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Abstract: The integration of Demand-Side Management (DSM) in the planning of Isolated/Islanded
Microgrids (IMGs) can potentially reduce total costs and customer payments or increase renewable
energy utilization. Despite these benefits, there is a paucity in literature exploring how DSM affects
the planning and operation of IMGs. The present work compares the effects of five different strategies
of DSM in the planning of IMGs to fulfill the gaps found in the literature. The present work embodies
a Disciplined Convex Stochastic Programming formulation that integrates the planning and operation
of IMGs using three optimization levels. The first level finds the capacities of the energy sources of
the IMG. The second and third levels use a rolling horizon for setting the day-ahead prices or the
stimulus of the DSM and the day-ahead optimal dispatch strategy of the IMG, respectively. A case
study shows that the Day-Ahead Dynamic Pricing DSM and the Incentive-Based Pricing DSM reduce
the total costs and the Levelized Cost of Energy of the project more than the other DSMs. In contrast,
the Time of Use DSM reduces the payments of the customers and increases the delivered energy more
than the other DSMs.

Keywords: Isolated/Islanded Microgrids; planning; operation; Demand-Side Management

1. Introduction

Despite the efforts of governments around the world, access to electric energy in isolated regions
remains a challenge [1,2]. Isolated/Islanded Microgrids (IMGs) could play a significant role in
providing power to these areas where extending the utility grid is not economically feasible [3].
The implementation of Demand-Side Management (DSM) in the planning of Microgrids (MGs)
reduces total costs, Levelized Cost of Energy (LCOE), and customer payments, or increases renewable
energy utilization [4–9]. In this regard, it seems interesting to investigate if the application of DSMs in
the planning of IMGs can bring similar benefits. Despite this, there is a paucity of literature exploring
how DSMs can affect IMGs’ planning and operation.

The implementation of DSM aims to affect the patterns of consumer consumption using
direct or indirect strategies [10,11]. Direct strategies are composed of Direct Load Control and
Interruptible/Curtailable Programs. In Direct Load Control strategies, there is a remote controller
sending signals to customers’ appliances, like air conditioners, heating systems, water heaters, or public
lighting, on short notice. The signals can turn the appliances on/off, switch tariffs, or inform
about current electricity prices. Interruptible/Curtailable Programs offer alternatives as biding
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programs, Emergency Demand Response (DR) programs, Capacity Market programs, and ancillary
services, such as frequency support [12,13]. Indirect DSMs are composed of pricing programs,
rebates/subsidies, and education programs. Pricing programs charge dynamic tariffs for energy,
which can be power-based, energy-based, or a combination of both [14,15]. Energy-based tariffs
incentivize energy conservation, and, therefore, are desired in IMG applications, where the energy
generation is limited [16]. Instead of having a fixed flat rate, dynamic fares vary in time to reveal the
actual costs of producing energy. These rates include the Time of Use (ToU) rate, Critical Peak Pricing
(CPP), Extreme Day Pricing (EDP), Extreme Day Critical Peak Pricing (ED-CPP), Day-Ahead Dynamic
Pricing (DADP), and Real-Time Pricing (RTP). Properly designed tariffs motivate the customers to
shift their demand to off-peak periods, when the electricity price is lower and it is more convenient to
produce electricity [17].

Some works in the literature explore how DSM affects the planning of MGs. Kahrobaee et al.
propose a sizing approach to determine the capacity of a Wind Turbine and a Battery Energy Storage
System (BESS) for a smart household considering price variations in the tariffs [18]. The authors
designed a three-step process combining a rule-based controller, a Monte Carlo approach, and a
Particle Swarm Optimization to perform the sizing of the components. However, the uncoordinated
combination of multiple stages and the lack of an optimization formulation for energy management
can lead to sub-optimal results. Erdinc et al. [19] aimed to address these drawbacks by providing a
Mixed Integer Linear Programming (MILP) formulation to design an optimal energy management
strategy. The work considers the seasonal and weekly variations in the load profiles in the presence of
a Real-Time Pricing tariff scheme. However, it does not consider how to design the DSM itself and
how different DSMs will impact the sizing of the energy sources. Kerdphol et al. propose a sizing
approach for BESS using Particle Swarm Optimization to improve the frequency stability of an MG [20].
The work integrates a dynamic DSM considering load shedding of non-critical loads to rapidly restore
the system frequency and reduce the BESS capacity. A rule-based controller used for the load shedding
and a Particle Swarm Optimization formulation used for the sizing of the BESS prove to be adequate to
regulate the frequency of the MG. However, the rule-based controller and the lack of forecast models
to anticipate the critical events can lead to sub-optimal results.

Nojavan et al. [21] propose a bi-objective Mixed-Integer Non-Linear Programming (MINLP)
formulation to optimally site and size a BESS in an MG considering DSM. The authors designed
two optimization objectives to reduce total costs and Loss of Load Expectation. The work uses an
ε-constraint method to draw the Pareto optimal curve and a fuzzy satisfying technique to find the
best solution. Nevertheless, the authors assume that 20% of the load reacts to a Time of Use (ToU)
tariff, ignoring the effects of the demand’s self-elasticity. Majidi et al. use a Monte Carlo Scenario
reduction technique to determine the size of a BESS in an MG [22]. The work considers the effects of
uncertainties in the forecasted renewable generated power and forecasted consumption. However,
similarly to [21], the authors do not consider how the customers react to the DSM; they assume that
20% of the load will react to a ToU tariff. Amir et al. [23] propose a combined algorithm to find the size
and energy management strategy of a Multi-Carrier Microgrid. The work proposes a mathematical
model with high sophistication that uses an MINLP formulation to obtain the optimum dispatch
strategy and Genetic Algorithms to obtain the capacities of the energy sources. The work measures the
changes in the patterns of consumption of the customers considering varying prices for the different
forms of energy. The planning of the Multi-Carrier Microgrid considers demand and price growth over
a five-year optimization horizon. Nevertheless, this work does not design the DSM. It only considers
the effects of the prices of the energy providers on the Multi-Carrier Microgrid.

Planning of IMGs refers to the set of decisions that the planner must make to design an IMG
project. Such decisions include: Setting the energy mix, computing the sizing of the energy sources,
and defining the energy dispatch strategy, the economic incentives, and the energy tariffs, amongst
others [24–26]. This set of decisions has significant consequences on the performance of IMG projects,
where high penetration of renewable energy sources can reduce system inertia, thus challenging
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system frequency regulation, control schemes, and transient stability [13]. DSMs can partially solve
some of the inherent challenges of planning IMGs.

Chauhan et al. propose to compute the sizing of the energy sources of an IMG considering a DSM
that reschedules shiftable loads depending on if it is the winter or summer season [27]. The work
uses an Integer Linear Programming (ILP) formulation to find the optimal rescheduling of shiftable
loads and a Discrete Harmony Search algorithm to compute the sizing. A considerable drawback
of the work is that the DSM only focuses on reducing the peak demand while ignoring maximizing
exploitation of renewable energy. Amrollahi et al. combine an MILP formulation and the capabilities of
HOMER software to compute the sizing of an IMG composed only of renewable energy sources [28].
Due to the lack of dispatchable energy sources, the authors propose the use of a DSM to reschedule
shiftable loads. Rescheduling helps to balance mismatch between electric energy generation and
consumption. Mehra et al. propose a work to measure the economic value of applying DSM in the
sizing of a nanogrid [29,30]. The work considers the dis-aggregation of electrical demand in critical
and non-critical appliances. In addition, the work takes advantage of low-cost computation intelligent
devices, such as the “utility-in-a-box” solution, to implement active DSM [31]. The authors use an
exhaustive search algorithm to determine the capacities of the Photo-Voltaic (PV) system and the BESS.
Nevertheless, the work considers the effects of only one kind of DSM over a small-sized grid.

Prathapaneni et al. propose a multi-objective stochastic sizing algorithm that aims to minimize
lifetime costs and degradation of the energy sources [32]. The work considers the effects of a DSM
that uses shiftable loads, like electric vehicles or pumped hydro storage in an IMG. The work uses an
Accelerated Particle Swarm Optimization (APSO) to compute the sizing of energy sources. Despite
considering lifetime costs of the IMG and degradation of energy sources, the work considers a
basic DSM over reduced amounts of loads that are not always present in IMG applications. Luo et al.
propose a sizing methodology for an IMG using a bi-level optimization algorithm [33]. The first level
computes the energy sources’ capacities, considering the effects of different combinations of public
subsidies for the installation of energy sources. The second level performs the dispatch strategy for
the energy sources of the IMG using an MINLP formulation. In the second level of optimization,
the authors implement a rescheduling mechanism of shiftable loads. A study case shows that DSM
reduces installed capacities of the energy sources for the IMG.

Kiptoo et al., similarly to [28], aimed to implement a DSM to balance generation and electricity
demand in an IMG only composed of renewable energy sources [34]. The DSMs consider rescheduling
shiftable loads. However, the authors aim to improve the work of [28] by adding an electrical demand
forecasting module using a Random Forest (RF) regression forecasting approach. The work shows
that the proposed methodology reduces the total costs of the IMG project by 12.41%. Rehman et al.
used HOMER software to find capacities of energy sources in an IMG [35]. The work considers a
DSM capable of rescheduling shiftable loads and uses Simulink to evaluate the operation of the IMG.
The use of Simulink allows the authors to design and test a model predictive control. The model
predictive control controls the power during grid-connected operation and regulates load voltage
in the islanding operation of the MG. Table 1 summarizes the works found in the literature that deal
with the integration of DSM in the planning of IMGs, and that highlight knowledge gaps and the
characteristics of the present work. It is vital to notice that Table 1 presents only the articles that
consider IMGs because they are strictly related to the present work.
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Table 1. Summary of the literature review.

Features 2017 2018 2019 2020 Literature Gaps Proposed Work

Integration of sizing and
Demand-Side
Management (DSM)

[27,28] [29,30] [32,33] [34,35] 3

Stochastic
optimization formulation [32] 3

Study of subsidies impacts
over economic feasibility [33] 3

Forecasting impacts in
the operation [34] 3

Validation of operation
after sizing [35] 3

Tariff setting for
Isolated/Islanded
Microgrids (IMGs) for
economic feasibility

3 3

Utilization of tariffs as
DSMs in IMGs 3 3

Comparison of different
DSMs using one test bench 3 3

Influence of public subsidies
on tariff setting for IMGs 3 3

Despite that some of the works found in the literature evaluate the effects of DSM in the planning
phase of MGs and IMGs, none of them compare the effects of different DSMs using the same test-bench.
The works found by authors do not focus on design and impact evaluation of DSM over total costs
and operational aspects of IMG projects. Moreover, few of the works consider the financial aspects of
the cooperation between private and public capital to fund IMG projects. Additionally, none of them
allow defining tariffs that guarantee the sustainability of the IMG project over time. In this regard,
the present article aims to fulfill gaps found in the literature review by providing a methodology
capable of:

• Obtaining the optimal sizing and the optimal energy dispatch strategy of an IMG project using a
Disciplined Convex Stochastic Programming formulation.

• Obtaining the optimal energy tariffs and stimulus for the DSM to guarantee the financial viability
of an IMG project.

• Evaluating the impacts of different strategies of DSMs over sizing, energy management, and costs
of an IMG project in a case study.

• Implementing and evaluating different DSMs in the planning of IMGs using the same test-bench.

The formulation uses flat, ToU, CPP, DADP, and Incentive-Based Pricing (IBP) tariffs as DSM
strategies. It also proposes a Direct Load Curtailment (DLC) strategy that curtails customers’ electrical
demand if required.

The formulation assumes that the DSMs modify the patterns of consumption of the customers,
which will lead to a change in the capacities of energy sources [36–39]. The results of the application
of the methodology provide the optimal size of the energy sources, the optimal energy dispatch,
the optimal tariffs, the economic incentives, and the load curtailment. The rest of the article proceeds
as follows: Section 2 presents the definition of the problem and the proposed solution. Section 3
presents a case study as an example of the application of the methodology, and Section 4 includes its
results and analysis. Finally, Section 5 presents the conclusions of the work and future directions.
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2. Definition of the Problem and Proposed Solution

The present work aims to illustrate for planners and policymakers the benefits of applying DSM
for IMG planning. For that purpose, the methodology integrates sizing and IMG operation using
three different optimization levels, as shown by Figure 1. The first level obtains the sizes of energy
sources using a Monte Carlo analysis. The second level uses a day-ahead rolling horizon over the
same optimization horizon of the first level to define incentives, tariffs, and load curtailment of each
of the strategies of DSM. Finally, the third level simulates the microgrid operation by iterating in the
same rolling horizon that the second level uses. The third level performs the simulation to compute
the optimal dispatch strategy after weather and demand profiles are known.

The rolling horizon computes one day in advance at each time and rolls over one year. Each day,
the second level computes the proper day-ahead DSM stimulus that the third level uses to compute
the day-ahead response of the customers. The second level computes these stimuli using day-ahead
forecasts of electrical demand. The third level applies the stimulus found in the second level to
compute the customers’ response. While the first and second level assess the uncertainties in day-ahead
forecasts of the demand and in weather variables, the third level assumes perfect knowledge of these
variables. This assumption allows the methodology to compute the impacts of errors in forecasts
over the DSM performance. The formulation computes the total costs of operation on the third level.
Sections 2.1–2.3 present a detailed explanation of each of the levels. Appendix A, present in Table A1 a
description of all the variables used in the following sections with their respective names and units.

Energy resources 𝐺𝑡
𝐻

Electrical demand 𝐷𝑡
𝐻

DSMS selection Γ𝑛

𝑎1

Sizing

Installed 
capacities Cu

Installed capacities 𝐶𝑢

Energy resources 𝐺ℎ
𝐹

Electrical demand 𝑑ℎ
𝐹

𝑎2

Setting of 
Day-Ahead 

DSMS

Γ𝑛,ℎ

Γ𝑛,ℎ

Energy resources 𝐺ℎ
𝑅

Electrical demand 𝑑ℎ
𝑅

𝑎3

Real 
operation of 

the SAMG

Results

Level 1
Horizon = 1 year
Data = Historical

Level 2
Horizon = 1 day
Data = Forecasted

Level 3
Horizon = 1 day
Data = Real

Installed capacities 𝐶𝑢

Rolling Horizon

Ψ𝑐 , 𝑒, 𝜑𝑐𝑔, 𝜑𝑐𝑖 , 𝜑𝑜𝑔, 𝜑𝑜𝑖 ,

𝜔, 𝜅, 𝐺ℎ
𝐻 , 𝐼𝑢, 𝜆𝑢, Λ𝑢, 𝑆

Figure 1. Graphical description of the proposed methodology.
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2.1. First Level: Sizing

The formulation of the first optimization level a1 can be stated as:

J(x∗) = minimize
x

a1(x, ξ)

subject to bi(x, ξ) = 0 i = 1, . . . , B,

ci(x, ξ) ≥ 0 i = 1, . . . , C

(1)

where x represents the decision variables, ξ represents the uncertainties of the electrical demand,
bi, i = 1, . . . , B are convex functions in x for each value of the random variable ξ, and ci, i = 1, . . . , C are
deterministic affine functions. Since a1 ,bi, i = 1, . . . , B and ci, i = 1, . . . , C are convex on x, the definition
of Formulation (1) is a convex optimization problem [40] ([41], Chapter 7).

IMG projects can receive funding from public or private capital. To compute the effects of the
funding sources over the total costs, profits, and customer payments, the formulation of a1 introduces
factors ϕcg, ϕci, ϕog, and ϕoi, where ϕci + ϕcg = 1 and ϕoi + ϕog = 1. The formulation of a1 is designed
to minimize the Capital Expenditures (CAPEX) and the Operational Expenditures (OPEX) of the IMG.
Equations (2)–(10) describe the formulation of a1.

X1 = arg min
Cu ,Eu,t

ϕcg

U

∑
u=1

Cu Iu + ϕog

T

∑
t=1

U

∑
u=1

(λu,t + Λu,t)Eu,t (2)

where the CAPEX (ζ) and OPEX (ϑ) refer to:

ζ =
U

∑
u=1

Cu Iu (3)

ϑ =
T

∑
t=1

U

∑
u=1

(λu,t + Λu,t)Eu,t (4)

and Cu, Iu, λu,t, Λu,t, and Eu,t represent the installed capacity, unitary investment cost, unitary dispatch
costs, unitary maintenance costs, and dispatched energy by the u energy source, respectively.

It is worth noting that the formulation of Equation (2) replaces minimize with argmin, and assigns
the results to the variable X1. This replacement occurs because the second and third methodology
levels require the values of the decision variables , but not the value of the achieved minimum. The rest
of the optimization formulations in the document maintain the replacement.

The proposed formulation considers the energy prices as the only revenue stream for the investors.
Equation (5) introduces a constraint to guarantee that the private investors recover their investments
and the expected Internal Rate of Return R.

− (ϕciζ + ϕoiϑ)(1 + R) +
T

∑
t=1

πn,tD f ,t ≥ 0 (5)

where ϕci and ϕoi represent the percentage of payments of the private investor for the CAPEX and
OPEX costs, and πn,t represents the prices of the n tariff. Equation (6) considers the elasticity (et)
of the customers at a time t, the initial price of the energy (π f lat), and the initial demand (Do,t) to
compute the final demand (D f ,t). Equation (7) introduces an energy conservation factor Ψc to define
how the total energy consumption over the optimization horizon changes after the introduction of
DSM. Values of Ψc ≤ 1 decrease the total energy consumption, while values of Ψc ≥ 1 increase the
total energy consumption over the optimization horizon. A value of Ψc = 1 indicates that the total
energy consumption over the optimization horizon remains constant after the introduction of DSMs.
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et =
π f lat(D f ,t − Do,t)

Do,t(πn,t − π f lat)
(6)

T

∑
t=1

D f ,t −Ψc

T

∑
t=1

Do,t = 0 (7)

The formulation of a1 also includes the energy balance Equation (8), a constraint that limits
energy excess (EEt), and a constraint that limits the lack of energy (LEt), (9) and (10), respectively.
Equations (9) and (10) introduce the parameter z to control the desired level of reliability in the IMG.

T

∑
t=1

U

∑
u=1

Eu,t − EEt + LEt − D f ,t = 0 (8)

T

∑
t=1

EEt ≤ (1− z)
T

∑
t=1

D f ,t (9)

T

∑
t=1

LEt ≤ (1− z)
T

∑
t=1

D f ,t (10)

Additionally, the a1 formulation includes Equations (14) till (26) in order to evaluate the impact
of DSM strategies on the sizing of the IMG (changing the horizon from 24 to 8760 h, respectively).

2.2. Second Level: Setting of Day-Ahead DSM Values

The formulation of the second optimization level a2 solves the following problem:

X2 = arg min
EF

u,h ,EEF
h ,LEF

h

ϕog

24

∑
h=1

U

∑
u=1

(λu,h + Λu,h)EF
u,h + ωEEF

h + ωLEF
h (11)

s.t.
24

∑
h=1

U

∑
u=1

EF
u,h − EEF

h + LEF
h − dF

f ,h = 0, (12)

where EEF
h and LEF

h are the 24 day-ahead forecasted energy excess (a non-positive variable) and the
forecasted lack of energy (a non-negative unrestricted variable), respectively, and ω is a penalization
factor. EF

u,h and dF
f ,h represent the 24 day-ahead forecasted dispatch of the u energy sources and the

24 day-ahead forecasted electrical demand, respectively.
The formulation of the second optimization level a2 uses the capacities Cu, the day-ahead forecasts

of energy resources GF
h , and forecasts of electric demand dF

o,h as inputs in order to compute the
day-ahead stimulus for the five Γn,h DSM strategies. Four of the DSM strategies use πn in Equation (5)
as an indirect stimulus to modify the customer consumption patterns. Those four DSM strategies
are: Time of Use pricing (ToU), Critical Peak Pricing (CPP), Day-Ahead Dynamic Pricing (DADP),
and Incentive-Based Pricing (IBP). The last DSM uses a Direct Load Curtailment strategy that sheds a
percentage of load when required. The baseline case for comparisons uses a flat tariff and no DSM.
The description of the baseline case and each of the DSMs proceeds in the following subsections [42].

2.2.1. Flat Tariff (Baseline Case)

In general terms, the unitary value of a flat tariff is the sum of all the costs of producing the energy
divided by the total amount of energy produced [43]. Equation (13) describes the yearly payments
using a regular flat tariff.

Θ f lat =
ζ + ∑T

t=1 ϑt

∑T
t=1 D f ,t

(1 + R)
T

∑
t=1

D f ,t (13)
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However, this traditional approach does not set an optimal tariff to recover investments while
minimizing energy costs. Here, we propose the introduction of a decision variable π f lat into the
formulation to find the optimum price for the tariff.

Θ f lat = π f lat

T

∑
t=1

D f ,t (14)

2.2.2. Time of Use Tariff

ToU tariffs vary daily or seasonally on a fixed schedule, using two or more constant prices [44].
One of the main benefits of this type of tariff is its stability over long periods, which gives the customer
a better ability to adapt to it [45,46]. To create a ToU tariff, the planner must define the number of Y
blocks and the starting and ending hours of each y block [45]. The optimization problem considers the
prices πy of the Y number of blocks as decision variables to be computed. Equation (15) presents the
yearly payments using Y different block hours of prices.

Θtou =
T

∑
t=1

Y

∑
y=1

πyD f ,t (15)

The methodology computes the ToU and flat tariffs in the first optimization level a1 and the
demand response of the customers in the third level a3. The second level is not used for the flat tariff
and the ToU tariff because they do not have daily variations. The algorithm computes the flat and ToU
tariffs following the same process used to find the capacities of the energy sources Cu, using adapted
versions of Equations (30) and (31).

2.2.3. Critical Peak Pricing

The CPP tariff can be 3 to 5 times higher than the usual tariff, but is allowed only a few days per
year [46]. In Equation (16), πbase is a scalar variable that is chosen to be equal to the flat tariff π f lat.
πpeak is a decision variable of dimension 24 and is computed one day in advance. Equation (16) defines
the day-ahead forecasted payments using a CPP tariff, and Equation (17) defines the day-ahead hourly
critical peak price.

ΘF
cpp = πbase

τbase

∑
h=1

dF,base
f ,h +

τpeak

∑
h=1

πF
peak,hdF,peak

f ,h (16)

πF
cpp,h = πbase + πF

peak,h (17)

A critical forecasted event, such as high demand or low generation capacity, triggers the critical
peak price in a CPP tariff. In this regard, the CPP tariff must include a predictor of the critical event
and a decision mechanism to set the value of the critical price. The first optimization level formulation
a1 uses historical data, which implies that the formulation has full knowledge over the optimization
horizon (T = 8760 h). The perfect knowledge allows the formulation to state constraint (18), which limits
the apparition of the critical price only to a few hours in a year. Equation (18) uses variable ϕpeak
to control the number of hours with critical price allowed and δpeak to define how many times the base
price πbase is scaled up. The planner defines ϕpeak δpeak, and πbase, πpeak, τbase, and τpeak are decision
variables that the optimization formulation computes.

T

∑
t=1

πpeak,t ≤ ϕpeakTδpeakπbase (18)

However, in order to simulate the operation of the IMG, the rolling horizon will only know the
forecasts one day in advance. The formulation must define a mechanism to determine the conditions
that allow the critical peak price to take place. Thus, it defines the critical event as low daily forecasted
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primary energy resources (lower than a predefined threshold $). The decision mechanism sets the
day-ahead value of the critical price using the variable πF

peak,h. Equation (19) describes the mechanism
to set the CPPs in the operational phase of the IMG.

πF
cpp,h =

πbase + πF
peak,h, if ∑24

h=1 GF
h ≤ $

πbase, otherwise
(19)

2.2.4. Day-Ahead Dynamic Pricing

DADP refers to a tariff that is announced one day in advance to customers and has hourly
variations. This scheme offers less uncertainty to customers than “hour- ahead pricing” or “real-time
pricing,” thus allowing them to plan their activities [47,48]. Equation (20) introduces the day-ahead
payments under a DADP tariff, using πF

h as a decision variable vector of dimension 24.

ΘF
dadp =

24

∑
h=1

πF
h dF

f ,h (20)

2.2.5. Incentive-Based Pricing

The IBP tariff provides discounts in the tariff to the customers to increase the electric energy
consumption or an extra fare to penalize it. The planner can decide the IBP base price to be equal to the
flat tariff π f lat to guarantee a constant value each day. Variable πF

inc,h computes the day-ahead hourly
incentives and can take positive or negative values. Equation (21) defines the day-ahead payments
using the IBP tariff.

ΘF
inc =

24

∑
h=1

dF
f ,h(πbase + πF

inc,h) (21)

All of the N tariffs must have restrictions to avoid null or excessive pricing. Governments,
policymakers, or IMG owners can guarantee fair tariffs to the customers with constraint (22).

πmin
n ≤ πn ≤ πmax

n (22)

2.2.6. Direct Load Curtailment Strategy

The DLC strategy curtails a portion εF
h out of forecasted demand if required. The planner of the

IMG decides the percentage of curtailed demand κ. The final demand and day-ahead payments are
defined as follows:

dF
f ,h = dF

o,h − εF
h (23)

ΘF
dlc =

24

∑
h=1

dF
f ,hπ f lat (24)

The general restrictions for the DLC strategy are defined as follows:

εF
h ≤ κdF

f ,h (25)

24

∑
h=1

εF
h ≤ κ

24

∑
h=1

dF
f ,h (26)

2.3. Third Level: Real Operation of the IMG

The formulation of the third optimization level a3 solves the following problem:
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X3 = arg min
ER

u,h ,EER
h ,LER

h

ϕog

24

∑
h=1

U

∑
u=1

(λu,h + Λu,h)ER
u,h + ωEER

h + ωLER
h (27)

s.t.
24

∑
h=1

U

∑
u=1

ER
u,h − EER

h + LER
h − dR

f ,h = 0, (28)

where the formulation computes the real dispatch of energy sources using capacities Cu, real energy
resources GR

h , real final electric demand dR
f ,h, and the energy prices πn of each DSM in order to compute

the real dispatch of the U energy sources of the IMG.
In addition to Equations (27) and (28), the formulation of a3 must include physical restrictions

for all the U energy sources used to design the IMG (maximum battery charge and discharge rates,
maximum power generator output, amongst others). It is essential to highlight that EER

h and LER
h

in the third level refer to energy that generators produce in excess and energy that the generators
can not provide, respectively. The first level constrains the allowed quantity of excess (Equation (9))
and lack (10) of energy. The second level uses a penalization factor for these variables (Equation (11)).
However, the third level is just an accumulator, a counter of these quantities.

3. Case Study

The case study aims to illustrate the capabilities and performance of the proposed methodology
and considers the design of an IMG composed of a PV, a BESS, and a Diesel Generator (DG) System,
as Figure 2 shows. The case study assumes that the microgrid can have two different types of load.
The case study uses the load type one when the planner chooses a DSM based on price. The load type
one has Smart Meters. The case study uses the second type of load when the planner decides to use the
DSM based on DLC. The second type of load has a device as “GridShare” to perform the curtailment of
the electrical demand [31]. The case study considers six IMG designs: Baseline case (flat tariff and no
DSM) and one design for each of the proposed DSM (ToU, CPP, DADP, IBP, DLC). The results of the
designs using DSM are compared with the baseline case design. All of the optimization formulation
was written in Python 3.7 using the CVXPY 1.0 package [49,50]. The selected solver is MOSEK, due to
its flexibility, speed, and accuracy [51,52].

The case study includes a Monte Carlo Sampling (MCS) approach to deal with the uncertainties of
the stochastic formulation. The MCS approach builds different scenarios by sampling the Probability
Distribution Functions (PDFs) of electrical demand. In order to build scenarios, a pre-processing
step fits the historic electrical demand into monthly/hourly PDFs. For simplicity and for the sake of
reduction in computational burden, the case study assumes the demand follows a Gaussian process
without a covariance matrix. Afterwards, a random sampling process of the monthly/hourly PDFs
builds the demand for each sample s of the MCS approach. Equation (29) describes the sampling
process. Figure 3 shows monthly/hourly fitted distributions using a continuous line to represent the
mean and a shaded area to represent the standard deviation.

Dt|m, h ∼ f (ψm,h) (29)

In Equations (2), (11) and (27), X1, X2, and X3 represent the S solutions of minimizing a1, a2,
and a3, respectively. The Cu capacities of the energy sources selected for the IMG in the first level
must supply 95% of the S electrical demands with z level of reliability (as defined by Equation (10)).
A post-processing step fits the Cu results to a PDF φu, and obtains the Cumulative Distribution Function
(CDF) Φu. The evaluation of the inverse of the CDF Φu at 0.95 provides the values of energy source
capacities Cu. These values will supply electrical demand with the desired reliability level 95% of the
time (95% of all the scenarios).

Φu =
∫ ∞

−∞
φudCu (30)

Cu = Φ−1
u (0.95) (31)
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Figure 2. Architecture of the islanded/isolated microgrid of the case study.
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Figure 3. Fitting of the electrical demand.

Geographic and Weather Conditions of the Case Study

The case study is located at longitude 77′16′8′′ West and latitude 5′41′36′′ North (Nuquí,
Colombia). The study case uses the Meteonorm database of the PvSyst software to obtain the Global
Horizontal Radiation (GHI) and temperature conditions of the geographical region. Additionally,
the study case uses Homer Pro software to obtain a standard community electrical demand.
The standard community electrical demand that Homer Pro provides has hourly steps over a one-year
horizon. Figure 4 shows the historic yearly standard profile of the electrical demand that Homer Pro
provides. Figure 5 shows the yearly GHI. Figure 6 shows the yearly temperature.
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The Monte Carlo Sampling analysis shown in Equation (29) builds the scenarios for the stochastic
analysis using the standard community electrical demand obtained from Homer Pro (shown in
Figure 4) and a scale factor of 20. The cost of diesel used for the optimization is 0.75 USD/liter.
The case study takes the Diesel Generator model from [53], the PV system model from [54–56],
and the BESS model from [57]. Table 2 summarizes the unitary installation and maintenance costs
of the equipment obtained from regional providers. The values assigned to πn,min and πn,max in
constraint (22) are 0 USD/kWh, and two times the price of the current flat tariff of urban areas in
Colombia, 0.34 USD/kWh, respectively [58].

Table 2. Unitary system costs for simulations.

System Initial Investment Maintenance Operation

PV 1300 USD/kW 60 USD/kW 0 USD
BESS 420 USD/kWh 23 USD/kWh 0 USD
DG 550 USD/kW 30 USD/kWh f (E2

DG,t, ψL)

Additionally, the methodology takes as inputs the values of Ψc, e, ϕcg, ϕci, ϕog, ϕoi, ω, κ, GH
h , Iu,

λu, Λu, and S. Planners or policymakers can decide these values or perform sensitivity analyses over
each of them. Table 3 shows the values used for simulations in this work. The following section uses
the MCS approach and the inputs of Table 3 to compute the results and for the case study.

Table 3. Values of the input parameters for the simulations.

Input Value Input Value

Ψc 1 κ 10%
e 0.3 GH

h Figures 5 and 6
ϕcg 0.9 Iu See Table 2
ϕci 0.1 λu See Table 2
ϕog 0.9 Λu See Table 2
ϕoi 0.1 S 100
ω 0.4

4. Results and Analysis

The case study aims to evaluate the effects of five different DSMs over the optimization results of
the proposed formulation. The five considered DSMs are ToU, CPP, DADP, IBP, and DLC. The study
case evaluates different aspects of the effects of the DSMs. Section 4.1 shows the average of each of
the tariffs and the curtailment of the DLC strategy. Section 4.2 shows the effects of the DSMs over the
sizing of the energy sources of the IMG. Section 4.3 aims to analyze the impacts of the DSMs over
the economic aspects of the microgrid. This section analyzes the impacts of DSMs over total costs,
profits of private investors, customer payments, and LCOE. Additionally, the section considers the
delivered energy and fuel consumption. Section 4.4 presents the effects of the forecast errors over the
operation of the IMG. Section 4.5 presents percentage variations in crucial indicators as total cost of
the project and LCOE between the first and the third optimization levels. Finally, Section 4.6 shows a
comparison of the performance of all the DSMs.

4.1. Demand Side Management Analysis

Each of the Γn DSM strategies uses a different stimulus to modify customer consumption patterns.
ΓToU , ΓCPP, ΓDADP, and ΓIBP use tariffs as an indirect stimulus to modify those patterns. Figure 7
shows the average daily stimulus and the Standard Deviation (STD) of the DSMs. The lines represent
daily averages of the DSM strategies, and shaded area represents STDs.
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Figure 7. Daily average price of the selected tariffs.

Figure 7 presents energy prices. It is interesting to notice that IBP and DADP tariffs reduce
the energy price in the middle of the day. The reduction occurs due to the presence of photovoltaic
generation in the IMG. IBP and DADP DSMs incentivize customers to increase energy consumption
when it is cheaper to generate electric energy.

The ΓDLC DSM curtails a percentage of the demand. Figure 8 shows the daily average of the
curtailed values in a continuous line and the STD of the curtailed energy in a shaded area.
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Figure 8. Daily average load curtailment for the ΓDLC DSM.

The stimulus introduced by DSM strategies modifies customers’ consumption patterns.
Using Equation (6) and the stimulus computed using Equations (15)–(26), it is possible to compute
the demand response. Figure 9 shows the demands after the application of DSM. The lines represent
daily averages of the electrical demand, and shaded area represents the STDs.
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Figure 9. Daily average load for each of the DSMs and the base case.

It is interesting to note in Figure 7 that the IBP rate tends to be similar to the DADP rate. Therefore,
it produces similar effects over electrical demand (see Figure 9). The lack of hourly restrictions
on the appearance of the incentive of the IBP tariff causes this to occur. However, the design of
hourly restrictions will rely on the experience of the IMG planner, which may ultimately lead to
sub-optimal results.

4.2. Sizing Analysis

The variations in the customers’ consumption patterns modify the IMG sizing. Figure 10 presents
the variations in the sizing of the Diesel Generator, the photovoltaic system, and the BESS for the
five DSMs.

Flat ToU CPP DADP IBP DLC
CPV 355.0 305.0 331.0 369.0 328.0 354.0
CDG 181.0 209.0 170.0 118.0 135.0 181.0
CBESS 1349.0 685.0 1101.0 938.0 794.0 1342.0
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Figure 10. Comparison of the sizing of the energy sources for the DSM against the base case.
Diesel Generator and photovoltaic capacities are in kW, and the Battery Energy Storage System (BESS)
capacity is in kWh.
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On the one side, Figure 10 shows that ToU- and IBP-based DSMs require less installed capacity
than the other alternatives. On the other side, Figure 10 shows that DLC and CPP DSMs do not
considerably reduce the energy sources’ installed capacities. However, reductions in installed
capacities do not necessarily mean that one DSM is better than others. The following sections contribute
with different analyses to determine which of the DSMs can be more suitable for IMG applications.

4.3. Economic Analysis

The DSM introduction in the IMG planning modifies total costs, investors’ profits, customers’
payments, total delivered energy, and LCOE, among others. Equations (32)–(36) present how to
compute these values, and Figure 11 shows the results for the five DSM strategies and the base case.

Total costs = ζ + ϑ (32)

Profits =
T

∑
t=1

πn,tD f ,t − (ϕciζ + ϕoiϑ) (33)

Payments =
T

∑
t=1

πn,tD f ,t (34)

Energy =
T

∑
t=1

D f ,t − |EE f ,t| − |LE f ,t| (35)

LCOE =
Energy

Total costs
(36)

Flat ToU CPP DADP IBP DLC

LCOE 
 [kWh/USD]

Diesel 
 [x103 Liters]

Energy 
 [x104 kWh]

Payments 
 [x103 USD]

Profits 
 [x103 USD]

Total costs 
 [x103 USD]

0.3624 0.3414 0.3459 0.3015 0.3072 0.3787

267.05 291.15 265.25 223.5 249.02 238.54

121.01 121.55 119.44 115.91 118.59 111.46

205.75 178.82 208.68 191.68 191.45 187.07

161.97 138.32 167.75 164.92 154.33 146.65

437.81 414.28 413.24 364.08 371.31 415.79

50
100
150
200
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400

Figure 11. Comparison of the costs and the Levelized Cost of Energy (LCOE) of the five DSMs against
the base case.

4.4. Assessment of the Impact of Forecast Errors

In the operational stage of the IMG, the proposed formulation computes the DSM stimulus using
day-ahead load forecasts. Instead of using a particular method to perform the forecasts, the approach
adds Gaussian noise to the real demand to build the forecasted demand, as is stated by Equations (37)
and (38). This approach allows measurement of the impact of forecast errors over the final results in
the third stage (after knowing the real values of the load).

ν ∼ N (µ, σ2) (37)
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dF
h = dR

h ν (38)

Thus, this section presents a sensitivity analysis of the impact of forecast errors. By computing
the simulations again, considering forecast errors of 0%, 5%, 10%, and 15%, this approach computes
forecast errors using the Mean Absolute Percentage Error. Table 4 relates the percentage of error with
the STD used in Equation (37).

Table 4. input parameters for simulations.

Error σ2 Error σ2

0% N/A 5.01% 0.0628
10.01% 0.1258 15.01% 0.1881

It is significant to notice that the reported errors correspond to the average error for all the
forecasts of all the simulated scenarios. In the 0% error case, the forecasted demand values are equal
to the real values dF

h = dR
h . The case study found that the methodology is unable to compute the

day-ahead stimulus of the DSMs when the forecast errors are near to 20% (σ2 = 0.2512).
Figure 12 shows that the impact of the forecast errors in the total costs, the delivered energy,

the investors’ profits, the customers’ payments, and the LCOE is not significant. The variation between
the case with perfect forecasts and 15% error in the forecasts is less than 1%. The DADP tariff presents
the highest variation in profits and payments of the customers, which drop 1% as compared to the
case where the forecast errors are zero.
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Figure 12. Effects of the forecast errors over the main results. (a) Forecast errors effects for a Critical
Peak Pricing (CPP) DSM. (b) Forecast errors effects for a Day-Ahead Dynamic Pricing (DADP) DSM.
(c) Forecast errors effects for an Incentive-Based Pricing (IBP) DSM. (d) Forecast error effects for a
Direct Load Curtailment (DLC) DSM.
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4.5. Assessment of the Relation between the First and Third Optimization Levels

This article presents the design of a methodology to compute the effects of five different DSMs
over the sizing of IMGs. However, in order to calculate the energy sources’ capacities, only the first
optimization level of the proposed methodology is required. The second and the third optimization
level formulations evaluate the performance of the IMG once it is in operation. Figure 13 reveals the
percentage variations between the results from the first and third optimization levels for the five DSMs
and the base case.

The first level of the proposed methodology uses a scenario approach built upon historical data
and considers an optimization horizon of one year. The second and third levels use a scenario approach
built upon forecasts to predict DSMs and consider a rolling horizon with an optimization horizon
of one day over a year. Figure 13 presents the comparison between the average results from the first
and third levels when the error in the forecasts is 10%. The extra costs, payments, and LCOE, as well
as the reductions in profits and payments, are the result of the change of the optimization horizons
and the use of historical instead of forecast data. Planners can also compute percentage variations
between the first and third levels for different forecast errors and can utilize trends in percentage
variations of each of the values to avoid executing the second and third levels of the methodology.
Just by executing the first level and considering the percentages’ variations in their calculations will be
enough to estimate the total costs of the IMG project.

Flat ToU CPP DADP IBP DLC

LCOE

Diesel

Energy

Payments

Profits

Total costs

+14.04% +12.9% +12.44% +11.07% +11.95% +18.28%

+7.43% +5.92% +5.43% +2.75% +4.18% 3.44%

0.01% +0.41% 1.28% 4.14% 1.96% 8.9%

+0.01% 1.57% +1.83% +12.32% +4.05% 9.08%

3.22% 5.34% 0.25% +12.59% +2.28% 12.93%

+14.05% +13.37% +23.58% +23.54% +24.53% +7.54%

-10%
-5%
0%
5%
10%
15%
20%

Figure 13. Percentage differences between the results of the first level and the third level for the five
DSMs and the base case.

4.6. Performance Comparison of the Five DSMs

The five DSMs have different performance in different aspects. Equation (39) is adopted to
measure the performance of each of the DSMs.

Performance =
worst− current

worst− best
(39)

Figure 14 shows that DADP and IBP tariffs perform better than the other DSMs. However,
these rates require announcing energy prices one day in advance, so customers reorganize their
consumption daily. In the context of IMG, hourly variations of the tariffs might not be the best option
in some scenarios. In those scenarios, a ToU tariff or CPP tariff can give a satisfying solution as well.
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Flat ToU CPP DADP IBP DLC
Total costs 0.0 0.6 0.7 2.0 1.8 0.6
Profits 1.6 0.0 2.0 1.8 1.1 0.6
Payments 0.2 2.0 0.0 1.1 1.2 1.4
Energy 1.9 2.0 1.6 0.9 1.4 0.0
Diesel 0.7 0.0 0.8 2.0 1.2 1.6
LCOE 0.4 1.0 0.8 2.0 1.9 0.0
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Figure 14. Performance comparison of the base case and the five DSMs

5. Conclusions

The present work proposes a methodology to design and evaluate five DSMs in the planning and
operation of IMGs. The methodology allows determination of the optimal size, optimal energy dispatch
strategy, and optimal stimulus for the DSMs using a Disciplined Convex Stochastic Programming
approach. The work designs and evaluates the effects of the five DSMs using one case study as a
test-bench, which makes this work the first attempt to do so in the literature known by the authors.

The proposed methodology can help policymakers design proper regulations for IMG projects
that consider the social conditions of customers and private investors. Additionally, the methodology
can be useful for IMG planners or entrepreneurs that want to build profitable business models
providing energy to isolated communities. In this regard, the methodology allows policymakers to:

• Compute the effects of applying one of the five DSMs over the total costs of IMG projects in the
planning phase.

• Control the revenue of private investors or entrepreneurs to prevent excessive profits.
• Minimize the total amount of subsidies paid by the government for IMG projects.
• Compute the effects over the sizing and the total costs of IMG projects for different values of

customer elasticities.

Additionally, the methodology allows IMG planners or entrepreneurs to:

• Compute the expected expenses and revenues of an IMG project considering any of the five DSMs.
• Compute the sizing of the energy sources considering any of the five DSMs.
• Consider the effects of using different combinations of energy sources to supply the electrical demand.
• Obtain the optimal day-ahead energy dispatch strategy for the microgrid considering any of the

five DSMs.

The methodology can provide the benefits mentioned above to its users if the assumptions that
it was built upon are fulfilled. In this regard, by sharpening the assumptions, the methodology will
adapt better to the conditions of IMG projects. Considering more energy sources, sophisticated models
of customer elasticities, and demand response models adapted to local conditions, among others,
will improve the methodology as well.
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Finally, it is essential to highlight the technical characteristic of the present study, which aims
to inform planners and policymakers about the benefits of applying DSMs in the planning of IMGs.
However, policymakers should perform comprehensive social and behavioral studies to evaluate the
potential of acceptance of price-based or direct load curtailment DSMs in the context of IMGs.
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The following abbreviations are used in this manuscript:

DSM Demand-Side Management
MG Microgrid
IMG Isolated/Islanded Microgrid
LCOE Levelized Cost of Energy
BESS Battery Energy Storage System
PV Photovoltaic
DG Diesel Generator
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming
CAPEX Capital Expenditures
OPEX Operational Expenditures
MCS Monte Carlo Sampling
PDF Probability Distribution Function
CDF Cumulative Distribution Function
STD Standard Deviation
ToU Time of Use
CPP Critical Peak Pricing
DADP Day-Ahead Dynamic Pricing
IBP Incentive-Based Pricing
DLC Direct Load Curtailment
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Appendix A

Table A1. Variable declaration.

First stage optimization variables
a1 Optimization formulation of the first stage Unitless
ϕci Percentage of the CAPEX paid by the investor Unitless
ϕcg Percentage of the CAPEX paid by the government Unitless
ϕoi Percentage of the OPEX paid by the investor Unitless
ϕog Percentage of the OPEX paid by the government Unitless
X1 Results of the optimization formulations of the first stage Unitless
t Hour of optimization Hours
T Total number of hours to optimize Hours
u Specific generator or storage system of the microgrid Unitless
U Total number of generators and storage systems of the microgrid Unitless
n Specific DSM Unitless
N Total number of DSMs Unitless
Cu Installed capacity of the u device kW, kWh
Iu Unitary initial investment of the u device USD/kW
λu Unitary costs of generation of the u device USD/kWh
Λu Unitary maintenance costs of the u device USD/kWh
Eu,t Quantity of energy delivered with the u device kWh
ζ Total capital expenditures USD
ϑ Total operational expenditures USD
R Internal Rate of Return for the investors Unitless
πn,t Price of the n tariff scheme at time t USD/kWh
D f ,t Final electrical demand of the community kWh
et Self-elasticity of the customers Unitless
π f lat Flat tariff USD/kWh
Do,t Initial electrical demand of the community kWh
Ψc Electric energy conservation factor Unitless
EEt Amount of energy in excess kWh
LEt Lack of energy to fulfill the demand kWh
z Reliability level Unitless
Second stage optimization variables
a2 Optimization formulation of the second stage Unitless
X2 Results of the optimization formulations of the second stage Unitless
h Hours of the day Hours
EF

u,h Quantity of forecasted delivered energy with the u device kWh
EEF

h Amount of forecasted energy in excess kWh
LEF

h Lack of forecasted energy to fulfill the demand kWh
ω Penalization factor Unitless
dF

f ,h Final electrical day-ahead forecasted demand of the community kWh
Θ f lat Payments with flat tariff USD
Θtou Payments with ToU tariff USD
y Specific hourly block of the ToU tariff Unitless
Y Total number of hourly blocks of the ToU tariff Unitless
πy Price at hour y of the ToU tariff USD/kWh
ΘF

cpp Day-ahead forecasted payments of the customers under the CPP tariff USD
πbase Base price of the CCP tariff USD/kWh
τbase Time under base price for the CPP tariff Hours
dF,base

f ,h Forecasted final electrical demand at base price kWh
τpeak Time under peak price for the CPP tariff Hours
πF

peak,h Forecasted peak price of the CCP tariff USD/kWh

dF,peak
f ,h Forecasted final electrical demand at peak price kWh

πF
cpp,h Forecasted Critical Peak Price tariff USD/kWh

πpeak,t Peak price of the CCP tariff USD/kWh
ϕpeak Percentage of the horizon T allowed to have a peak price Unitless
δpeak Times that πbase is scaled in the CPP tariff Unitless
GF

h Global horizontal solar radiation W/m2

$ Threshold to trigger the CPP price kW/m2

ΘF
dadp Day-ahead forecasted payments of the customers under the DADP tariff USD

πF
h Forecasted hourly price of the DADP tariff scheme USD/kWh

ΘF
ince Day-ahead forecasted payments of the customers under the incentive-based tariff USD

πF
ince,h Forecasted incentive price of the IBP tariff USD/kWh

πn,min Minimum value of the n tariff USD/kWh
πn Price of the n tariff scheme USD/kWh
πn,max Maximum value of the n tariff USD/kWh
dF

o,h Forecasted initial electrical demand kWh
εF

h Forecasted curtailed demand kWh
ΘF

dlc Day-ahead forecasted payments of the customers under the DLC DSM USD
κ Percentage of the electrical demand to curtail kWh
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Table A1. Cont.

Third stage optimization variables
a3 Optimization formulation of the third stage Unitless
X3 Results of the optimization formulations of the third stage Unitless
ER

u,h Real quantity of delivered energy with the u device kWh
EER

h Real amount of energy in excess kWh
LER

h Real lack of energy to fulfill the demand kWh
dR

f ,h Real final electrical demand kWh
Case study
Dt Electrical demand at time t kW
m Months of the year Unitless
h Hours of the day Hours
ψm,h PDF of the month m and hour h kW
Φu CDF of the capacity results kW
φu PDF of the capacity results kW
s Specific scenario Unitless
S Total number of scenarios Unitless
ΥL Diesel price per liter USD/liter
Lu Lifetime of the u technology Years
Lp Lifetime of the IMG project Years
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