment step: For each driving cycle, the set of design solutions is assessed for
reliability using lifetime loss rate. To this end, the linear trend extrapolation of battery SOH is
considered, as explained before.
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To improve design results, different FC dynamics have been introduced. It helps considerably
design engineers to set up the best hybridization rate and enables them to practice trade-offs, including
reliability aspects, in the early steps of the design.

5. Results and Analysis

The proposed process is evaluated by extensive simulation using MATLAB/SIMULINK
environment (R2018a, MathWorks, Natick MA, USA). A map of different sets of solutions, for different
driving cycles (WLTC, US 06 and US Highway), and with various FC dynamics (1 s, 5 s and 10 s: time
required to achieve the rated power).

During the first step, the design optimization results show that the FC sizing is closely linked
to the load power average (energy source) while its battery capacity is influenced by the dynamic
behaviour depending on transient phases of driving cycle (power source). The FC dynamics are sett
using different time responses. The results maps are obtained considering the system’s parameters in
Table 1.

Table 1. Methodology and vehicle parameters.

Parameter Value Parameter Value

Particles number and Iteration 30, 100 Vehicle mass (kg) 1428
Values to design PFC, CBAT Air density (kg·m−3) 1.2

Search field: PFC, CBAT 1–50 kW and 1–10 kWh Friction coefficient 0.012
Fuel cell, battery models PEMFC static, Li-Ion model Aerodynamic coefficient 0.29

SOCMin, SOCMax 15%, 90% Front surface area (m2) 2.69
γ, α, β 1400, −20, 1700 δ, ρ, σ 125, −1600, 4400

Figure 10 presents sizing solutions considering the reliability effect under WLTC and US highway
using the same fuel cell dynamic (10 s). The aim is to see how the developed approach considers
the variation of operating conditions (sensitivity of the approach). Overall, the design approach
makes an appropriate sizing; the FC is very closely to the system autonomy by ensuring the load
average. Conversely, battery capacity attends dynamic behaviour given by the energy deviation.
This deviation impacts the battery thermal behaviour (cycling effect), which is directly calculated using
the mathematical model presented previously and correlated to the dynamic driving cycle. The WLTC
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driving power presents many transitory phases (numerous and intense) implying a significant impact
on battery lifetime (deep cycling). On the contrary, the US highway certification cycle has less impact
on the battery lifetime because of a lower dynamic range (driving mode). Technically, the standard
deviation of the battery exchanged energy is significantly different between the WLTC cycle and the US
highway one: 1.2 kWh and 0.36 kWh, respectively. Similarly this trend is reflected in the value of the
lifetime loss which is in roughly three times larger in the WLTC mapping (Figure 10b,d), for example,
for sizing architecture (PFC = 20 KW, CBatt = 3 KWh), the lifetime losses are: 0.01 % for US highway
and 0.032 % for WLTC.
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Figure 10. Design results considering lifetime loss (KW/h or %) according to US Highway and WLTC
driving cycle. (a) Result mapping with battery lifetime loss (KW/h), US Highway and FC dynamic
10 s. (b) Result mapping with battery lifetime loss (%), US Highway and FC dynamic 10 s. (c) Result
mapping with battery lifetime loss (KW/h), WLTC and FC dynamic 10 s. (d) Result mapping with
battery lifetime loss (%), WLTC and FC dynamic 10 s.

In order to introduce more flexibility about hybridization rate, three different FC response times
(1 s, 5 s, 10 s) are considered while using the same certification driving cycle (namely US 06) as illustrated
in Figure 11. The surface shape of this sizing solution is slightly influenced by the FC dynamics.
The lifetime loss remains relatively low according to the battery dynamic behaviour Figure 11b,d,f,
indicating that the design approach makes the best trade-off towards this requirement. For example,
for sizing architecture (PFC = 20 KW, CBatt = 3 KWh), the life time losses are: 0.009% for FC dynamic
1 s, 0.01% for FC dynamic 5 s and 0.0115% for FC dynamic 10 s.

In sum, for the optimal zone, the results show that, to meet reliability constraints, the designer
applies a slight oversizing of the battery compared to the energy constraint solution. This behaviour is
proved by the global ramp of the mapping, which decreases, with the increase of the battery capacity.
In addition, the sizing of the FC also influences the battery reliability with a bowl effect in accordance
with the optimal FC power value. These results show the antagonistic behaviour of the reliability
objective towards the energy saving one.

These different effects show that the key challenge is to simultaneously take into account several
objectives in a global design approach. Indeed, the fuel consumption criterion tends to decrease the
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battery sizing in order to limit the embedded mass while the reliability criterion leads to increase this
sizing so as to enhance the power capability, thus reducing the battery degradation and its lifetime loss.
These results of this approach enables to decide between several proposed sizes.
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Figure 11. Design results (fuel cell power FCpower and battery capacity CBatt) considering lifetime loss
(KW/h or %)—US 06 driving cycle under different FC dynamics (1 s, 5 s and 10 s). (a) Result mapping
with battery lifetime loss (KW/h) and FC dynamic 1 s. (b) Result mapping with battery lifetime loss
(%) and FC dynamic 1 s. (c) Result mapping with battery lifetime loss (KW/h) and FC dynamic 5 s.
(d) Result mapping with battery lifetime loss (%) and FC dynamic 5 s. (e) Result mapping with battery
lifetime loss (KW/h) and FC dynamic 10 s. (f) Result mapping with battery lifetime loss (%) and FC
dynamic 10 s.

To evaluate the representativeness of the obtained results, time simulation tests of the proposed
powertrain are carried out using a standard WLTC drive cycle. With a distance of 23 km, the WLTC
provides a specific consumption around 0.72 kg/100 km, considering the optimized architecture



Energies 2020, 13, 3510 13 of 17

illustrated in Table 2. This performance is highly encouraging, since it is very close to the standard
driving cycle of electric vehicles, which proves the relevance of suggested approach.

Table 2. Optimization results—WLTC.

Variable Value

Fuel cell power 30 kW
Battery power 19.5 kW

Battery capacity 6.5 kWh
Hydrogen consumption 0.72 kg/100 km

Computation Time 900 s
Battery lifetime—Number of cycles WLTC 10,000
Battery lifetime—Total exchanged energy 4500 kWh

Figure 12 presents the optimal fuel cell/battery system response with the key variable waveforms:
the load power (PLoad), the relative FC power, the state of charge (SOC) and the FC efficiency. Obviously,
the FC is requested between 15% and 50% of its rated power, which belongs to the best range of FC
energy efficiency, thanks to the energetic strategy, which makes use of the FC in its best range.Energies 2020, 13, x FOR PEER REVIEW 14 of 18 
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The SOC trajectory tends to follow the vehicle dynamic behaviour and reaches the required final
condition. This demonstrates the effectiveness of the dichotomy technique for finding the proper
co-state tuning value

6. Conclusions

To be more suited to industrial challenges, the current study addresses the reliability process
integration into the design approach based on an energetic performance index.

The proposed approach considers a linear trend extrapolation of battery SOH based on data
test analyses, in order to avoid the limits of conventional approaches: complexity, expensive and
time-consuming implementation. It produces very fast results with sufficient accuracy suitable for
the optimization sizing approach. This makes it possible to consider different driving cycles and
operating conditions.

The results show a correlation between energy constraint and reliability impact. Battery lifetime
loss is influenced by the dynamic range, dependent on the driving cycle. Therefore, to meet the
reliability constraint, the designer applies a battery oversizing compared to a solution limited to a
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single energy constraint. However, the results reflect a global trend; it should be considered in a
relative way and not in an absolute one which represents the main limit of the present approach.

This work shows the relevance of a multi-objective approach in a design process because of the
growing complexity of considering several conflicting or non-conflicting objectives.

Based on this approach, future work will consider including the reliability effect at the same level
as the energy one. This multi-objective optimization will permit a simultaneous approach and enable
making the best trade-offs with respect to the specifications.

Author Contributions: Conceptualization, A.C., T.A., O.B. and F.A.; methodology, A.C. and T.A.; formal analysis,
T.A. and O.B.; writing—original draft preparation, A.C. and T.A.; writing—review and editing, T.A., O.B. and F.A.;
supervision, O.B. and F.A., All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

HEV Hybrid Electric Vehicle
PSO Particle Swarm Optimization
PMP Pontryagin’s Minimum Principle
EV Electrical Vehicle
FCHV Fuel Cell Hybrid Vehicle
PEMFC Proton Exchange Membrane Fuel Cell
SOH State Of Health
WLTC Worldwide Harmonized Light Vehicles Test Cycles
US Highway Highway United States Test Cycle
US06 Supplemental United States Test Cycle
VPD Vector of Power Distribution
WV Weighting Vector
D Degradation degree
LLoss Lifetime loss
SOE State of Energy
DOD Depth of Discharge
CCCV Constant Current Constant Voltage
CC Constant Current
EOL End-of-Life
PFC/Max/Min Fuel cell power, Maximum, Minimum, (W)
PBAT/Max/Min Battery power, Maximum, Minimum, (W)
CBAT/Max/Min Battery capacity, Maximum, Minimum, (Ah)
SOCBAT/Max/Min Battery state of charge, Maximum, Minimum, (%)
ηFC ηBAT Fuel cell and Battery efficiency, (%)
H Hamiltonian function
λ Co-state, Lagrange multiplier
PDem Power demand, (W)
Cr, Cx Friction and aerodynamic coefficients
ρ Air density, (kg.m−3)
S Front surface area, (m2)
M Vehicle mass, (kg)
g Gravity acceleration, (m.s−2)
α Slope of the road, (deg)
CBAT,C, CBAT,Init Current and initial battery capacity, (Wh)
SOC, SOC0 Current and initial State Of Charge, (%)
iBAT Battery current, (A)
SOHDOD State of health as a function of DOD
SOHIc State of health as a function of rated current.
NCycle,DOD Number of cycles according to a DOD level
NCycle,Ic Number of cycles according to a ratted current.
Crate is Charging/discharge current, (A)
α, β, γ, δ, ρ, σ Fitting parameters.
EBAT Battery cumulated energy, (J or Wh)
EBAT,Tot,Init, NCycle,Init Total initial battery energy and number of cycle.
TS Simple time, (s)
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