
energies

Article

Hybrid Microgrid Energy Management and Control
Based on Metaheuristic-Driven Vector-Decoupled
Algorithm Considering Intermittent Renewable
Sources and Electric Vehicles Charging Lot

Tawfiq M. Aljohani , Ahmed F. Ebrahim and Osama Mohammed *

Energy Systems Research Laboratory, Department of Electrical and Computer Engineering, Florida International
University, Miami, FL 33174, USA; Taljo005@fiu.edu (T.M.A.); aebra003@fiu.edu (A.F.E.)
* Correspondence: mohammed@fiu.edu; Tel.: +1-305-348-3040

Received: 27 March 2020; Accepted: 25 June 2020; Published: 2 July 2020
����������
�������

Abstract: Energy management and control of hybrid microgrids is a challenging task due to the
varying nature of operation between AC and DC components which leads to voltage and frequency
issues. This work utilizes a metaheuristic-based vector-decoupled algorithm to balance the control
and operation of hybrid microgrids in the presence of stochastic renewable energy sources and electric
vehicles charging structure. The AC and DC parts of the microgrid are coupled via a bidirectional
interlinking converter, with the AC side connected to a synchronous generator and portable AC
loads, while the DC side is connected to a photovoltaic system and an electric vehicle charging
system. To properly ensure safe and efficient exchange of power within allowable voltage and
frequency levels, the vector-decoupled control parameters of the bidirectional converter are tuned
via hybridization of particle swarm optimization and artificial physics optimization. The proposed
control algorithm ensures the stability of both voltage and frequency levels during the severe condition
of islanding operation and high pulsed demands conditions as well as the variability of renewable
source production. The proposed methodology is verified in a state-of-the-art hardware-in-the-loop
testbed. The results show robustness and effectiveness of the proposed algorithm in managing the
real and reactive power exchange between the AC and DC parts of the microgrid within safe and
acceptable voltage and frequency levels.

Keywords: Energy management and control; particle swarm optimization (PSO); hybrid AC/DC
microgrid; electric vehicle charging and discharging control; artificial physics optimization (APO)

1. Introduction

Microgrids are one of the promising solutions for smarter and more efficient energy operations.
The recent growth of small-scale energy generations as well as the rapid progress of power electronics
applications has increased the attention toward microgrids control and management issues in recent
years. Moreover, concerns about the reduction of power plants immense contribution of greenhouse
gasses (GHG) have shed light on microgrids importance and the role they could play to reduce the
release of toxic gases to the environment [1,2]. Another aspect of its importance is the recent shift toward
more transportation electrification, which require more electric vehicles (EVs) charging structures
on the distribution system. However, the rise of microgrids with its dependence on intermittence
renewable energy sources (RES) as well as stochastic EVs activities have underlined voltage stability
and frequency control problems that must be carefully addressed for more safe and resilient operation.
Specifically, uncoordinated large-scale integration of renewables sources, as well as rapid adoption of
EVs with highly stochastic charging and discharging activities, will lead to detrimental consequences

Energies 2020, 13, 3423; doi:10.3390/en13133423 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-1232-2811
https://orcid.org/0000-0001-9669-1800
https://orcid.org/0000-0002-2586-4046
http://www.mdpi.com/1996-1073/13/13/3423?type=check_update&version=1
http://dx.doi.org/10.3390/en13133423
http://www.mdpi.com/journal/energies


Energies 2020, 13, 3423 2 of 19

such as voltage collapse, power quality problems, frequency, and stability oscillations, to name a
few. Therefore, proper control and operation of microgrids is required to allow coordinated control
mechanisms while taking into consideration the heterogeneous mix of parameters corresponding to
different attached power sources [3]. Research on microgrids operation and control has been widely
considered in the literature. The authors of reference [4] analyzed various architecture, management,
and control in the microgrid paradigm, while the authors of reference [5] presented a survey on
various research that considered the integration of distributed energy resources with microgrids in
different countries. Reference [6] investigated a decentralized energy control scheme for autonomous
poly-generation microgrid topology to achieve proper management in case of malfunctioning of
downstream parts. The authors of reference [7] examined a game theory, multi-agent-based microgrid
energy management system with the coordination of the decentralized agents are employed via Fuzzy
Cognitive Map (FCM). Besides, the authors of reference [8] presented a valuable review study on
various hierarchical control schemes of microgrids on the primary, secondary, and tertiary control layers
that aim to reduce the overall operation cost while improving the controllability and the reliability
of microgrids.

Photovoltaic solar (PV) is one of the most advanced and reliable forms of renewable energy sources.
However, the utilization of PV systems has yet to overcome many operational issues to be considered a
thoroughly reliable and dispatchable source of energy for microgrids. The most critical issue with the
consideration of PV systems is its intermittency throughout the day. Such shortages in the PV system’s
supply of energy could be compromised with increasing the level of energy transfer to the microgrid
through EVs discharging, which is one of the main aspects this paper is investigating. The work on PV
systems is one of the widely considered research topics in the past decades. Optimization problems
have been well-developed to investigate and verify the control of PV systems taking into consideration
its stochastic nature such as in [9,10]. The authors of reference [9] investigated the effect of changing
cell’s temperature and solar irradiance on the design of various DC-DC converter topologies which
are widely used in PV systems. The authors of reference [10] proposed a new topology scheme for a
photovoltaic dc/dc converter which can drastically enhance the efficiency of a PV system by assessing
the PV’s module characteristics. The authors of reference [11] proposed an algorithm that offers
dynamic distributed energy resources control that includes PV systems, small-scale wind turbines,
controllable loads, and energy storage devices. Furthermore, studies on PV systems covered a wide
range of applications, where reference [12] proposed an energy management strategy with PV-powered
desalination station that is coupled with DC microgrids.

Another side of consideration in this work is the relative impact of EVs integration on the hybrid
microgrid operation. Reference [13] presents a linearization methodology to model real-time EVs
activities on residential feeders based on the concept of Kirchhoff laws, nodal analysis, and modularity
index. EVs offer high potentials to serve as mobile backup storage devices that can provide grid
support to enhance its reliability as a means of smart grid application [14]. Reference [15] provides
a Matlab-based Monte Carlo Simulation code that allows the incorporation of distributed energy
resources (i.e., EVs) to assess the distribution network’s reliability. Additionally, studies have covered
the potentials of EVs in relevant frequency regulation and control. The authors of reference [16]
proposed an intelligent aggregator that synchronizes the charging and discharging activities of a group
of EVs in order to regulate frequency by compensating for any potential power deficiency. Similarly,
the authors of reference [17] proposed a real-time dynamic decision-making framework based on
Markov Decision Process (MDP) to allow intelligent frequency regulation by energy support from EVs.
Reference [18] developed a multivariable generalized predictive controller to enable load frequency
control in a standalone microgrid with V2G integration. The controller aims to allow sufficient energy
exchange without causing frequency deficiency, considering possible load disturbances. Furthermore,
the recent progressive policies that aim to reduce GHG emissions from the transportation sector will
result in a mass acquisition of EVs in the next few years [19], especially in regions where utilization
of EV is expected to have a significant reduction of GHG emissions as a result of their weather and
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energy grid mixes [20]. Such rapid adoption of EVs on a large scale without proper coordination can
result in phase imbalance, equipment fallout and degradation, increase active and reactive power
losses, among many problems [21]. Therefore, careful consideration needs to be given to overcome the
problems that may arise due to the intermittency and stochastic nature of the energy sources on the
hybrid microgrids.

In this work, an energy management and control strategy is developed to overcome the fluctuations
of the voltage and frequency levels due to the presence of intermittent renewable energy sources and
electric vehicle charging structure in hybrid microgrids. Furthermore, a hybridization algorithm of
the Particle Swarm Optimization (PSO) and Applied Artificial Physics (APO) is utilized to tune the
vector-decoupled control parameters of the interlinking converters to ameliorate the performance of
the hybrid microgrid to achieve better resiliency and operation. Our proposed strategy highlights
guaranteed stability of operation in the DC part of the microgrid while efficiently coordinate with the
AC part during severe operating conditions such as high pulsed demands and islanding operation.
The proposed algorithm is tested via a hardware-in-the-loop testbed at the Florida International
University to for results verification. The results embolden the validity of our proposed strategy and
hybridized algorithm to establish secure and safe active and reactive power exchange between the two
sides of the hybrid microgrid without invoking an operational violation.

This paper is organized as follows: Section 2 shows in detail the system description and
corresponding illustration of the modelling and control of the bidirectional converter, Section 3 presents
the hybrid algorithm deployed in our work to provide the converter with optimized control parameters,
Section 4 presents the experimental modelling and results of the proposed control mechanism,
with Section 5 providing concluding remarks.

2. System’s Description, Modeling, and Control

Figure 1 presents the system of study in this work which is implemented in hardware at the
Energy Systems Research Laboratory group (ESRL) of the Florida International University (FIU).
More information about the hardware testbed and its connections can be found in the previously
published literature [22–24]. The hybrid microgrid at the testbed incorporates different harvested AC
and DC sources that are integrated through interfaced power converters. Both sides are interlinked via
a bidirectional converter, with the DC part contains PV systems, electric vehicles parking structure,
and local and pulsed DC loads. On the other hand, the AC part of the microgrid is supplied with a
synchronous generator as well as the typical load demands. During islanding operation, the microgrid
is isolated and maintain its supply to local loads via both AC and DC sources. The microgrid is
designed such that it can autonomously satisfy the energy demands without interruption under any
circumstances. Two DC-to-DC boost converters are used in this work to link the DC components to
the bidirectional power converter, as illustrated in Figure 1. Table 1 presents the parameters of the
interlinking converter used in this work.

Table 1. Converter Parameters.

Parameter Value

DC BUS Voltage 380 ± 20 V
Rating 10 kW

Rs, 0.01 ohm
Cout 1200 µF
Rcout 0.008 ohm

L 12.7 mH
Cin 1200 µF
Rcin 0.008 ohm
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where Rs, Rcout, and Rcin are the resistance of the voltage source located at the DC side, resistances of
the output and input capacitor of the power converter, while Cout and Cin are the values of the output
and input capacitors.Energies 2020, 13, x FOR PEER REVIEW 4 of 20 
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2.1. PV System Model and Interface

The PV system is modeled with a PV emulator that has a maximum capacity of 6 kW and can
imitate a real-time PV system with different characteristics and under various operational conditions
such as during temperature and irradiance changes. The PV emulator is constructed to utilize real-time
algorithms that represent the PV array’s mathematical models to generate reference power output from
a programmable DC supply. Specifically, the PV models are established in Simulink and resembled in
real-time operation via dSPACE following a graphic user interface (GUI). Accordingly, the emulator is
then tested with real-time execution of the PV model considering various dynamic operational and
steady-state conditions. Figure 2 presents the configuration of the laboratory PV emulator, which
was first introduced by the authors in previous work [23]. Figure 3 shows a schematic illustration of
the PV system connectivity with the boost converters for accurate integration with the microgrid’s
DC side. It is worth mentioning that the type of PV module in this work is the SPR-305-WHT PV
system manufactured commercially by SunPower and can generate 305 watts as an output power per
module with an efficiency of 18.9%. The current-voltage (IV)characteristic of the PV system could be
represented by a single diode model as it provides accuracy and simplicity [25]. The current output of
the PV arrays can be found by

IPV = IL − IS [exp (
q(VPV + IPVRs)

KB T A
− 1) −

q(VPV + IPVRs)

Rsh
] (1)

where IPV is the output current of the PV array, VPV is the voltage reference which is established based
on the perturbation and observation (P&O) algorithm that takes into consideration the temperature and
solar irradiation levels, IL is the internal PV current, IS is the diode’s reverse saturation current, Rsh is
the parallel leakage resistance, Rs is the series resistance, A represents the ideality factor of the solar cell,
while q is the charge of the electron that is assumed to be 1.6× 10−19 C, and KB is the Boltzmann constant
which is 1.3806488 × 10−23 J/K. The DC-to-DC boost converter is used to step up the voltage level of the
PV arrays to the voltage level of the microgrid’s DC side when needed while ensure maximum power
extraction based on the concept of maximum power point tracking (MPPT). Specifically, the P&O
algorithm [26,27] is utilized in this work. This algorithm mainly depends on perturbing the voltage
level of the PV panels by small magnitude (∆V) and accordingly observing the change of power level
(∆P) to optimize the tracking of maximum power transfer from the arrays to take into consideration
potential temperature variability during the day.
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The main contribution from utilizing the (P&O) algorithm in our work is to aim for zero difference
of power received from the PV arrays in two successive iterations, denoted ∆P. This is accomplished
by measuring the level of power at each iteration based on the PV output current so that the power
level at the kth iteration is recorded, Pk, and P(k+1) for the following iteration. The DC-to-DC boost
converter adjusts the power output of the PV system by either decreasing in the case of a negative ∆P
or increasing it for the case of a positive ∆P. Once ∆P approaches zero, the PV system is said to be
reaching its maximum power point (MPP). The process is updated iteratively throughout the operation
hours to ensure maximum power production from the PV arrays. Figure 4 illustrates the described
iteration process, while Figure 5 shows the implementation of the control process for the DC-to-DC
converter in our work.

The control mechanism for the DC-to-DC boost converter is achieved based on the
following formulas

VPV −VT = L1
∂L1

∂t
+ L1R1 (2)

IPV − I1 = CPV
∂VPV

∂t
(3)

VT = VD(1−D1) (4)

where L1 and R1 are bidrectional converter inductance and resistance, I1 is the current corresponding
to the duty-cycle ratio D1 of the switch SPV . VT is the voltage across the switch, while Vpv is the voltage
reference across capacitance CPV and is determined following the utilization of the P&O algorithm
based on the temperature and solar irradiation levels of PV arrays, as mentioned earlier. It should be
noted that the control process is based on the dual-loop control mechanism. The inner current loop
assists in the improvisation of the dynamic response, while the outer voltage loop keep tracks with the
reference voltage levels given zero steady-state error.
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2.2. Electric Vehicles (EVs) Battery Converter Model and Control

The developed scheme for the electric vehicle charging converter is shown in Figure 6.
The converter topology is a composed of a bidirectional DC-to-DC converter, with the EV is connected
to the low-voltage side of the converter. The high-voltage side of the converter is directly connected
with the microgrid DC bus. The converter is composed of two switches, Sc and Sd, each with its own
operation mode and time. Specifically, switch Sc is on when the converter operates at the buck mode
for charging activity during power transfer from the DC Bus to the EV’s battery.
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Conversely, switch Sd is on when the converter operates at the boost mode during the discharging
process of the EV during power transfer from the EV’s battery back to the DC bus. The control
mechanism for the EV’s battery converter is shown in Figure 6, and is mathematically illustrated
as follows

VD −Vb = L2
∂Ib
∂t

+ R2Ib (5)

VD = VDD2 (6)

I1(1−D1) − iac − idc − IbD2 = CD
∂VD

∂t
(7)

where Vd and idc are the DC side’s voltage and current, iac is the current corresponding to the AC
side of the hybrid microgrid, Vb and Ib is the EV battery’s voltage and current, CD is the bidirectional
converter capacitance for boost mode, L2 and R2 are bidirectional converter inductance and resistance.
It should be noted that the main task of the bidirectional DC-DC converter connected to the EVs
charging structure is to regulate the DC bus voltage. To achieve this purpose, a dual-loop control is
utilized to assist in providing a stable DC link voltage. Specifically, the external voltage-controlled
loop establishes a reference charging current as a signal for the internal current-controlled loop. The
difference between the reference and measured bus voltage serves as an input signal to the PI controller.
This difference is used to measure the reference charging current since the internal current-controlled
loop compares this estimated current-signal with that one of the referenced current flowing inside the
converter. The produced output of this loop control serves as an input signal for a second PI controller
for further optimization of the inner controller.

The EVs battery current ib is calculated based on Equation (5), while the duty cycle is estimated
by Equations (6) and (7). The discharging current can be calculated as follows

Ib = I1(1−D1) − iac − idc (8)

That is to say, if the voltage of the microgrid’s DC bus is higher than the desired reference
voltage signal, then the outer voltage control generates a negative reference current signal for the inner
current-controlled loop. The generated signal current is used to adjust the correspondent duty cycle in
order to influence the converter to operate in a buck mode only and suspend any discharging activity
at the moment. On the other hand, if the voltage of the microgrid’s DC bus is lower than the desired
reference voltage signal, then the outer voltage control generates a positive reference current signal to
regulate the current flow during the discharging process. As a result, an additional amount of energy
is incurred and injected to the DC bus while improving the voltage profile at the moment. It is worth
mentioning that the physical reference for the voltage source of the DC bus is 400 V.

2.3. Bidirectional DC-to-AC Converter Model and Control

In hybrid microgrids, managing robust frequency and voltage levels is challenging, especially
during forced islanding operation where the AC side loses its connection to the grid’s main slack
bus. Typically, a hybrid microgrid owns synchronous generators that can manage load variations and
maintain energy supply, even during islanded operation. However, high demands connected to the
hybrid microgrid may lead to severe consequences such as frequency deficiency and potential voltage
collapse. As a result, the bidirectional DC-AC converter’s main task is to enable strict frequency and
voltage regulation considering severe operational scenarios [28]. We consider this controller type to
ensure a smooth power exchange between the DC and AC sides of the microgrid. The mathematical
representation of the DC-AC converter model is illustrated as follows:

L3
d
dt


ia
ib
ic

+ R3


ia
ib
ic

 =


Va

Vb
Vc

−


ea

eb
ec

+


∆a

∆b
∆c

 (9)
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Considering D-Q coordinates, Equation (9) could be rewritten as follows

L3
d
dt

[
id
iq

]
=

[
−R3 wL3

−wL3 −R3

][
id
iq

]
+

[
Vcd
Vcq

]
−

[
Vsd
Vsd

]
(10)

The control mechanism of the bidirectional DC-AC converter utilized in our work is shown in
Figure 7, where two-loop controllers, for both real and reactive power, are applied. The overall goal is
to allow proper and intelligent control of both frequency and voltage levels at the hybrid microgrid.
For frequency control, the difference between the measured frequency signals from that of the obtained
reference frequency is established. The result is subtracted from the difference error between the
measured and referenced DC voltage level, as described in part B of this section. The obtained
value serves as an input signal to the PI controller, which initiates the current reference value, Id.
Likewise, another control loop is deployed to achieve voltage stability employing optimized reactive
power flow in the hybrid microgrid. This is made in the same manner as frequency control, where
the difference between the measured and referenced voltage levels is calculated to produce a signal
that serves as input to another PI controller to generate the Iq reference current. In the next section,
we present a metaheuristic methodology based on the hybridization of Particle Swarm Optimization
(PSO) and Artificial Applied Physics (APO) to tune the vector-decoupled control parameters illustrated
in Figure 7 optimally.

Figure 7. Schematic diagram of the bidirectional DC-AC converter.

3. Control Parameters Design Using Hybrid Artificial Physics Optimization-Particle Swarm
Optimization (APOPSO) Algorithm

The central concept of applying our hybridization of PSO and APO is to integrate their individual
strengths to establish an optimization algorithm that exhibits both the dominant global search abilities
of the APO and efficient local exploration performance of the PSO while enhancing its convergence rate.
In this work, the hybrid algorithm is utilized to optimize the vector-decoupled control parameters of
the bidirectional converter to ensure efficient energy management driven by optimized variables while
reducing the trial–error method described in Section 2. In a previous study, the authors developed an
optimal reactive power dispatch study based on the hybrid APOPSO [29].
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3.1. Artificial Physics Optimization (APO)

APO is a physics-based metaheuristic technique that is based on the idea of a gravitational
metaphor that enables forces to produce attractiveness or repulsiveness movements on the articles that
resemble the solutions of the optimization problem [29–31]. These movements represent the searching
criteria for estimating the values of local and global optima. Furthermore, this is accomplished since
the APO treats the examined parameters as physical objects that exhibit a mass with relative position
and velocity. The mathematical description of the APO is as follows

mi= g [ f (xi)] (11)

When f(x) € [−∞,∞], then; arctan [−f (x1)] € [ −x
2 , x

2 ], and tanh[− f (xi)] € [−I, I] with

tanh(xi)=
ex
− e−x

ex + e−x (12)

where Equations (11) and (12) is mapped into the interval (0,1) via basic transformation function.
Therefore, the mass functions of the APO is described as follows

mi = e
g [ f (xbest)− f (xi)]
f (xworst)− f (xbest) (13)

where f (xbest) is the objective function corresponding to the position of the best-achieved value for
the individual solution, which in this work resembles the best-obtained control parameter. On the
other hand, f (xworst) refers to the value of the worst particular solution reported during the searching
process. Both are represented as follows:

Best = avg
{
min f (xi ) , i ∈ S

}
(14)

Worst = avg
{
max f (xi ) , i ∈ S} (15)

where S is a set that is composed of N population of controlling parameters. A velocity vector is
produced once each particle’s mass is identified, with the level of exerted force influencing the change
in velocities in an iterative manner. The amount of exerted force on each particle i (solution) can be
found as follows

Fi j,k =

 sgn
(
ri j , k

)
·G

(
ri j , k

)
·

mim j

ri j , k2 ; i f f
(
x j

)
< f (xi)

sgn
(
r ji , k

)
· G

(
r ji , k

)
·

mim j

ri j , k2 ; i f f
(
x j

)
≥ f (xi)

(16)

and
ri j, k= x j,k − xi,k (17)

where Fi j,k is the kth force exerted on particle i via another particle j in their corresponding dimensions;
xi,k and x j,k are the kth dimensional coordinates of the swarm particles i and j; ri j, k is the distance
between the two measured coordinates. Sgn(r) represents the signum function, whereas G(r) depicts
the gravitational factor that follows the changes on ri j, k iteratively, both represented mathematically
as follows

Sgn(r) =
{

1 i f r ≥ 0
−1 i f r < 0

(18)

G (r) =
{

g|r|h i f r ≤ 1
g|r|q i f r > 1

(19)
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In a thorough manner, the total force applied on all particles (control parameters of study) can be
modeled as:
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One crucial aspect to consider when deploying the APO to solve an optimization problem is
the understanding of its particles’ motion paradigm in the solution space. Specifically, the measured
force could be used to estimate the velocity of the moving particles and therefore find in an iterative
fashion their respected positions in the solution space. Such motion paradigm is set in a two- or
three-dimensional space and is modeled as follows:

Vi,k (z + 1) = w· Vi,k(t) + β ∗
Fi,k

mi
(21)

xi,k (t + 1) = Xi,k(t) + Vi,k(t + 1) (22)

Vi,k and xi,k represent the kth velocity and distance components corresponding to particle i during
an iteration t, while β is a uniformly distributed random variable within the interval [0, 1] and w is a
user-defined inertia weight that is updated iteratively and usually assume a value between the interval
0.1 to 0.99. Furthermore, the inertia weight is a good indication of the level of performance of the APO
algorithm, with higher values of w indicates greater velocity changes. It should be noted that at each
iteration, each particle identifies the information of its nearby particles (solutions) which emphasizes
the great search strategy of the APO. Once an iteration is performed, all the particles’ relative positions
are identified and consequently the objective fitness function adjusts to the newly obtained positions.
A stopping criterion is enabled once a pre-determined number of iterations are reached without a
significant difference in the obtained best particle position.

3.2. The Particle Swarm Optimization (PSO)

Considered one of the most popular metaheuristic techniques, PSO is a bio-inspired,
population-driven algorithm first presented by Kennedy in [32]. PSO advances based on evolutionary
computations with a sample of preliminary randomized solutions at the first iteration, updated
iteratively to establish local and global optima values. The obtained solutions are deemed particles
that fly in the solution space with a determined velocity from preceding iterations. It should be noted
that the obtained velocity and position values of each solution set are updated iteratively as follows:

Vi j(t + 1) = [W ∗Vi j(t)]+[C1 + r1 +[Pbesti j − Xi j(t)]]+[C2 + r1 +[gbesti j −Xi j(t)]] (23)

Xi j(t + 1) = Xi j(t) + C Vi j(t + 1) (24)

Xi j(t) and Vi j (t) are both vector representations of velocity and position in the solution space
for particle i, whereas Pbest and gbest stand for the best individual and global obtained solutions,
respectively. The popularity of PSO as a well-established and referred metaheuristic algorithm is
attributed to its efficient searching strategy along with prematurely convergence rates without the
requisite of finding a local optimum in first place.

3.3. The Hybridization of APO and PSO to Optimize the Vector-Decoupled Control Parameters

The hybridization of APO and PSO is to establish in this work to take advantage of their individual
strengths that lead to an overall improvement in the optimization process. Specifically, such integration
utilizes the high efficiency of global search of the APO with the strong local exploratory search of the
PSO while significantly enhancing its convergence rate. In this paper, the two algorithms are integrated
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following a low-level heterogeneous routine. As a consequence, the velocity and positions equations
are modified as follows:

vi,k(t + 1) = W · vi,k(t) + β1 − r1 ·

[
Fi,k(t)

mi

]
+ β2 · r2 ·

[
g best− xi,k(t)

]
(25)

xi,k(t + 1) = xi,k(t) + vi,k(t + 1) (26)

This proposed hybridization allows parallel search within a set of population which leads to
avoidance of getting trapped in local optima. The control parameters to be optimized are Kp_f, Ki_f,
Kp_vdc, Ki_vac, Kp_m, Ki_vdc, Ki_m, and Kp_vac. Following the microgrid’s dynamic simulation, the hybrid
APOPSO algorithm evaluates the integral absolute values of both the frequency (∆f ) and the RMS
voltage (∆Vrms) deviation levels corresponding to the AC part of the microgrid. In this paper, two
fitness functions are applied to the hybrid algorithm to properly estimate the self-tuning of the gains of
the PI controller. The output of the fitness functions is used to control the power-sharing levels of the
bidirectional converter, as follows

min
{
F = e(t) = y(t) ∗ −y(t)

}
(27)

MOF = Min
{∫ t f

t0

x f
∣∣∣∆ f

∣∣∣dt + xv

∫ t f

t0

|∆Vrms|dt
}

(28)

where e(t) represents the level of the errors, y(t)* the desired value to be obtained and y(t) is the actual
measured value per each iteration, while x f and xv represent penalty factors to enforce the voltage and
frequency levels to be within the desired limits. Figure 8 shows the flowchart of the proposed hybrid
algorithm to optimize our control parameters.
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The purpose of utilizing this search strategy is to ensure safe and optimal sharing of the power
between the two sides of the hybrid microgrid in terms of providing the bidirectional controller with
optimized vector-decoupled control parameters to achieve ideal converter’s operation and ensure
operation within system’s limits which are defined in our study not to exceed ±5% of the frequency,
and ±8% of the base voltage levels. The results of applying this hybrid algorithm is shown in Table 2
with the produced optimal parameters to ensure optimized damping performance. Figure 9 presents
the convergence performance of the proposed algorithm while Figure 10 shows the results for best
individual results per each of the eight variables in our study.

The searching criteria stop if any of the following conditions have been reached; (i) The hybrid
algorithm reached the maximum allowed number of iterations, (ii) Same solutions have been obtained
for a predetermined number of iterations, or (iii) Same set of solutions (by means of particles) are
found in the same solution space.

Table 2. The optimal control parameters.

Variable Obtained Optimal Value

Kp_f 1.769
Ki_f, 2856.447

Kp_vdc, 0.604
Ki_vdc, 1220.302
Kp_vac 0.025
Ki_vac 0.079
Kp_m 556.071
Ki_m 4810.291
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4. Experimental Results

To verify our proposed methodology, we demonstrate its concept via hardware-in-the-loop
testbed at the Florida International University. A MATLAB/Simulink model is built and is shown in
Figure 11. Specifically, it resembles the hybrid microgrid that consists of a synchronous generator and
programmable AC loads connected at the AC side, with a PV emulator and a lithium–ion battery to
resemble EVs activities at the DC side along with programmable DC loads. An interlinking bidirectional
converter is utilized to connect the AC/DC sides of the microgrid. Figure 12 shows the hardware
components at our testbed lab to perform this study. We set the simulation time to be 4 seconds and
applied the vector-decoupled with the optimization parameters obtained via the hybrid algorithm, as
illustrated in this work. Figures 13–15 show the results, with the output of the PV system dropping
from 0.8 to 1.5 s as a result of a hypothetical cloud-dense during a specific time of the day, as shown in
Figure 13a.
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(c) Load power.

To be able to manage such deficiencies in PV generation, the microgrid operator allows more EVs
discharging events via reduced monetary incentives to encourage the consumers to discharge during
once such situation incur at any potential time of the day, as shown in Figure 13b. In order to compensate
for any potential lack of discharging due to the randomness of consumer participation, the AC generator
increases its output to meet the remaining loads to keep the microgrid’s operation in balance. This is
demonstrated in Figure 15a and is achieved in a rapid manner to keep the system’s voltage and frequency
levels unaffected. Figures 13c and 15c present the load profiles, where considering the optimization of
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the vector-decoupled parameters, based on our hybrid algorithm, lead to more contribution from the
AC generator side. It noted that assuming coordinated large-scale participation of EVs discharging,
the stress on the synchronous generator could be furtherly alleviated. Such incorporation of EVs in the
balancing criterion could be then estimated, at the discretion of the microgrid’s tertiary control, which
eventually contribute to a smarter charging and discharging scheduling.

As noted from Figure 14a–c, the pulsed load of the DC side is energized for a total duration of
0.4 seconds between the timeslots 2 to 2.4 s, with another energized pulsed load between the timeslot
3.2 to 3.5 s. Following our proposed mechanism, the controller performs the controlling procedure
accordingly and mitigates the pulsed loads by balancing the power-sharing to a proper ratio to prevent
any potential disturbances on the microgrid operation. Specifically, the controller force reversed power
flow to the DC part of the hybrid microgrid if the DC loads are energized. Such a process is shown in
Figure 15b in the case of negative power, which is an indication of power flow from the AC part of the
grid to its DC side to compensate for the deficiency at the DC voltage level. As shown in Figure 14,
our controlling mechanism achieves stable and secure microgrid operation by acceptable variations
of the frequency and voltage levels. Although voltage variations are a bit high, we emphasize that
they remain within a safe and acceptable level of operation. Figure 15c shows the DC side voltage
level and is stable around the reference value of 400 V. As expected, variations of the generator output
lead to fluctuations of frequency levels that exceed allowable and safe limits, which could trigger the
operation of under- or over-frequency protection relays. However, these fluctuations are significantly
reduced and managed following our proposed control mechanism based on optimized parameters
using APOPSO. This shows the robustness and effectiveness of our proposed technique.Energies 2020, 13, x FOR PEER REVIEW 16 of 20 

 

 
Figure 14. (a) AC voltage (RMS value) of phase a (b) AC side frequency level (c) DC voltage level. 

 
Figure 15. Results of the AC side of the hybrid microgrid: (a) AC generator output power (b) Inverter 
power at the point of common coupling (c) Load power. 

5. Conclusion 

In this work, a metaheuristic-based vector-decoupled algorithm for hybrid microgrid energy 
control and management is proposed. The algorithm aims to ensure safe and stable power-sharing 

Figure 14. (a) AC voltage (RMS value) of phase a (b) AC side frequency level (c) DC voltage level.



Energies 2020, 13, 3423 16 of 19

Energies 2020, 13, x FOR PEER REVIEW 16 of 20 

 

 
Figure 14. (a) AC voltage (RMS value) of phase a (b) AC side frequency level (c) DC voltage level. 

 
Figure 15. Results of the AC side of the hybrid microgrid: (a) AC generator output power (b) Inverter 
power at the point of common coupling (c) Load power. 

5. Conclusion 

In this work, a metaheuristic-based vector-decoupled algorithm for hybrid microgrid energy 
control and management is proposed. The algorithm aims to ensure safe and stable power-sharing 

Figure 15. Results of the AC side of the hybrid microgrid: (a) AC generator output power (b) Inverter
power at the point of common coupling (c) Load power.

5. Conclusions

In this work, a metaheuristic-based vector-decoupled algorithm for hybrid microgrid energy
control and management is proposed. The algorithm aims to ensure safe and stable power-sharing
between the DC and AC parts of the microgrid considering variable renewable energy sources,
EV charging structure, as well as severe operational condition such as in the case of forced islanding
operation. The metaheuristic algorithm provides the interlinking converter with optimized parameters
to manage the microgrid’s operation under various load and resources conditions. mechanism enables
a smart and rapid. A hardware-in-the-loop implementation verifies and validates the proposed
technique and offer stable and robust operation even during islanding situation. Furthermore, stable
voltage and frequency levels are achieved and the power sharing between the two parts of the microgrid
is accomplished. Specifically, we assumed a reduction at the power level of the DC side due to dense
cloud in the time between 0.8s to 1.5s, as shown in Figure 13a. Accordingly, the controller requests
more energy discharge from the EVs during this period to compensate for this deficiency, as illustrated
in Figure 13b, while it allows for power sharing from the synchronous generator located at the AC side
as shown in Figure 15a to assist the deficiency in the DC side. This is pivotal in the balancing of the
operation especially in the case of insufficient participation of the EVs to discharge their energy during
the scenario of reduced PV output. It is noted from the results that this has been achieved in rapid and
robust manner without impacting the load levels. It should be noted that the parameter optimization
of the proposed hybrid algorithm allows more participation from the AC side. Since large variations in
the generator output may lead to frequency fluctuations, optimization of the parameters is required in
this work. This is achieved by optimizing those parameters using the proposed APOPSO algorithm.
As can be shown in Figure 14c, the optimized parameters reduced the fluctuations significantly in
comparison with case of non-optimized parameters. Fluctuations in the non-optimization scenario
may harm the operation of the hybrid microgrids and could trigger false operation of the over/under
frequency protection relays. The success of the hybrid algorithm in reducing the fluctuations indicate
its robustness and effectiveness in the hybrid microgrid energy management and control.

Future work is expected to incorporate algorithms that propose dynamic pricing structure to
accurately reflect the real-time energy prices as result of control activities in hybrid microgrids. Soon,
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huge participation of EVs as well as privately owned small-scale PV systems is expected, and a fair
pricing structure will be required to encourage more participation from consumers sides. The authors
of this work propose a new pricing scheme that allocates special pricing tariff on electric vehicles that
charge considering stochastic microgrids operation and energy management [33]. Furthermore, the
authors suggest that this area of research needs further investigation. Additionally, future work is also
anticipated in regard with machine learning applications in smart control of power quality problems
as a result of large adoption of EVs in hybrid microgrids. In such studies, smart control is integrated to
enhance the voltage fluctuations and harmonics as result of stochastic large-scale integration of EVs
activities on microgrids.
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Nomenclature

EV: Electric Vehicle
PSO: Particle Swarm Optimization
APO: Artificial Physics Optimization
APOPSO: Hybridization of the PSO and APO
GHG: Greenhouse Gasses
RES: Renewable Energy Sources
GUI: Graphic User Interface
IV: Current-Voltage Characteristic Curve
MPPT: Maximum Power Point Tracking
P&O: Perturbation and Observation
IL: Internal PV Current
Ipv: PV Array Output Current
IS: The Diode’s Reverse Saturation Current
Rsh: The Parallel Leakage Resistance
Rs: The Series Resistance
q: The Electron’s Charge (1.6 × 10−19 C)
KB: Boltzmann Constant (1.3806488 × 10−23 J/K)
d1: Duty Cycle Ratio of the Converter
Vpv: The Voltage Reference of the PV
VD: The Voltage of the DC Side of the Hybrid Microgrid
VT : The voltage level across the bidirectional switch.
ib: EVs Battery Current
CD : The bidirectional converter capacitance for boost mode
L, R: The bidirectional converter resistance and inductance.
idc: Current Correspondence to the DC Side
iac: Current Correspondence to the AC Side
Iq: The PI controller reference current
Fi j,k : The kth force applied on particle i via another particle j
xi,k , x j,k : The kth dimensional coordinates for swarm particles i and j
ri j, k: Distance between two coordinates
G(r): The gravitational factor
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Vi,k: The kth component of particle i ’s velocity at iteration t
xi,k: The kth component of particle i ’s distance at iteration t
Pbest: Best Local Solution for an Individual Swarm
gbest: Best Global Solution
x f , xv: Penalty factors to enforce the voltage and frequency levels
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