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Abstract: Accurate fault classification and detection for the microgrid (MG) becomes a concern
among the researchers from the state-of-art of fault diagnosis as it increases the chance to increase the
transient response. The MG frequently experiences a number of shunt faults during the distribution
of power from the generation end to user premises, which affects the system reliability, damages the
load, and increases the fault line restoration cost. Therefore, a noise-immune and precise fault
diagnosis model is required to perform the fast recovery of the unhealthy phases. This paper
presents a review on the MG fault diagnosis techniques with their limitations and proposes a novel
discrete-wavelet transform (DWT) based probabilistic generative model to explore the precise solution
for fault diagnosis of MG. The proposed model is made of multiple layers with a restricted Boltzmann
machine (RBM), which enables the model to make the probability reconstruction over its inputs.
The individual RBM layer is trained with an unsupervised learning approach where an artificial
neural network (ANN) algorithm tunes the model for minimizing the error between the true and
predicted class. The effectiveness of the proposed model is studied by varying the input signal
and sampling frequencies. A level of considered noise is added with the sample data to test the
robustness of the studied model. Results prove that the proposed fault detection and classification
model has the ability to perform the precise diagnosis of MG faults. A comparative study among
the proposed, kernel extreme learning machine (KELM), multi KELM, and support vector machine
(SVM) approaches is studied to confirm the robust superior performance of the proposed model.

Keywords: deep belief network; faults; microgrid; distribution line; wavelet transform

1. Introduction

The microgrid (MG) meets the exponential growth of load demand because of its reliable,
secure, sustainable, and green energy supply [1,2]. This small-scale power supply network is
constituted by several distributed energy resources (DERs), energy storage devices, communication
facilities, and well-regulated loads [3–5]. An MG is able to work in both an autonomous/islanded
and grid-tied way. In the grid-tied operation, a portion of the load is driven by the primary AC
grid, and in the islanded process, the main AC grid is disconnected from the microgrid and runs

Energies 2020, 13, 3460; doi:10.3390/en13133460 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-9185-4658
https://orcid.org/0000-0001-6077-8031
https://orcid.org/0000-0003-4955-6889
http://dx.doi.org/10.3390/en13133460
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/13/3460?type=check_update&version=2


Energies 2020, 13, 3460 2 of 21

autonomously. As the MG shows dynamic (such as the mode of operation) characteristics and its
system components show non-linear characteristics, it produces a negative influence on the system
protection [6]. Thus, the protection of the MG system is a considerable issue before facilitating this
novel technology [7–11].

The safe operation of the MG depends on the precise fault detection and classification (FDC)
as the faults are unpredictable and random in nature and needs specialized technique to restore the
faulty phases [12,13]. Furthermore, the protection method of the MG is not directly comparable
to the conventional transmission line protection method due to its various modes of operation
(autonomous or grid-tied), system arrangement (looped or radial), and types of DERs. An amount
of short circuit faults like phase-to-phase (pp), phase-to-ground (PG), two PG (2PG), and three PG
(3PG) [14] occurs in the microgrid distribution line and develops an unbalanced current waveform in
the MG premises. The precise and speedy FDC model serves as a strategy for the balanced behaviour
of the MG system as it increases the chance of speedy restoration of the unhealthy phases from the MG
model. The restoration of the damaged phases, in turn, enhances the quality level of electrical power
and increases the transient response, as well as the system stability [15–17].

Several fault prognosis and diagnosis models are considered to classify the faults in MG [18–21].
In [22,23], a protection plan of action based on communication was studied for the MG. This scheme
keeps back-up security if the main protection scheme fails. A mathematical morphology based scheme
was proposed in [24] for a radial low voltage DC distribution network. An approach presented in [25]
used abc to dq transformation for the distributed generators’ (DGs) output to declare a fault type.
Nonetheless, these schemes only consider the protection strategy for a particular operating mode
or system topology. A phase angle and magnitude of positive and zero sequence voltage based
fault characterization scheme was proposed in [26]. Another MG protection plan of action based
on harmonic current evaluation was introduced in [27]. The mentioned approaches require setting
an appropriate threshold value, which is challenging due to the dynamic behaviour of loads and
variable fault impedances.

The neural network approaches are becoming popular among the fault prognosis methods where
the fault features are required, which come from the line signals (current and voltage), for identifying
a distinct fault class [28]. Though the fault data are coming from the distribution line current or voltage
waveforms, it is quite difficult to declare a fault class only using the raw signal data. In turn, the signal
processing tools like wavelet transform [29], S-transform [30], or Hilbert–Huang transform [31]
are explored to reveal the relevant features from the distribution line waveforms that determine
the behaviour of the line faults. Therefore, improving the accuracy of the neural network based FDC
model has turned into one of the influential research platforms.

A decision tree (DT) based FDC scheme for the microgrid was presented in [32] where the
features were extracted by the discrete Fourier transform. A combined wavelet transform and DT
was used to diagnose the MG faults [3]. The wavelet transform (WT) can also be combined with the
S-transform to detect the disturbance in grid-tied DG systems [33]. Based on the extracted features by
the Hilbert–Huang transform, a learning model including the naive classifier, SVM, and ELM has been
used for declaring the type of faults [6]. In [34], the discrete wavelet transform (DWT) was combined
with ELM for the detection, classification, and section identification of a microgrid. A semi-supervised
model for FDC of the microgrid was presented in [35]. A Taguchi based artificial neural network
combined with DWT was presented in [36]. These machine learning [37–39] and neural network based
approaches use a shallow architecture that limits the learning capability of the complex non-linear
features of the MG. Due to the lack of hidden layers, these approaches cannot fuse the benefits of
multiple features with perfection.

To address the aforementioned problems, this paper introduces a deep belief network (DBN)
with multiple layers of hidden units that enables a way to improve the classification accuracy by
learning the complex non-linear feature of the MG. Initially, the DBN was applied to diagnose the
faults of aircraft engines. Thereafter, the research on gearboxes’, rolling-bearings’, and reciprocating
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compressor valves’ fault diagnosis grew rapidly [40–43]. The DBN is a stack of RBM, which makes the
network deeper and enables the model to extract the features adaptively [44,45]. The DBN can handle
non-linear data, which makes it to classify the faults more precisely in the microgrid domain.

The proposed network takes the three phase faulty voltage and current waveform data as an input
to perform the fault diagnosis of the MG system. A DWT tool is used to extract the features from
the raw signal samples. To increase the noise-immune performance of the DBN, an extension of this
classifier with the dropout strategy is also proposed in this research. The dropout strategy significantly
elevates the effectiveness of the proposed DBN against a level of considered noise.

The main findings of this article are as follows:

• We design a novel network for distribution line FDC of MG based on the deep learning network
together with the WT that enables the network to take out the relevant short circuit fault attribute
from the faulted line signals effectively.

• We develop a hierarchical generative model with multiple layers of RBM that restrains overfitting
of the training dataset with a prominent unsupervised pre-trained process.

• Both operating modes namely islanded and grid-connected/tied with two typologies
(radial and loop) of MG are studied to measure the effectiveness of the proposed model.

• The dropout strategy is integrated with the proposed network to establish the robust performance
of the developed DBN model over the noisy environment.

The paper is arranged as follows. Section 2 describes the design of the proposed generative
model for the classification of MG faults with its required material. Section 3 presents the performance
analysis of the proposed DBN model. The paper is concluded in Section 4.

2. Materials and Methods

2.1. Types of Network Faults

Faults in the MG power line are broadly categorized into shunt faults and series faults.
When a power network experiences a plain break in one or two conductors, an imbalance of the
series impedance appears on the line and is known as a series fault. This type of fault is not directly
related to the distribution of power from one place to another. On the other hand, the three phase
power network frequently experiences the shunt fault at the time of power distribution, which is then
classified as phase-to-phase (PP), phase-to-ground (PG), two PG (2PG), and three PG (3PG).

2.1.1. Single PG Fault

Single LG fault occurs when any phase line of a three phase power line comes in contact with
the neutral line or drops to the ground. The fault is also referred to as a short circuit fault caused
by heavy wind or the falling of trees on a line. Three types of single line to ground faults are shown in
Figure 1a–c, where a, b, and c are three phases of a distribution line.

a a a a a a

b b b b b b

c c c c c c
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a

b

c

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Rf

Rf

Rf

Rf Rf

Rf

Rf

Rf

RfRf

Rf

RfRf

RfRf

Figure 1. Representation of different fault types: (a) a-g, (b) b-g, (c) c-g, (d) ab-g, (e) bc-g, (f) ca-g,
(g) a-b, (h) b-c, (i) a-c, and (j) abc-g fault.
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2.1.2. Two PG Fault

When two lines of a power line fall to the ground, the two PG fault occurs. This fault gives
rise to a significant asymmetry and a higher magnitude of fault current compared to the line-to-line
fault. If this fault is not cleared in time, it may turn out to be a three line to the ground fault where
the severity is much higher than the other types of faults. In Figure 1d–f, the ab-g, bc-g, and ac-g faults
are shown where R f is considered as the fault resistance.

2.1.3. PP Fault

The short circuit between any of the two lines of a three phase system produces this type of fault.
One of the important characteristics of this unsymmetrical fault is that the magnitude of the fault
impedance varies over a broad range, which makes it difficult to predict its upper and lower limits.
Three types of PP faults are presented in Figure 1g–i.

2.1.4. Three PG Fault

3PG fault is a rarely occurring fault, as shown in Figure 1j. This symmetrical fault may be due to
the falling of an electric pole or equipment failure. During this fault, the three phase voltage drops to
zero, and a large amount of fault current is produced. Though the frequency of occurrence is the lowest,
this fault is widely studied in power system protection as the fault produces the maximum amount of
short circuit current.

2.2. System Modelling

A microgrid system satisfying the International Electrotechnical Commission (IEC) standard [46]
was considered in this study to test the classification performance of the proposed network,
as illustrated in Figure 2. The studied MG network was modelled in MATLAB/Simulink, which offers
extensive facilities to produce the required data. The studied system parameters are reported in Table 1.
The system carried four DG units of which Generator-1 (G-1) was a DFIG based wind farm, G-2 was
a wind turbine with an asynchronous machine, and G-3 and G-4 were inverter based generators.
The system frequency was set to 50 Hz, and the base power was considered to be 48 MVA. By having
the circuit breaker (CB) at the grid side, the studied system could operate in both modes. Furthermore,
changing CB Loop-1 and CB Loop-2 allowed the system to be operated with the looped or radial
topology. The distribution lines of the studied system were divided into five sections with a length
of 20 km each. Ten types of shunt faults as mentioned in Table 1 were simulated in the distribution
lines, and the three phase voltage and currents were sampled from the sending end side of the lines
at a sampling rate of 20 kHz. For different network configurations, operating modes, fault distances,
fault resistances, and fault inception angles, the signals were sampled for each fault and the non-fault
condition to produce the fault data.
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Figure 2. The International Electrotechnical Commission (IEC) standard microgrid system.
CB, circuit breaker.
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Table 1. Specification of the system parameters.

System Parameters Types or Values

Fault

Types of faults a-g, b-g, c-g, ab-g, bc-g, ac-g, a-b, b-c,
a-c, abc-g, non-fault

Fault distance (km) 1 to 19 with an increment of 0.5
Fault resistance (Ω) 0.1, 1, 5, 10, 20, 50, 100

Line

Positive and zero sequence resistances (Ω/km) 0.0135 and 0.0424
Positive and zero sequence inductances (H/km) 4.9869× 10−5 and 1.39× 10−4

Positive and zero sequence capacitances (F/km) 11.33× 10−9 and 5.01× 10−9

Distance (km): Line 1-3; Line 1-2; Line 3-5; Line 3-4; Line 5-6 20 km each

Transformers (T)
T-1 79/13 kV, 10 MVA, 50 Hz

T-2 and T-5 0.575/13 kV, 9 MVA, 50 Hz
T-3 and T-4 0.4/13 kV, 10 MVA, 50 Hz

Generators (G)

Main grid 1000 MVA, 79 kV, 50 Hz
G-1 (DFIG based wind farm) Rated MVA: 9 MVA, Rated kV: 575 V

G-2 (Wind turbine with asynchronous machine) Rated MVA: 1.5 MVA, Rated kV: 0.4
G-3 ( Inverter based) Rated MVA: 10 MVA, Rated kV: 13
G-4 ( Inverter based) Rated MVA: 10 MVA, Rated kV: 575 V

2.3. Variation of Signal Energy with Feature Generation

In this paper, a framework of the MG distribution line FDC is proposed based on a probabilistic
generative network. For the unhealthy or fault detection plan, the sound or health condition was used
to make a type of fault, i.e., including all the short circuit fault conditions and the sound state of phase,
presenting a total of 11 fault types. The nature of the classifier was expected to be non-faulty or sound
in the healthy condition. An unhealthy or fault event was detected when the classifier output was
switched to a distinct fault class. The training of the proposed model demanded digging out the fault
features from the raw signals. Every fault signal had a distinct signal energy, which depended on the
system parameters, i.e., fault distance and resistance. The variation in raw signals of each phase was
separately analysed by applying the DWT. Afterwards, individual signal energy was calculated for
preparing the required dataset.

2.3.1. Effect of Fault Distance on Signal Energy

The unhealthy or faulty event may occur at any point of a distribution network. The training
approach of the proposed DBN with a variation of the fault distance enabled the network to inspect the
signal anywhere in the distribution network. For the sample data generation, the location of the fault
event was varied within 1 to 19 km with an increment of 0.5, and the current and voltage waveform
were observed. The variation of the raw signal created different lengths of signal energy, which ended
up representing various features. For the demonstration, a variation in the signal energy during the
a-g fault for different fault locations at Lines 1-3 is presented in Figure 3. From the analysis, the signal
energy of the faulted phase current and voltage waveform were observed and varied with the distance.
While performing this demonstration, the value of the faulted strength/resistance was fixed to 10 Ω,
while other parameters remained persistent, as mentioned before.
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Figure 3. Variation of three phase (a) current and (b) voltage signal energy during the a-g fault with
the fault distance for the grid-tied radial mode operation.



Energies 2020, 13, 3460 6 of 21

2.3.2. Effect of Fault Resistance on Signal Energy

The fault resistance/strength also had a great impact on the raw signals. The short circuit fault
event carried with the ground may be responsible for creating inaccurate attribute measurement if
the fault strength is not considered. In turn, the proposed FDC system was studied with the difference
of the fault strength and training the system for effective FDC. The signal energy from the three phase
voltage and current for Lines 1-3 at different fault resistances are shown in Figure 4. From the figure,
the energy of the faulty phase was observed, which enabled the system to characterize a fault of
different fault resistances. While demonstrating the result of fault resistance/strength on the signal
energy, the distance of the fault was set to 10 km from the sampling end, and other parameters
remained constant.
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Figure 4. Variation of three phase (a) current and (b) voltage signal energy during the a-g fault with
the fault resistance for the grid-tied radial mode operation

2.4. Fault Feature Generation with Wavelet Transform

In this study, the DWT was used to explore the features of a distinct portion of a signal when
a rapid change in signal occurred. The WT is the decomposition of a signal into a time series of
components. The time series faulty components shield a distinct frequency portion, presenting
extensive instruction of a time series waveform. In turn, the WT technique is used here to represent
the fault attribute of a particular area of the faulty signal during a fault event. In DWT, a signal goes
through a series of high-pass filters (HPF) and a low-pass filters (LPF). The LPF analyse the signal at
the low-frequency domain, while the HPF analyse the signal high-frequency domain, which as a result
disintegrates the signal into detail (Det) and approximation (App) coefficients. The App coefficient
depicts the large- and small-scale frequency elements of the fault signal. Accordingly, the Det coefficient
represents the small- and large-scale frequency elements of the fault signal. This decomposition process
is replicated with the consecutive App so that a fault signal is divided into some smaller resolution
sections. This process is referred to as a decomposition tree for DWT, as presented in Figure 5.

In this research, a 1/2 cycle post fault current and voltage information were passed through
the multi-resolution wavelet block to extract the App and Det level components correlated with
the fault current/voltage data. The Daubechies wavelet (DB) was chosen as a mother wavelet as it has
been already proven to work effectively [47]. When a short circuit fault occurs in the distribution line,
a variation in the wavelet coefficients of the voltage and current waveforms is noted for various system
parameters that carry the valuable fault signature information. For illustration, the Line-a current and
voltage waveforms in the presence of the a-g fault are analysed with DWT, and the detailed 4-level
wavelet coefficients are presented in Figure 6a and Figure 6b, respectively. At the first level, a cutting
spike at the fault inception point is noticed, which shows the highest frequency accessible in the faulty
voltage and current waveform. These signal spikes are observed every time when a sudden change
in the signals occurs. Thus, the identification of these fault signal spikes is not the proper way to
identify the faults of the power transmission line. At the fourth level, the Det level coefficient finds
that there exists a side-band that carries several smaller spikes. The changing of the system parameters
like the fault resistance, fault distance, and fault type is done to observe the high spikes along the
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obtained side bands. If this process is accomplished beyond these decomposition levels, it is observed
to carry higher side-bands, which makes the complex connection among the fault type, inception
angle, and fault resistance and location. Therefore, the meaningful attributes are selected from the Det
Level-4 coefficient. Using this coefficient, the energy of a signal [48] can be calculated as follows,

Ei =
n

∑
j=1

dik
2. (1)

where dik is the detail level coefficient of a signal. The term j = 1, 2, 3, ..., n stands for the number
of points used for each wavelet coefficient, and i = 1, 2, 3, ..., I denotes the scale. From [3], it can be
concluded that the change in the wavelet coefficient due to the transient events such as faults, in turn,
brings a change in the signal energy. The signal energy is calculated for each three phase current and
voltage to generate the necessary input features of the proposed FDC model.

DWTx,m,n =
1√
am

0
∑

l
x (k)ψ∗

(
n− lam

0 b0

am
0

)
, (2)

where l and m present the integer variable and lam
0 b0 and am

0 show the time and scale shift parameter,
respectively. The parameters a0 and b0 in (1) were chosen with a value of 2 and 1, respectively.
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Figure 5. Wavelet decomposition tree at Level 3. Det, detail; App, approximation.
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fault for grid-connected radial mode operation at Lines 1-3.
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2.5. Proposed Hierarchical Generative Fault Classification Model

The framework of the deep belief network (DBN) for MG distribution line FDC is introduced in
this section. The proposed network consists of a stack of restricted Boltzmann machine (RBM). The use
of a stack of RBM turns the network into a deep architecture where the RBM restrains the network to
cope with overfitting of the training data.

2.5.1. Restricted Boltzmann Machine

The RBM is a generative probabilistic model with a two layer neural network. The first layer
or the data input layer (visible layer) of RBM consists of visible units uv, while the second layer (hidden
layer) consists of the hidden units uh. A connection between each visible and hidden unit appears
with a weight matrix W that restricts to dealing with any two units of the visible and hidden layer of
RBM as shown in Figure 7. The visible and the hidden units have bias vectors bv and bh, respectively.
The energy function for the hidden and visible units is represented as,

E (uv, uh) =−
Nv

∑
i=1

Nh

∑
j=1

Wijui
vuj

h −
Nv

∑
i=1

bi
vui

v −
Nh

∑
j=1

bj
huj

h ,

where ui
vanduj

h and bi
vandbj

h are the binary states and biases for the ith visible unit and jth hidden unit.
The number of visible and hidden unit is denoted as Nv and Nh. The joint arrangement of the given
units can be determined via the energy function as,

P (uv, uh) =
1
Z

e−E(uv ,uh). (3)

Here, Z is the partition function that ensures the normalized distribution. The probability of hidden
unit ui

h is activated for the visible vector Uv, and the probability of visible unit uj
v is activated for

the hidden vector Uh. For the binary state of visible and hidden units, the activation functions are
represented as:

P
(

uj
h | uv

)
=δ

(
bj

h + ∑
i

Wijui
v

)
, (4)

P
(

ui
v | uh

)
=δ

(
bi

v + ∑
j

Wiju
j
h

)
. (5)

Here, δ (·) carries the property of the activation function. In (3), the input data from the
high-dimensional space are transformed to the low-dimensional space as characteristic vectors (CV).
This process is designated as the positive phase learning. The negative phase learning is described in (4)
when the input data are reconstructed from the CV. The other parameters W, bv, and bh are trained
concurrently to lessen the reconstruction error. The categorical cross-entropy loss (CL), known as the
negative log-likelihood, is a loss function that measures the similarity between the true level and the
predicted level as below,

CL =−∑
(

PDtrue ∗ log
(

PDpredicted

))
. (6)

The proposed DBN contains the five stacked RBM where the first hidden layer constructs the first RBM.
The output of the first RBM is fed to the second RBM combined with the second and third hidden
layers. In this way, the data from the input layer flow through the RBM stack and finally reach the final
layer. We mention that the first invisible layer of the RBM is the visible layer for the second RBM,
and so is the higher layer RBM. A DBN structure with four stacked RBM is displayed in Figure 8.
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Figure 7. The architecture of the restricted Boltzmann machine.
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2.5.2. Unsupervised Learning of the Proposed Network

The training phase of the proposed DBN based fault classifier consisted of pre-training of the
layer for the single RBM with an unsupervised approach and tuning of the DBN with the ANN.
Initially, each RBM layer was trained by applying the Adam optimization algorithm on the negative
log-likelihood probability of the training dataset. The gradient of the negative logarithmic probability
for the visible layer in terms of the parameter W is specified as,

δ log P (uv)

δWij
=
(

ui
vuj

h

)
data
−
(

ui
vuj

h

)
model

, (7)

where
(

ui
vuj

h

)
data

= p presents the expectation under the data distribution and
(

ui
vuj

h

)
model

= q
presents the expectation under the model distribution. The contrastive divergence approximation after
the kth iteration of Gibbs sampling is customarily chosen to train the RBM. If the input xr is given from
a dataset xr |Mr=1, the Gibbs sampling for one single step is addressed as,

u(0)
v ∼xr, (8)

u(0)
h ∼P

(
uh | u(0)

v

)
, (9)

u(1)
v ∼P

(
uv | u(0)

h

)
, (10)

u(1)
h ∼P

(
uh | u(1)

v

)
, (11)
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and the updated rule for parameter W is given as,

W ←W + ε
(
〈ui

v (0) uj
h (0)〉 − 〈u

i
v (1) uj

h (1)〉
)

. (12)

2.5.3. Supervised Training of the Proposed Network

The fine-tuning of the model parameters of the DBN structure is performed by utilizing
the ANN algorithm to minimize the error between the predicted output and the input samples.
Analogous to the unsupervised learning stage, the supervised training is performed by the
layer-by-layer training process. Taking weights from the RBM, each neuron in the ANN layer performs
the following operation,

z[j]k =WT
k · a

[j−1] + bk, (13)

a[j]i =g[j]
(

z[j]k

)
.

where j implies the number of layers in the ANN architecture and i denotes the number of neurons in
a single layer. As similar operations have to be performed for each of the ANN layers, the vectorization
of the transposed weights WT is stacked together to form a matrix W. The initialization of these weights
is done using “He normal initialization” where the weights are selected randomly, which connect
the neurons of the proposed model [49]. After the initialization is done, the model itself updates the
weights based on the size of the former layer of the neurons to meet the convergence criteria of the
objective function. Similarly, the bias b of each neuron in the ANN layer creates the vertical vector b.

The ReLU function is used to activate all of the process, and the output from (13) is transferred
through a non-linear activation function gn that forms an updated output matrix as,

z[j]k =WT
k · a

[j−1] + bk, (14)

a[j]i =g[j]
(

z[j]k

)
.

The vectors a and z of each ANN layer create the A, and Z matrices, respectively. From (12), we can
write this as:

Z[j]
k =WT

k ·A
[j−1] + bk, (15)

A[j]
i =g[j]

(
Z[j]

k

)
.

To demonstrate the progress of learning, the model applies the categorical cross-entropy as a loss
function, which can be represented in (16). As an example, the loss curve for grid-tied radial mode
operation is shown in Figure 9, where the value of the learning coefficient is selected using a trial and
error method. The aim of the method is to achieve the maximum training speed by minimizing the
loss curve. The losses for all four modes of operation are calculated in a similar manner.

Li = −
11

∑
C=1

ti,C log (pi,C) . (16)

Here, ti,C = 1 if and only if i belongs to class C, and pi,c is the output probability of i belonging to class
c. To go from correct class y where the arbitrary values y ∈ RC to normalized probability estimates
p ∈ RC for a single instance, we can write,

pi =
exp yi

∑C
C=1 exp yC

, (17)
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where i and C ∈ {1, ..., C} show the class range and pi, y1 and yC refer to the class probabilities and
values for a single instance. A program flowchart of the DBN based fault detection and classification
scheme showing the entire process is given in Figure 10.

0 2 4 6 8 10 12 14 16 18
Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

L
os

s

Figure 9. Loss curve for grid-connected radial mode operation.
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Figure 10. Flowchart of the DBN based fault classification scheme.

3. Results and Discussion

This section illustrates the performance of the proposed fault detection and classification technique
with different parameter variations. The fault current and voltage signals exposed dissimilar
magnitudes in islanded mode and grid-connected mode. Thus, it was difficult to design a unified fault
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classification scheme. Therefore, the performance of the proposed model was individually analysed
for different system topologies (radial or loop) and operating modes (grid-connected or islanded).
The accuracy was evaluated by three aspects: (i) type of input signal, i.e., how the system performed
with only the current or voltage waveform and with the voltage and current waveforms combined;
(ii) sampling resolution, i.e., system accuracy evaluation with a variety of data acquirement rates;
(iii) fault signal with noise present in it, i.e., the system performance with the noise present in the
sampled signal. Additionally, a comparative analysis in terms of the accuracy of the existing and
proposed FDC techniques was also carried out to show the superior short circuit fault classification
performance of the proposed classifier.

3.1. Performance Assessment of the DBN Based FDC Scheme

In machine learning, to measure the validity of a learning model, a list of the data sample to test
the model performance is used, which should be different from the training data [50]. As a total of
1716 samples was made from the current and voltage waveforms for the individual datasets, it was
first mixed and shuffled, and then, 30% of the data was randomly selected to test the effectiveness
of the proposed model. The performance of the proposed DBN for Lines 1-3 was simulated with
different system configurations and operating modes of MG and illustrated in Figure 11 with the
confusion matrix (CM) where the 11 different fault classer were inserted into the x- and y-axis in the
form of an 11× 11 matrix. The horizontal levels represent the actual class, whereas the vertical levels
represent the predicted fault class. The confusion matrix also reports the count of true positives (TP),
true negative (TN), false positives (FP), and false negatives (FN), which are defined as:

• TP: A label is correctly predicted by the classifier, and it belongs to the original class.
• TN: A label is correctly predicted by the classifier, and it does not belong to the original class.
• FP: A label is predicted as positive by the classifier. but it does not belong to the original class.
• FN: A label is predicted as negative by the classifier, but it belongs to the original class.

Primarily, from the CM, it was seen that most of the fault classes for all system configuration
were classified correctly. The first accuracy measurement criterion from the confusion matrix was the
average classification accuracy (AA) [51] as stated in (18).

AA =
TN + TP

TN + TP + FN + FP
=

NTD
NCC

. (18)

Here, NTD presents the total number of input data for the developed model, and NCC implies
the number of correctly classified data. The proposed network could also show a similar performance
for the rest of the distribution line. The average accuracy calculated for all of the distribution line is
depicted in Table 2. From the result, the highest accuracy of the proposed classifier was recorded as
99.70% for the grid-connected radial mode operation. For the other system configurations, the classifier
performed better than 99.5%, which was in line with the expectation.

Table 2. Average accuracy for different system configurations.

System Configuration Average accuracy(%)

Line 1-3 Line 1-2 Line 3-4 Line 3-5 Line 5-6

Grid-connected radial mode 99.70 99.71 99.36 99.68 99.21
Grid-connected loop mode 99.65 99.69 99.35 99.62 99.07

Islanded radial mode 99.59 99.48 99.13 99.42 98.80
Islanded loop mode 99.56 99.51 98.97 99.39 98.82
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Figure 11. Confusion matrix of the proposed classifier for the (a) grid-tied radial, (b) grid-tied loop,
(c) islanded radial, and (d) islanded loop mode operation of the considered system.

However, the average accuracy could not present the detailed result about the model performance.
Thus, to investigate how the classifier behaved for individual fault classes, the classification
performance was further assessed with the F1-score. The F1-score is a function of precision and
recall/sensitivity, which is considered as perfect when its value is one and the worst if it is zero.
The precision, which is known as the positive predictive value, can be defined as,

Precision =
TP

TP + FP
. (19)

For a good classifier, the precision value should be one. From (19), if the FP increases, the precision
value decreases, which is not expected for a good classifier. Another metric, recall, which is known as
the true positive rate or the sensitivity of the classifier, can be defined as,

Recall = sensitivity =
TP

TP + FN
. (20)

Like the precision, the recall value should be one for a good classifier. For this metric, if
the FN increased, the recall value decreased, which was also not in line with the expectation.
Therefore, another performance evaluation metric known as the F1-score was adopted, which takes
both precision and recall into account. The higher F1 score of the proposed classifier for both voltage
and current signals depicted in Tables 3 and 4 showed that the classifier had less problems with the
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false positives and false negatives. Furthermore, from the classification accuracy (user accuracy) for
each fault class, it could be concluded that the classifier had the ability to classify the faults with high
accuracy.

Table 3. Precision, recall, F1-score, and individual class accuracy of the proposed classifier for
grid-connected radial mode and grid-connected loop mode operation.

Fault
Class

Radial Mode Loop Mode

Accuracy (%) Precision Recall F1-Score Accuracy (%) Precision Recall F1-Score

a-g 99.89 1.0 0.99 0.99 99.96 1.0 1.0 1.0
b-g 100 1.0 1.0 1.0 99.96 1.0 1.0 1.0
c-g 99.93 1.0 0.99 1.0 99.89 1.0 0.99 0.99

ab-g 100 1.0 1.0 1.0 100 1.0 1.0 1.0
bc-g 99.88 0.99 0.99 0.99 99.81 0.99 0.99 0.99
ac-g 99.84 0.99 0.99 0.99 99.84 0.99 0.99 0.99
a-b 99.89 0.99 1.0 0.99 99.93 0.99 1.0 1.0
b-c 100 1.0 1.0 1.0 100 1.0 1.0 1.0
a-c 100 1.0 1.0 1.0 100 1.0 1.0 1.0

abc-g 99.96 1.0 1.0 1.0 99.95 1.0 0.99 1.0
nf 100 0.99 1.0 1.0 99.95 0.99 1.0 1.0

Table 4. Precision, recall, F1-score, and individual class accuracy of the proposed classifier for islanded
radial mode and islanded loop mode operation.

Fault
Class

Radial Mode Loop Mode

Accuracy (%) Precision Recall F1-Score Accuracy (%) Precision Recall F1-Score

a-g 99.84 0.99 0.99 0.99 99.95 1.0 1.0 1.0
b-g 100 1.0 1.0 1.0 99.91 1.0 0.99 1.0
c-g 99.89 1.0 0.99 0.99 99.91 1.0 0.99 1.0

ab-g 100 1.0 1.0 1.0 100 1.0 1.0 1.0
bc-g 99.88 0.99 0.99 0.99 99.82 0.99 0.99 0.99
ac-g 99.88 0.99 0.99 0.99 99.88 0.99 1.0 0.99
a-b 99.98 0.99 1.0 0.99 99.95 0.99 1.0 1.0
b-c 100 1.0 1.0 1.0 99.95 1.0 1.0 1.0
a-c 99.96 1.0 1.0 1.0 100 1.0 1.0 1.0

abc-g 99.93 1.0 0.99 1.0 99.88 1.0 0.99 0.99
nf 99.93 0.99 1.0 1.0 99.88 0.99 1.0 0.99

3.2. Effect of Sampling Resolution and Signal Type

In the proposed FDC method, the three phase current and voltage waveforms were collected with
a 20 kHz sampling resolution. In reality, the sampling frequency (SF) can be much less than 20 kHz
because of the restrictions of the data collection apparatus. In some practical field scenarios, the FDC
system needs to utilize current or voltage waveforms to perform the classification tasks due to the
unavailability of both signals at the same time instance. Thus, the fault classification performance
of the proposed classifier was examined with the variation of input signal type, as well as sampling
rate. The SF utilized in this research were 2, 5, 10, 15, and 20 kHz, and the input signal types were the
voltage waveform (Scheme-1) or current waveform (Scheme-2) and combined current and voltage
waveform (Scheme-3). The classification results for an SF and a particular type of signal was done
by performing the classification process five times. Thereafter, the mean value of the accuracies was
determined to achieve the final results as shown in Figure 12.

The increase in classification accuracy was expected as a higher SF carried more detailed
fault information for a distinct short circuit fault class. Moreover, Scheme-3 offered the highest
classification performance for all considered SF. At a smaller sampling rate, better classification
performance was observed with the three phase current waveform than with the three phase voltage
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waveform. Furthermore, the FDC system performed better with the voltage signal information at a
higher SF. At an SF range between 5 kHz and 10 kHz, Scheme-2 and Scheme-3 showed almost the
same classification accuracy. This scenario was also expected, as the voltage waveform carried less
low-frequency fault information than the current waveform for a distinct fault class. On the other
side, the voltage waveform contained spare faulted transients, which were suitable to investigate the
type of short circuit fault at the higher sampling rate. The above analysis explicated that the expected
accuracy could not be accomplished with only the current or voltage waveform. If both waveforms
were considered at a time, a higher fault classification performance could be accomplished within the
considered frequency level as particular short circuit fault information for both the three phase current
and voltage intents was used. From the aforementioned study, it was observed that the classification
accuracy using only the current or voltage waveform was not satisfying; rather, their fusion offered
more than a 99% classification accuracy at the large level of the considered frequency range, which
validated the effectiveness of the proposed FDC model. The similar classification results could also be
observed for the rest of the distribution line of the studied MG system.

100

98

96

94

92

90
15 201052

Sampling frequency (kHz)

C
la

ss
if

ic
at

io
n
 a

cc
u
ra

cy
 (

%
)

voltage + current
current
voltage

(a)

100

98

96

94

92

90
15 201052

Sampling frequency (kHz)

C
la

ss
if

ic
at

io
n
 a

cc
u
ra

cy
 (

%
)

voltage + current
current
voltage

(b)

100

98

96

94

92

90
15 201052

Sampling frequency (kHz)

C
la

ss
if

ic
at

io
n
 a

cc
u
ra

cy
 (

%
)

voltage + current
current
voltage

(c)

100

98

96

94

92

90
15 201052

Sampling frequency (kHz)

C
la

ss
if

ic
at

io
n
 a

cc
u
ra

cy
 (

%
)

voltage + current
current
voltage

(d)

Figure 12. Classification accuracy of the proposed classifier with various sampling frequencies and
types of signals for the (a) grid-tied radial, (b) grid-tied loop, (c) islanded radial, and (d) islanded loop
mode operation of the considered system.

3.3. Effect of Noise Present in the Measured Signal Data on the Classification Accuracy

In practice, the current or voltage waveforms are continuously subjected to statistical noises or
uncertainties, which play an important role in degrading the overall performance of the MG fault
diagnosis. Thus, the dropout strategy was added to the hidden layer of the RBM to confirm the
performance [52]. The fundamental idea of dropout is that it randomly sets the hidden nodes to zero
at a certain probability to prevent overfitting of the model. That means some nodes present in the
hidden layer do not engage in the training phase, and the weights will be reserved. The ignored nodes
will be involved again in the next iteration. Thus, for each iteration process, the dropout strategy
removes some random nodes of the hidden layer from the network. This process can effectively restrain
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the interdependence among the features and enhances the noise-immune classification performance.
A comparison of the network structure with and without the dropout strategy is shown in Figure 13.

To examine how the proposed model could show the result with noisy data, the system was run
with a new sample dataset, which contained both signals (current and voltage). To validate the model
performance with the noisy data, the white Gaussian noise of different signal-to-noise ratios (SNR) as
per [53] was added with 30% of the test data from the main dataset. Now, the proposed classifier was
trained with the original data and tested with the contaminated data. The performance of the proposed
classifier with the contaminated data is shown in Figure 14. From the result, it was observed that
the fault classification performance of the proposed FDC model with the dropout strategy was higher
than the model without dropout. The classification performance without the dropout strategy was
observed to decrease faster with the decrement of the SNR value for each mode of MG operation,
as shown in Figure 14. Finally, it was concluded that the classification accuracy against the noise
guaranteed the robust performance of the proposed classifier.

Input Hidden Output

(a)

Input Hidden Output

(b)

Figure 13. A basic neural network architecture (a) with and (b) without the dropout strategy.
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Figure 14. Classification accuracy of the proposed classifier with and without the dropout strategy
at different SNR levels for the (a) grid-tied radial, (b) grid-tied loop, (c) islanded radial, and (d) islanded
loop mode operation of the considered system.
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3.4. Comparative Study

A comparison among the proposed model and several existing alternative fault diagnosis models
is discussed in this section. In [30], a discrete orthonormal S-transform based multi-kernel extreme
learning machine (MKELM) was proposed and compared with KELM and SVM. The mentioned
approaches use only the one cycle post fault current signal to declare a fault type that cannot
confirm the accurate results at a lower SF, as discussed in Section 3.2. However, comparing the
proposed approach with the existing approaches is not fully consistent because of the following
aspects. This research analysed the faults occurring in the considered MG for different topologies,
i.e., looped or radial, operating modes, i.e., islanded or grid-tied, and for different distribution lines,
separately. Therefore, the result analysis carried out in this study was much more challenging due
to the diversity of the system parameters. Even though the results were not directly comparable,
a comparison of the classification performance with the methods mentioned in [30] is depicted in
Table 5. It was observed that the accuracy of the proposed approach was better than the other
approaches. Again, the classification accuracy discussed in Section 3.3 for the lower value of SNR
proved the noise-immune performance of the proposed method. Additionally, the DBN based FDC
scheme had a superior feature over the conventional and modern FDC techniques, as illustrated in
Table 6.

Table 5. Comparison of the classification performance between the proposed and existing fault
detection and classification (FDC) methods.

SNR Classification Accuracy (%)

MKELM KELM SVM DBN with Dropout

30 dB 98.29 98.15 98.24 99.38

Table 6. Comparison of the advantages between the existing and the proposed FDC methods.

Techniques Methods Advantages Disadvantages

Classical strategies

Circuit theory, 1. Simplicity 1. Inaccurate
Traveling waves, 2. Easy implementation 2. Limited fault type

Symmetrical classification
component 3. Slow

Signal processing
FFT, 1. Direct fault analysis 1. Decision threshold are
WT 2. Used for feature extraction defined arbitrarily

and information compression

Statistical

Traditional statistical 1. High generalizability 1. Take longer time to
concepts 2. Individual data patterns make a decision

are clear and visible 2. Validation of data
is not guaranteed

Knowledge based

1. High precision 1. The accuracy can not be
Fuzzy logic 2. Rapid operation guaranteed as the system is

3. Can handle uncertainty based on the experts’
experience

Artificial intelligence

1. Detects the non-linear 1. Slow convergence of
relationship between training process

ANN independent and dependent 2. Shallow architecture limit the
variables capacity to learn the complex

non-linear relationships

1. Faster, even if the problem 1. Choosing kernel function and
SVM is large-size hyper parameters are difficult

2. Requires less heuristics

1. Good at noisy environment 1. Processes are random
2. The simulation speed can 2. Outputs are not consistent

GANN be improved
3. Dimension of solution can

be reduced
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Table 6. Cont.

Techniques Methods Advantages Disadvantages

Proposed method

1. Robust hierarchical generative
model

DBN 2. Restrain overfitting of the
training data

3. Discover the fundamental
regularity of versatile features

4. Powerful generalization
capability

4. Conclusions

This paper proposed the design of a novel machine learning model that combined the RBM
and ANN techniques to detect and classify the faults for both grid-tied and islanded modes of
operation of the MG robustly. The novel design of the proposed model combining the RBM and ANN
methods guaranteed the model inherently learned and analysed unnatural signals corresponding
to different faults that occurred in the MG. This was done by the unique measurement of both the
current and voltage waveforms using a DWT against the variation of the line parameters. The use
of both the current and voltage elements for FDC attested to the proposed model as a generalized
model that worked in various sampling frequencies. The proposed model was tested for measuring
the effectiveness by conducting a number of studies like the effect of the signal type, the effect of noise,
and the effect of the sampling rates. The results indicated that the proposed FDC model detected and
classified the short circuit faults with an accuracy close to 100% for all fault types. This signified the
impressive performance of the model designed by employing both the current and voltage waveforms
within the studied frequency band. The classification performance of the proposed model was further
examined to ensure the robustness against the unwanted noise, and it was shown that the proposed
model continued detecting faults against such incorporation of the noise. A comparative analysis
between some of the existing models available in the literature and the proposed model was conducted
considering a number of instances such as the types of input signals utilized and the level of the
signal-to-noise ratio. The comparative analysis showed that the proposed model provided a more
stable and trustworthy classification performance as compared to the state-of-the-art. The future
implementation of this research may reflect the real-time system data collected by the measuring
apparatus and deployed in a real-world power grid.
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