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Abstract: Condition monitoring for wind turbines is tailored to predict failure and aid in making
better operation and maintenance (O&M) decisions. Typically the condition monitoring approaches
are concerned with predicting the remaining useful lifetime (RUL) of assets or a component. As the
time-based measures can be rendered absolute when changing the operational set-point of a wind
turbine, we propose an alternative in a power-based condition monitoring framework for wind
turbines, i.e., the remaining power generation (RPG) before a main bearing failure. The proposed
model utilizes historic wind turbine data, from both run-to-failure and non run-to-failure turbines.
Comprised of a recurrent neural network with gated recurrent units, the model is constructed around
a censored and uncensored data-based cost function. We infer a Weibull distribution over the RPG,
which gives an operator a measure of how certain any given prediction is. As part of the model
evaluation, we present the hyper-parameter selection, as well as modeling error in detail, including
an analysis of the driving features. During the application on wind turbine main bearing failures,
we achieve prediction in the magnitude of 1 to 2 GWh before the failure. When converting to RUL
this corresponds to predicting the failure, on average, 81 days beforehand, which is comparable to
the state-of-the-art’s 94 days predictive horizon in a similar feature space.
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1. Introduction

Wind energy remains the leader in renewable energy sources with expected continued growth [1].
In order to maintain and monitor the ever-increasing fleet of wind turbines, health prognostics and
condition monitoring (CM) techniques are employed, covering abnormality detection, failure mode
tracking, and prediction [2–7] of failures in rotating parts, in particular, the main bearing. A summary of
common CM models may be found in Márquez et al. [8]. With regard to prediction, recent works have
shown predictive capabilities beyond 90 days with reasonable accuracy [3]. These approaches have
one thing in common: all perform predictions with respect to the remaining useful lifetime (RUL) and
life cycles of an asset or component. Although these aid in operation and maintenance (O&M) efforts,
they are not directly related to the physical nature of a wind turbine, i.e., power production. In terms
of O&M scheduling we will consider the following thought experiment: A predictive model, such as
Herp et al. [3,9], Teng et al. [5], or Si et al. [10] predicts a wind turbine to fail in the RUL = 36 days,
within a confidence bound. The operator is now faced with the decision when to stop operations and
when to plan maintenance tasks. This in itself is a highly complex optimization problem. However,
the RUL as such is not related to any ambient or operating conditions, thus, without further information,
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the best course of action would be to shut down the turbine and thereby extend the turbine’s RUL to
infinity, or until the socket’s or tower’s expected lifetime. In this scenario, the operator would lose all
revenue generated by that particular turbine.

To circumvent this dilemma and provide a physical measure of the remaining operation of a
failing wind turbine, we propose an approach with a focus on the remaining power generation (RPG).
We draw inspiration from Teng et al. [5] and Herp et al. [3],both of which employ a neural network
(NN) for learning dependencies between samples. While Teng et al. extrapolate and compare the
predicted values to a threshold, Herp et al. train towards a distribution and use a recurrent neural
network (RNN). We adapt the RUL prediction in Herp et al. and formulate an equivalent model
for the RPG. In Section 2 we provide an overview of the data included in this study, including a
preliminary investigation of the input feature. In Section 2.1.2 we highlight the difference between
RUL and RPG. The proposed model is explained in Section 3. Covering the fundamental assumptions
of the model, a justification of the chosen hyper-parameters is given. In addition to the loss off the
neural network, we also present an additional performance measure, an aggregated error over the
predictive distribution. In order to show the feasibility of the model, we consider a case study of main
bearing failure (Section 4). Here we show the predictive capabilities of the model and compare the
model outcome to the state-of-the-art prediction in RUL estimations, by mapping between RPG and
RUL. As of the time of writing, we are not aware of any literature addressing the remaining power
generation instead of remaining useful lifetime, and thus do not provide a comparative study. Finally,
we conclude our work in Section 5.

2. Remaining Power Generation for Main Bearing Failures

This project is concerned with the RPG of main bearing failures and limited to turbines of the
same class, i.e., three balded units composed of the same parts and rated at the same power. As such,
the amount of data available for each turbine is still beyond direct processing, thus, in order to talk
about the aim of this study, we start with an assessment of the availability of data sources and their
relevance. Alongside we provide the notation used throughout this work.

2.1. Data and Notation

All the data used in this study come from the same class of turbines and is provided by courtesy
of Siemens Gamesa Renewable Energy. The data acquired stem from three different databases:
(i) meta-data containing a damage indicator for the main bearing. It is obtained by integrating over a
frequency range of a fast Fourier transform of bearing vibration measurements to obtain a measure
of the noise floor. The damage indicator will be treated as one of the inputs to the proposed model.
These data points are event-based and contain initial detection of damage. (ii) SCADA data, sampled
at 10 min averages. (iii) Wind turbine events, e.g., warning and error messages. This database is
used to distinguish between run-to-failure wind turbines and non run-to-failure turbines. Here we
referred to run-to-failure wind turbines, as wind turbines that are operated until failure, while turbines
that are stopped by the operator before failure are referred to as non run-to-failure wind turbines.
Before data preparation, 112 wind turbines, undergoing a main bearing failure, have been acquired for
this study—31 of which are considered run-to-failure.

The SCADA data are chosen based on first principal considerations of the energy diffusion,
selecting the same features as Bach-Andersen et al. [11], while the damage indicator is chosen to be
the same as used in the study of Herp et al. [3]. After cropping the time-series at the initial damage
detection and the stopping of operation at the fault, the two data sources are merged, such that xt ∈ Rm

is a feature vector containing m features at time t. The merged time-series are re-sampled to daily
timestamps. Table 1 shows the initial range and units of the desired features.
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Table 1. SCADA and damage indicator description.

Features Range Unit

Main bearing temperature [0, 1] a.u. *
Nacelle temperature [−6, 48] ◦C
Gear oil temperature [0, 1] a.u. *
Generator revolutions [0.6, 1469.0] RPM
Power [0, 1] a.u. *
Wind speed [0.9, 19.0] m/s
Ambient temperature [−19, 31] ◦C
Damage indicator [0.0004, 0.0200] a.u. *

* Data is presented in arbitrary units (a.u.).

2.1.1. Main Bearing Features

Although NNs are capable of learning dependencies between input features, we present an
additional temperature based feature. This feature will provide a physical interpretation of what
drives the prediction in the proposed model. A simple correlation study shows, as one would expect,
that the main bearing temperature is highly correlated with other temperature measures. In order
to investigate trends and behavior of the main bearing, independent of other temperature sources,
we create time-series of the difference between the main bearing temperature and the nacelle, ambient,
and gear oil temperature, respectively. The subtraction of the ambient temperature is especially
interesting as it can influence the main bearing temperature, while vice verse seems unlikely from an
energy diffusion perspective—a high main bearing temperature does not necessarily indicate a broken
bearing if the ambient temperature is the driving factor. Figure 1 shows the time-series towards failure,
and compares them to the individual temperature measurements (dashed lines). The newly created
features are indicated by solid lines. When focusing on the main bearing time-series, no changes can
be seen towards the failure in the general trend. This can be explained by seasonal effects, since the
ambient temperature falls and skews the main bearing temperature by lowering the temperature of
the component. However, a different trend is shown when taking new features into consideration,
in particular, the ones based on the ambient and nacelle temperature. These time-series show an
increase in temperature towards the failure and indicate the progression of the fault. As the nacelle
temperature is similarly driven by the ambient temperature, we include only the difference between
the main bearing and ambient temperature as a new input feature for the proposed model.
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Figure 1. Modified main bearing features and their behavior.
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2.1.2. Target Feature

Since related studies [2–5,10,12] in health prognostics are concerned with RUL or the remaining
life-cycles of a component, we take the time to highlight the significance of the target feature presented
here, namely the remaining generated power. Figure 2 shows both the RUL and RPG as a function of
time, obtained from the SCADA data. Besides the physical relation to wind turbine operations, RPG
and RUL are especially distinguishable in their time-series properties, when compared across other
wind turbines. When comparing the RUL of all turbines (Figure 2a), it does not come as a surprise
that the rate of which the RUL is decreased is the same for all turbines—since time is linear, only a
linear relation can be expected. This makes the RUL a less favorable target feature for a predictive
model, since any two turbines with equal RUL can have widely different RPGs, which can be seen
by comparing Figuer 2b,c. When aligning the RPG with the end of each time-series, it can be seen
that the rate by which the RPG is depleted towards failure, changes from one wind turbine to another.
This can be explained by seasonal and local weather patterns characterizing each site, which result in
different ambient conditions of the wind turbine. These local perturbations consequently lead to more
variability in the target feature space.

As we later on will distinguish between run-to-failure and non run-to-failure wind turbines,
run-to-failure wind turbines are indicated by dashed lines. In comparison to non run-to-failure wind
turbines, they are spanning over a wide range of trends and absolute RPG, allowing the proposed
model to cover a variety of different scenarios.
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(a) Remaining useful lifetime (RUL)
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Figure 2. Target feature visualization.

3. Predictive Modeling of Remaining Power Generation

We facilitate the prediction of the RPG in the setting of survival analysis [13], with censoring
as a key concept. In short, the concept of censoring is that the time-series ends before the desired
event. More specifically, we distinguish between right-censored data, such that the RPG is known to
be above some time t, and non-censored data, when the RPG equals the current time. The hazard (rate
of change of RPG towards failure) expressed at the current time, can be written as a hazard function
η(t) and cumulative hazard function H(t). For a positive random variable RPG, it follows [13] for the
cumulative distribution:

F(RPG ≤ t) = 1− exp
(
−
∫ t

0
η(ω)dω

)
= 1− e−H(t), (1)

and for the probability density function:

P(t) = ∂

∂t
P(RPG ≤ t) =

∂

∂t
(1− e−H(t))

=e−H(t)η(t). (2)
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Furthermore, for each cumulative distribution function, P(RPG ≤ t) there exists H(t) such that
H(t) = − log(1− P(RPG ≤ t)). Large values of the hazard function are an indication of a high risk of
failure, i.e., vanishing RPG. In the remainder of this study we are concerned with the right tail of the
RPG distribution:

P(t < RPG) = 1− P(RPG ≤ t) = e−H(t). (3)

Combining both the censored and non-censored data, the likelihood function for the RPG in terms
of non run-to-failure (C censored) and run-to-failure (F non-censored) wind turbines can be written as:

L = ∏
f∈F

P(t f ) ∏
c∈C

P(RPG > tc). (4)

Following Patti et al. [14], and introducing ∆ as a health indicator, such that ∆ = 0 indicates an
observed failure, and ∆ = 1 otherwise, the likelihood reads:

L =P(t)∆P(RPG > t)1−∆ = η(t)∆e−H(t). (5)

It follows that the log likelihood is given by:

logL = ∆ log η(t)− H(t). (6)

Equation (6) becomes the basis for the cost function of the RNN proposed later on. Here η and H
can be obtained through the Equations (1) and (2) when choosing an appropriate distribution. In this
study, following common practice in survival analysis [13] and its use in RUL estimation for main
bearing failure in wind turbines [3], we chose the Weibull distribution for its versatile properties:

f (RPG) =
α

β

(
RPG

β

)α−1
exp

(
−
(

RPG
β

)α)
(7)

F(RPG) =1− exp
(
−
(

RPG
β

)α)
, (8)

where α ∈]0, ∞) is the distributions shape parameter, and β ∈]0, ∞) its scale.
We will focus on RNNs with gated recurrent units (GRUs), letting the Weibull distribution be

parameterized by θ = [α, β]>. Omitting mathematical details, for which the interested reader is
referred to textbooks, such as Goodfellow et al. [15], the parametrization is obtained by the RNN
mapping m(·) of the current data xt, NN weights θ, and former layer output ot−1:

θ = m(xt, ot−1, ω). (9)

Combining Equations (6) with the hazard and cumulative hazard function of Equations (7) and
(8) with the RNN, the problem to solve is the following:

arg max
ω

logL(ω, RPG, ∆, x[1,t]) =
t

∑
i=1

(
∆i

[
αi log

(
RPG

βi

)
+ log(αi)− log(RPG)

]
−
(

RPG
βi

)αi
)

. (10)

Model Optimization

The training and validation data for the proposed model are split 0.75/0.25 into sets of full turbine
time-series. Besides the regular techniques for model evaluation through the loss function of the RNN
model, we propose an error measure of the prediction itself with respect to the true remaining power
generation, ˆRPG. As the estimated RPG comes in terms of a parameterization of a probability function,
the error will be a modification of the | · |`=1 norm between RPG and ˆRPG, such that:
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E(t | θ) =E(t | α, β)

=
∫ ∞

0
|RPG− ˆRPG|1P(RPG | α, β)dRPG. (11)

Based on the validation loss, we optimized the topology of the RNN by exploring the depth
and width as listed in Table 2. Based on this investigation, the topology was fixed to two layers of
75 GRU nodes. The remaining hyper-parameters were set in accordance with general practice [16]:
The dropout rate after each GRU layer was 20%, the batch size was 128 samples, and the learning rate
was initialized at 0.0001. Where the dropout rate was selected by a discreet uniform search on [0, 40]%
dropout rates, see Table 3 for the loss values of the RNN.

Table 2. Topology optimization in terms of loss.

Depth

1 2 3 4

Width

12 0.078 0.081 0.080 0.72
25 0.077 0.071 0.073 0.070
50 0.074 0.072 0.069 0.075
75 0.070 0.068 0.068 0.071
100 0.072 0.070 0.069 0.071

Table 3. Dropout optimization in terms of loss for the optimal network of Table 2.

Avg. E (RPG) Epoch at Min E (RPG)

Dropout Rate

0% 1.9 GWh 131
10% 0.9 GWh 145
20% 0.6 GWh 242
30% 0.9 GWh 238
40% 1.1 GWh 226

In addition, we investigated the dependency of the sequence slicing for the input of the RNN.
Changing the sequence length from 2 to 30 days, we evaluated the optimal sequence length by
minimizing the error presented in Equation (11). Figure 3 shows the predictive error as a function of
the true RPG. Despite all sequence lengths performing with a similar error, it can be noticed that a
sequence length of 10 days yielded the best results in terms of predictive error and variability. Sequence
slicing beyond 10 days did not improve the predictive error and became increasingly computationally
expensive when averaging over all turbines. The proposed model thus captured up to weekly dynamics
in each sequence.
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Figure 3. Sequence length optimization in terms of model error for one wind turbine.
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4. Bearing Failure Study

The final model for this study is illustrated in Figure 4. After training, the model was applied
to the remaining run-to-failure wind turbines. Figure 5 shows a common RPG prediction pattern in
Figure 5a and a fast developing fault in Figure 5b. The first mentioned shows prediction in agreement
with the expected RPG up to 60 days before the failure. Considering only the damage indicator, it is
evident that predictions beyond 60 days for this particular wind turbine were difficult, since there
was no evidence for robust estimations. As more data became available, and the closer the wind
turbine was to failure, the predictions became more and more accurate. Consequently, the confidence
bound around the prediction became narrow, which is indicated by the shaded area. In comparison to
point-wise estimates, this shows why predicting a distribution is an advantage; it provides an operator
with a measure of how reliable the predictions are.
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Figure 4. Model illustration.

While the behavior shown in Figure 5a can be observed for most turbines, Figure 5b serves as an
example of how the model performs when encountering unforeseen events. The predictions of the
RPG were off by 2 to 3 GWh for most of the duration of the failure process, only converging in the
last couple of days. This behavior arose from a lack of fast-developing faults in the training data set,
biasing the model towards more common failure patterns. As the damage indicator did not pick up
prior to 20 days before the failure, the model had no indication that allowed it to converge towards a
prediction. This opens up for a discussion on what are the driving features behind the model. We will
address this in the next section.
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(a) Common RPG prediction pattern.
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(b) Turbine that undergoes a fast failure.
Figure 5. RPG prediction.

In order to reduce good and bad predictions by chance, we investigated the ensemble performance
of the proposed model by means of a five-fold cross-validation approach to see how the models
performed on different test data. We illustrated this by considering one test turbine for all folds. Figure 6
shows the predictive error, where all folds started with different initial values, but they nevertheless
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converged rapidly towards accurate predictions at the 2 GWh mark before failure. From here on, they
showed identical behavior providing consistent and increasingly accurate results. When averaging
over all test wind turbines and folds, predictions became accurate at 1.8 GWh (The averaged prediction
for all folds are shown in Table 4). For now, this provides the upper bound of what the proposed model
is capable of predicting.
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Figure 6. Predictive five-fold error for one wind turbine.

Table 4. Prediction horizon per fold.

Avg. Prediction [GWh] Variance [GWh] min and max [GWh]

Fold

1 1.9 0.4 [2.6, 0.5]
2 1.6 0.3 [2.0, 0.6]
3 1.8 0.3 [2.2, 0.5]
4 2.0 0.4 [2.6, 1.0]
5 1.7 0.2 [2.1, 0.7]

4.1. Feature Importance

As mentioned earlier, when the proposed model did not have sufficient information from the
input feature space, predictions could not be considered accurate (See confidence bound in Figure 5).
We again chose the turbine in Figure 5a to be representative of common fault behavior patterns. Further,
we constrained the time scale under investigation to 120 days before the fault. Figure 7 shows relation
between individual features and predictions. For illustrative purposes, the features were normalized
individually, thus two equal values between features did not imply equal measurement in the feature
space. However, the true RPG and mode of the predicted RPG were scaled to ensure direct comparison
and maintain their relations as shown in Figure 5a.

The impact on the predictive capabilities of the proposed models from temperature measurements
and the damage indicator is shown in Figure 7a. For the first 50 days neither the main bearing
temperature, the difference between the main bearing temperature and the ambient temperature,
nor the damage indicate suggested any abnormality. On this scale, the predictions of the proposed
model were misaligned with the true RPG. After 50 days, features rapidly picked up, most notably
the temperature based features to begin with. In this time period, the predicted RPG was getting in
alignment with the true RPG. After further 20 days, the initial increase in the features was replaced
by variations around some asymptote. As the predicted RPG remained to follow the true RPG, other
features must drive the predictive behavior. Next, we took the generator revolution into account.
Figure 7b contains the main bearing temperature, generator revolution, and their difference. When
passing the 60-day mark before failure, the generator revolution had yet to show significant changes,
and it was first in the remaining 20 days that changes could be observed. This change, though, did
not show any trend. This changed when comparing the generator revolution with the main bearing
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temperature, from 40 days before the fault, and onwards, a steady increase of the combined feature
could be observed. This is believed to drive predictions towards the end of the wind turbines RPG.

Summarizing the trends of Figure 7, the damage indicator was driving most of the prediction at
the beginning of the fault, while temperature measurements aided in forcing the predictions to more
accurate predictions. 20 to 30 days before the wind turbine failure, a combination of temperature and
rotational features (i.e., generator revolution) seemed to drive predictions. In the case of fast-developing
faults, such as shown in Figure 5b, none of the presented trends could be found. Thus, the model did
not indicate that the wind turbine should undergo any state changes.
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(a) Impact of temperature and damage indicator.
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Figure 7. Relations between feature space and predictions for the same turbine as in Figure 5a.

4.2. Ties to Remaining Useful Lifetime

As of the time of writing, we are not aware of any work addressing the prediction of RPG or similar.
To compare the model to other approaches, we dedicate this section to explore the mapping from RPG
to RUL and comparing the results to RUL prediction when employing the model by Herp et al. [3].
The mapping to RUL was done individually for each wind turbine. This was achieved by including
how much power a wind turbine produced since the beginning of the time-series. Alternatively, one
could fix an interval, e.g., 90 days before the current timestamp. Depending on the length of the
interval, seasonal effects could be covered. The rate of power remaining could then be defined over a
time ∆t:

r =
∆t
P

[
Days
GWh

]
. (12)

It follows that the mapping from RPG to RUL is given by:

RUL = rRPG. (13)

Figure 8 shows the mapped RUL from the RPG displayed in Figure 5a. The RUL median and
mode, mapped from the RPG median and mode, showed accurate prediction around 60 days before
the failure, slightly underestimating the RUL compared to the true RUL. Mapping RPG to RUL for
other turbines that were representative for the common fault behavior, systematically underestimate
the RUL, averaging 81 days, over the internal 50 to 100 days. Comparing to Herp et al. [3] average
predictions of 94 days, this approach fell short of 13 days.
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Figure 8. Mapping between RPG and RUL for the same turbine as in Figure 5a.

5. Conclusions

The purpose of this work was to create and motivate a model capable of predicting the remaining
power generation (RPG) with application in wind turbine bearing failure. Furthermore, we have
pointed out the similarities and differences between the RUL and the RPG. We have provided a
description of the underlying model and how to tune its hyper-parameters. In the implementation
of main bearing failure, we archived predictive horizons in the order of 1 to 2 GWh. In a five-fold
cross-validation over multiple turbines, we showed that predictions become accurate at an upper
bound of 1.8 GWh.

When converting RPG to RUL, we achieved predictive horizons of 50 to 100 days, averaging 81
days overall wind turbines. For a preliminary conversion, we consider this a satisfying result as the
state-of-the-art [3] reports 94 days, on average.

During the course of this work, it becomes apparent that future research can follow up on the
feature space presented, filtering or identifying more driving features that eventually will foster better
predictions. Besides, as the proposed model performs differently on individual turbines with different
failure behavior, one could consider following Aggarwal et al. [17] in allowing classification into
different failure modes as en additional output of the RNN.
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