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Abstract: The process of biomass compaction depends on many factors, related to material and process.
One of the most important is the proper fragmentation of the raw material. In most cases, more
fragmented raw material makes it easier to achieve the desired quality parameters of pellets or
briquettes. While the chipping of biomass prefers moist materials, for grinding, the material needs
to be dried. As drying temperature changes the properties of the material, these may affect the
grinding process. The aim of this work was to determine the influence of the drying temperature
of biomass raw material in the range of 60–140 ◦C on the biomass grindability. To only determine
this effect, without the influence of moisture, grinding was carried out on the material in a dry state.
The research was carried out on a mill with a knife and hammer grinding system, which is the most
popular in the fragmentation of biomass. The analysis of particle size distribution and bulk density of
the obtained material was carried out. The energy demand for the grinding process was determined
and it was shown that drying temperature, grinding system, and mainly type of biomass affects
the grindability.

Keywords: bulk density; particle size distribution; energy demand; Scots pine; European beech;
Cup plant; Giant miscanthus

1. Introduction

Biomass, regardless of origin and source (woody, herbaceous, fruit or water) [1], from a chemical
point of view, consists of three main components: cellulose, hemicellulose, and lignin. Thus, this
kind of biomass is called lignocellulose biomass [2,3], and contains about 50% of carbon and about
6–8% hydrogen [4–6]. This is the main reason why it is mainly used as a biofuel [7]. From the
point of view of the energy use of biomass, most of the energy accumulated in a given biomass is
found in cellulose, hemicellulose, and lignin. Separately, the heat of combustion for cellulose and
hemicellulose are similar: 17.6 and 17.9 MJ·kg−1 [4], respectively. Lignin heat of combustion is higher
and depends on the type of biomass: lignins from spruce and beech, but also from olive pomace,
walnut, and hazelnut shells, have 27–28 MJ·kg−1 [8,9]. Therefore, the biomass heat of combustion is
determined by the proportion of lignin in relation to holocellulose, however, despite the different levels
of lignin, cellulose, and hemicellulose in biomass [10–13], the biomass heat of combustion has a narrow
range of 18–22 MJ·kg−1 [14,15].

This energy homogeneity means that biomass from a wide range of sources is taken into account as
raw material for the production of solid biofuels. These include coniferous and deciduous woods [16–18],
different species of grasses [19–21], and dicotyledonous perennials [22–24] as well as straw. Recently,
more popular are shells, stones, husks, pomaces [25–27], and aquatic biomass [28,29].
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Therefore, biomass as a raw material for the production of solid biofuels is characterized by a
very high diversity of physical properties such as moisture content just after harvest, specific and
bulk density, or form. This heterogeneous raw material must be processed into a product that has
a uniform quality. Only standardized quality fuel allows for the combustion process to be properly
conducted [30] and allows for automation of the feeding and burning process, which is a standard in
current modern heating systems [31].

In order to obtain a high quality final product in the form of pellets or briquettes, it is very
important that the preparation of the raw material is carried out properly. The biomass during harvest
usually has two disadvantages: high moisture content (MC) and a low degree of fragmentation (shoots,
chips, chipped straw, etc.). For example, the wood moisture content of different cultivars of poplar
vary from 54% to 62% [32], willow from 48–59% [33], MC of lawn grass was 39% [34], miscanthus was
22.5% [35], perennials like Cup plant, Virginia mallow, or willowleaf sunflower of 22, 26, and 38%,
respectively [36], cherry stones up 28.6 to 36.5% [37], and hazelnut shells have on average 6% [38].
Biomass raw materials have low specific densities, grasses about 40 to 150 kg/m3, and woodchips
about 150 to 200 kg/m3 [39,40].

These properties of the raw material do not allow for its direct processing in a pressure
agglomeration into pellets or briquettes. Two stages are therefore necessary to prepare the raw
material properly: drying and grinding afterward. The order of these steps is important because
the grinding process is more efficient when the material is dry, where a humidity of less than 15% is
recommended [41,42].

The drying process is designed to bring the material to the technological moisture content.
This value depends on the type of raw material and parameters of the densification process and
should be between 6–17% [40,43–45]. However, most often, it is considered that the optimum MC
for the pressure process of a biomass agglomeration is 12% [46,47], or even 10% [48]. The drying
process is carried out by temperature from a wide range 40–200 ◦C or even more [49–52] however,
due to the low ignition temperature of biomass, which on average is 250 ◦C, with great caution [53].
Biomass components, due the temperature, can be transformed [54–56]. High temperature in the
150–300 ◦C range used in the torrefaction process improves the raw material grindability [57–60].
An open question exists whether this effect is caused by drying in the lower temperature range up
to 150 ◦C.

The grinding process is designed to prepare the raw material with the appropriate degree of
fragmentation and particle composition for the process of pressure agglomeration. In this process,
the particles of ground raw material, due the pressure, merge to form an agglomerate. By reducing
the volume of the compacted material, in the first stage, the material particles are rearranged and
aligned without changing their shape and size and the number of contact points between the material
particles increases. In the second stage, the pressure increases, causing particle deformation and
size change. The brittle particles break, which results in an increase in the number of contact points and
the elastic particles deform, as a result of which the contact points turn into contact surfaces [39,61–63].

The pressure compaction of the ground, granular material causes particle movement and deformation.
This is also accompanied by friction, which increases the temperature, making the particles more
plastic [64–66]. As a result, in the initial phase, the particles approach each other and meet at
contact points which, after deformation, form contact surfaces. All mechanisms of particle connection
occur precisely at the contact points and surfaces between the particles [67,68]. Therefore, from the
agglomeration point of view, it is extremely important to maximize the number of particle contact
points. This maximization takes place during the agglomeration process, but it can also be increased by
the appropriate preparation of the raw material, the appropriate degree of fragmentation and particle
size distribution of the obtained mixture of particles. The raw material degree of fragmentation is most
often determined by the mesh size of the screen used in the grinding device. This size determines
the maximum particle size, but smaller particles are also produced during grinding. The share of
individual size fractions of particles in the whole ground material is defined as the particle size
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distribution (PSD). The biomass for the production of solid biofuels, it is tested based on the EN ISO
17827 standard [69]. Commonly, it is presented in the form of the percentage share of each dimensional
fraction in the whole bed or in the form of the cumulative distribution curve of particle size, the sum
of dimensional fractions remaining on subsequent sieves. The second method allows for a simple
comparison of the ground materials and an indication of which of them has a higher share of fine
fractions, and thus which of them have been grounded more. To complete the information about
particle size distribution, the median value of grain size d50 is calculated and defined as the sample
particle size, which divides the cumulative distribution curve into two equal parts.

Particle size distribution depends on the origin of the raw material [48,70,71] as well as on
the grinding technique [44,72]. In their research, Kirsten et al. ground hay on a cutting, impact,
and hammer mill equipped with a 4 mm diameter sieve. In addition, the mills worked with and
without an aspiration system to improve material flow through the mill. In each grinding variant,
the produced mixture had a different PSD [72]. Puig-Arnavat et al. ground six types of biomass on a
mill equipped with a 4 mm sieve, and despite the same grinding process conditions, each material had
a different cumulative article size distribution (cPSD) [48].

The raw material degree of fragmentation has a direct and significant impact on what is produced
from the granulate quality. In general, with the increase in raw material fragmentation and the following
changes in PSD (decrease in the value of d50), the granules’ density and mechanical durability increases.
This trend is confirmed both by our own research [73,74] and also by other authors [75–81].

It is recommended that the material for pellet production should be ground using a maximum
of 4 mm mesh screen [45,82,83], whereas the recommended median particle size d50 to obtain a high
pellet strength is 0.6–0.8 mm [84], 0.5–0.7 mm [85], or even 0.2–0.4 mm [77].

The results of other studies [72,75] also indicates that not always a high degree of fragmentation
guarantees higher quality granules. Bergstrom et al. noted that a material consisting of 100% of
particles not exceeding 1 mm did not guarantee a granulate with a higher strength compared to a
granulate made from a material where the main particle size was 4 mm and less. This is due to the
bulk density (BD) of the material. Deposits made of particles with a narrow dimensional range are
characterized by a lower value of BD in comparison with those with a wider dimensional range.
Therefore, the criterion of proper grindability may be not only the PSD, but also a high value of BD of
the obtained mixture [86]. Biomass grindability is a relatively new issue. To determine the grindability
of torrefied biomass, methods used for coal are often adapted, for example, the Hardgrove Grindability
Index (HGI) or Bond Work Index (BWI) [87–90]. However, even after their modification by grinding
a 50 cm3 sample instead of a 50 g sample [87], it is claimed that these indicators are not sufficiently
accurate, especially when applied to untreated biomass [88]. Grindability is also described as the
degree of change in PSD, d50, or the width of the particle size distribution called SPAN. These ratings
provide for the highest possible fragmentation and unification of the particle, thus minimizing d50 and
SPAN [87,91–94]. Such an assumption is rational from the point of view of the combustion process of
pulverized fuel, but not necessary from the point of view of the compaction process. In fact, there is no
good indicator of the grindability for biomass intended for the production of solid biofuels [87,88].

The grindability is influenced by both the type of material and the way the grinding process is
conducted. However, there have been no studies on whether and how the drying process temperature
affects grindability including are there any changes in the material, which at the grinding stage will
be reflected in changes in the obtained material particle size composition or bulk density, and the
effort required for the process. If the drying process allows for better grinding, it would be very
important information in the development of dedicated process technologies for the production of
solid biofuels from various types of biomass. Data on raw material parameters determine the selection
of technological parameters of the designed granulate production lines [95–98]. The aim of this study
was to investigate the effect of drying temperature on the selected biomass grindability and the energy
input for the process. Biomass chosen in this study represents a wide range of raw materials used for
the production of solid biofuels (i.e., woody and herbaceous biomass).
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2. Materials and Methods

2.1. Materials

Biomass for energy purposes can have different origins and sources [1]. Due to the availability
of this material, the most common energy raw material in Poland is woody biomass. However, the
increasing demand for biomass has created the need to search for new sources of raw material for the
production of solid biofuels. Therefore, short rotation coppices (herbaceous biomass) have become more
and more popular in the energy mix. Four plant species with significantly different physical properties
were used: Scots pine Pinus sylvestris L. (soft wood) and European beech Fagus sylvatica L. (hard wood)
as representatives of woody biomass, and Cup plant Silphium perfoliatum L. (dicotyledonous perennial)
with Giant miscanthus Miscanthus × giganteus Greef et Deu (perenial grass) as a herbaceous biomass.

All material was collected after the 2019 growth season, the woody biomass was debarked, then all
samples was chipped.

2.2. Drying

A sieve shaker (LPzE-4e, Morek Multiserw, Marcyporęba, Poland) with a 400 mm diameter
analytical sieve set with hole sizes of 16 and 8 mm (Morek Multiserw, Marcyporęba, Poland) was used
to prepare the sample before drying, which allowed for a geometrically uniform sample. Dried was
the particle size fraction that passed through the 16 mm hole size sieve and remained in the 8 mm hole
size sieve (A1 sieve class in which the particle diameter d is in the range from 8 to 16 mm). Samples of
each investigated biomass were divided into three subsamples and dried at the temperatures of 60,
100, and 140 ◦C to the dry state. The drying process was conducted in a laboratory dryer (SLW 115,
Pol-Eko, Wodzisław Śląski, Poland). To determine this effect on grindability, without the influence of
moisture content, further experiments were carried out on the material in a dry state.

2.3. Solid Density of Samples

After drying and cooling the samples, their solid density DE was measured using a quasi-fluid
pycnometer (GeoPyc 1360, Micromeritics Instrument Corp., Norcross, GA, USA), the details of which
are described in previous work [32]. The measurement was aimed at determining whether the drying
temperature affects the DE value. The received results, together with the bulk density BD, were used
to calculate the bed packing density ϕ.

2.4. Grinding—Preliminary Stage

The grinding process was carried out with a preliminary and main stage. First, sieve class A1 of
all materials was ground in a knife mill equipped with a sieve with a 6 mm hole diameter (Testchem
LMN-100, Pszów, Poland).

For each gained material, a particle analysis was performed. The determination was carried out
in accordance with EN ISO 17827-2 [99]. Each sample was sieved using a sieve set with hole size 6;
3.15; 2; 1.4 1; 0.5; 0.25 mm, and shaker (LPzE-4e, Morek Multiserw, Marcyporęba, Poland). Finally the
material samples were divided into eight sieve classes (Table 1).

Table 1. Sieve classes of material samples.

Sieve Classes (mm) B1:0.25 B2:0.5 B3:1 B4:1.4 B5:2 B6:3.15 B7:6 B8:+6

Particle Diameter d (mm) d ≤ 0.25 0.25 < d ≤ 0.5 0.5 < d ≤ 1 1 < d ≤ 1.4 1.4 < d ≤ 2 2 < d ≤ 3.15 3.15 < d ≤ 6 d > 6

The samples’ particle size distribution (PSD) varied significantly (Figure 1). This is mainly
due to the different shapes of the ground fragments of steams (Miscanthus and Silphium) and
chips (woody biomass). Before the main grinding stage, the PSD of all samples was standardized.
This allowed us to avoid the influence of different input PSD on the output PSD.
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Figure 1. The samples’ particle size distribution after the preliminary grinding stage.

The standardized PSD included fractions B3, B4, and B5 that had the largest share in the PSD of
individual samples, especially woody biomass samples. The B6, B7, and B8 fractions were omitted
to prevent the large particles from causing disruption during the main grinding stage. Additionally,
fractions B1 and B2 were omitted to ensure that fine particles were not only ballast during grinding.
Table 2 contains the standardized PSD of all samples.

Table 2. Standardized particle size distribution of the samples.

Sieve Classes (mm) B3:1 B4:1.4 B5:2 d50 (mm)

Share (%) 43 26 31 1.09

Finally, samples were made by mixing the B3–B5 fractions in appropriate proportions and their
bulk density (BD) was determined according to the current version of the EN ISO 17,828 standard [100].

2.5. Grinding—Main Stage

All prepared samples were ground in a mill (PX-MFC 90D Polymix, Kinematika, Luzern,
Switzerland) to obtain particles with a size of <2 mm. Two grinding technique was investigated:
hammer and knife grinding (Figure 2)

During the grinding process, the device was connected to the network through the ND1 energy
quality measurement system (Lumel, Zielona Góra, Poland). The device measures the changes in the
electric current value. Based on this, knowing the registration interval, the total energy consumption can
be calculated. The volume of material ground during a single grinding cycle was 250 cm3. The sample
to the mill was fed periodically in the amount of 25 cm3. The whole procedure was performed three
times to eliminate the coarse measurement errors. Before milling, the idle energy demand needs to
be measured. This is the energy needed to run the grinder without material in the chamber. As usual,
we measured the electric current for 60 s work time of the empty grinder. We measured this parameter
for both grinding systems. An average value was the reference point for net energy demand estimation,
and it was also the point at which we stopped milling.
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The specific net energy demands (Enet.s) were calculated according to the mass of the sample that
was milled.

Enet.s =
Enet

mi
(1)

where Enet is net energy demand and m I is sample mass.
Usage of different materials requires special quantities to compare the energy demands. In the case

of grinding, it is useful to know how much of the energy is used to produce the most important fraction.
In our case, one very interesting parameter would be the grinding criterion first introduced by
Sokolowski [92,101], which was initially used for flour production processes. This quantity is described
in Equation (2)

G0.25 =
Enet.s

S0.25
(2)

where G0.25 is the grinding criterion and S0.25 is the cumulated share of C0.25 fraction.
After grinding, the samples’ PSD was again determined. This time, the samples were divided into

seven sieve classes: C1: 0.1 is the particle diameter d ≤ 0.1 mm; C2: 0.25 is the particle diameter between
0.1 < d ≤ 0.25 mm; C3: 0.5–0.25 < d ≤ 0.5 mm; C4: 0.71–0.5 < d ≤ 0.71 mm; C5: 1–0.71 < d ≤ 1 mm;
C6: 1.4–1 < d ≤ 1.4 mm; and C7: 2–1.4 < d ≤ 2 mm. Based on the received data, the cumulative PSD
of the samples was determined. Then, the median value of particle size d50, which clearly shows a
difference between samples fragmentation, was determined from Equation (3).

d50 = C<50 + (50− S<50)·
C>50 −C<50

S>50 − S<50
(3)

where S<50 is the highest cumulated share of the fraction not exceeding 50%; S>50 is the lowest
cumulated share of fraction, exceeding 50%; C<50 is the sieve class corresponding to S<50; and C>50 is
the sieve class corresponding to S>50.

An important indicator of the homogeneity of the mixtures is the width of the distribution SPAN
and dimensionless relative SPAN [102,103]. SPAN is defined as the difference between d90 and d10,
where d90 means that 90% of the mixture particle have a diameter equal or less than d90, respectively;
and d10 is the 10% of particles that have a diameter equal or below d10. Relative SPAN was calculated
from Equation (4):

rSPAN =
d90 − d10

d50
(4)
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After grinding, the BD of samples was also determined. Based on the results of measurements of
DE and BD from Equation (5), the bed packing density ϕ was determined for samples before and after
the main grinding stage.

ϕ =
BD
DE

(5)

where BD is the sample bulk density [kg/m3] and DE is the solid density of the sample [kg/m3].

3. Results and Discussion

3.1. Grindability in Aspect of Particle Size Distribution Changes

Figures 3 and 4 show the cumulative PSD (cPSD) for knife and hammer system, respectively.
Horizontal red and seledite lines indicate threshold levels d10, d50, and d90. In the case of the knife system,
the greatest differences in cumulative curves are for Pinus. The cross-section with threshold lines
indicate a decrease in d10, d50, and d90 as the drying temperature of the raw material increases. The curve
moves to the left, which means that the material fragmentation increases. A similar trend was observed
for Silphium for d10 and d50. The values of d90 were similar for each temperature variant. The opposite
trend was observed for Miscanthus. The d90 value dropped as the drying temperature of the raw
material increased. In the case of Fagus, the values d10, d50, and d90 changed slightly.

In the case of the hammer system, for most materials, a slightly different course of changes was
observed (Figure 4). Accumulated curves of Pinus and Silphium showed minor changes compared
to those milled with the knife system. Fagus, as for the knife system, did not show grindability
dependence on drying temperature. The most significant changes for all d were observed for Miscanthus.
Observed changes in cPSD indicate that an increase in drying temperature affects noticeable grindability.
This is in line with the common trend observed for biomass [87,89,91]. This is probably because a
drying temperature above 100 ◦C causes structural changes of biomass, which makes it more fragile.Energies 2020, 13, x FOR PEER REVIEW 8 of 22 
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milling system.

Figure 5 presents a comparison of the d50 analysis of all samples. In general, the lowest values of
this parameter were for Miscanthus. This indicates that this material, during milling, produces the
majority of fine particles (mean value of d50 of all samples is 0.34 mm). Slightly coarser particles would
be obtained for Pinus and Silphium (d50—0.39 mm) and for Fagus (d50—0.44 mm). Comparing the
milling systems in most cases, the sample ground on the hammer system had a lower d50 compared to
that milled on the knife system. The only exception was Miscanthus dried at 60 ◦C, where the trend
was reversed. A similar trend was observed by Kirsten et al. by studying grass (hay) grindability [72].
The greatest differences in d50 values caused by the milling system type were observed for biomass dried
at 60 ◦C. The increase in drying temperature resulted in a decrease between d50 values. The exception
was once again Miscanthus, this time dried at 140 ◦C. The influence of drying temperature on
grindability is clear for Pinus, Silphium (independently of milling systems), and Miscanthus milled
with a hammer system. Grindability increases (d50 value decrease) as the drying temperature increases.
In other cases, the changes were less intense. Among the tested samples, the best grindability was
recorded for Miscanthus dried at 140 ◦C and milled on the hammer system (value d50 of 0.3 mm).
The worst was acquired for Fagus at 60 ◦C with the knife system (d50 of 0.46 mm). This can be explained
by the origin of the biomass. Fagus is a hard wood material with high solid density (0.66 g/cm3) and
Miscanthus grass has a value of 0.37 g/cm3. Pinus as a soft wood material has a grindability between
Fagus and Miscanthus (DE = 0.51 g/cm3). For these materials, the assumption that higher DE values
causes a decrease in grindability is valid. In the case of Silphium, the grindability was at the Pinus
level even though the DE was only 0.22 g/cm3. Solid density of Sylphium was lower than the value
for Miscanthus, which is why the grindability of these materials is not comparable. This is probably
due to the structure of Sylphium, which has a light, spongy core inside that is not very susceptible
to grinding. In the cases studied, the appropriate fineness was obtained, defined by the value of d50,
which is required for pellet production. It is recommended that it is 0.6–0.8 mm [84], 0.5–0.7 mm [85],
or even 0.2–0.4 mm [77].
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should be particles with a wide dimensional range so that large particles would form a skeleton of 
the agglomerate and its fine filling [75,104,105]. Therefore, it would be necessary to determine what 

Figure 5. Ground materials’ median value of particle size d50, where B is the hammer milling system,
and N is the knife milling system.

SPAN (Figure 6) is a very useful quantity when we want to take into account the changes in values
of d10 and d90. The values obtained inform us on how broad the difference is in the dimensions of 80%
of particles in the sample. A smaller value means a greater dimensional uniformity of the material.
The Fagus is characterized by the highest SPAN values (average 0.65 mm). Pinus and Silphium had
values of 0.53 mm and 0.48 mm, respectively, while Miscanthus had a value of 0.43 mm. In our case,
the woody biomass did not show dependence on the milling system as well as on temperature, with an
exception for Fagus dried at 100 ◦C and milled on a knife system. In the case of Silphium, especially in
the knife system, SPAN value increased with the drying temperature, which means that the uniformity
of particle size decreases. The greatest variation was found in Miscanthus samples. The material dried
at 100 ◦C, the knife and hammer system, and the 60 ◦C hammer system achieved a SPAN value of about
0.46 mm, while the other variants achieved an average of 0.38 mm. This information is important from
the point of view of further use of the ground material. If the material is to be used for combustion or
fertilizer purposes, its dimensional uniformity is important, so a minimum SPAN value [42,87]. In the
case of the pressure compaction of biomass, dimensional homogeneity is not always recommended,
and it is often stressed that in a decaying material there should be particles with a wide dimensional
range so that large particles would form a skeleton of the agglomerate and its fine filling [75,104,105].
Therefore, it would be necessary to determine what SPAN value is optimal for biomass compaction
processes and assess the ground material from this angle.
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The SPAN does not carry information about the grinding process, only about the dimensional
homogeneity in the sample. To take d50 into account, rSPAN is used. The obtained values of this
parameter are shown in Figure 7. If d50 drops and SPAN is constant, the rSPAN rises (Pinus), as d50 takes
comparable values and SPAN rises, then rSPAN also rises (Miscanthus ground with knife system at 60
and 100 ◦C). Therefore, due to the different nature of the change in d50 and SPAN values, the resulting
rSPAN does not give a clear indication of the change in particle size and homogeneity.
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milling system.

As none of the presented parameters gives clear feedback about milling quality, it is good way to
provide a more complex form of data presentation. The d50, d10, and d90 should be taken into account
in this assessment. Therefore, we decided to present the results obtained by combining the SPAN
with d50 and the mean particle size (Figure 8) in an innovative way. The graph shows the value of
SPAN (box height) and also contains information about the upper and lower dimensions of grain up to
d10 and d90 from which it is calculated. Thanks to this, it is possible to compare the materials tested
and also indicate which of them (despite the same SPAN value) had a larger or smaller grain size.
The bars also contain information about the average grain size of 80% of the milled sample. Indication
of the position of d50 in relation to the average value indicates whether 50% of grains had a smaller
or comparable size to davg. Such a presentation of the results allows for unambiguous comparison of
the tested materials and indicates which of them is characterized by better grindability. If we know
the value of d50 of the material before milling, we can determine the relative grain reduction. In the
presented study, the initial d50 of all materials was the same, so the relative grain reduction and d50

carries similar information and was not presented in the paper.
By analyzing the grindability plot, it can be clearly stated that the most susceptible material to

grinding was Miscanthus. The obtained values of d50 were the lowest and the particles representing
80% of the deposit were in the narrowest dimensional range (d from 0.12–0.62 mm). The material least
susceptible to grinding was Fagus, the d50 of which was the highest out of the obtained and had the
widest particle size range including particles with dimensions of about 0.14–0.83 mm. The influence of
the grinding system was insignificant, while the influence of temperature was most visible in the case
of Pinus and Miscanthus. For Pinus, the d50 value dropped as the temperature increased, while the
SPAN changed slightly. In the case of Miscanthus, the value of d50 decreased (hammer system) or
remained unchanged (knife system), whereas the SPAN value clearly changed, reaching at least three
variants (Figure 8).
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3.2. Grindability from the Aspect of Bulk Density Changes

The changes in the bulk density (BD) is the second method used in the assessment of grindability.
Figure 9 shows both BD of the material before and after grinding. It is noteworthy that although the
PSD of a raw material is standardized, its BD changes, depending on the type of material and the
drying temperature. Differences in BD values between materials were due to the difference in their
specific densities. Comparing the changes within a given biomass type, it should be stated that in
relation to the input material, the BD of the material after grinding always increased. This relation
confirms that in the literature [80,106]. The highest increase was observed for Miscanthus, Fagus,
and Silphium, and in the case of Pinus, the changes were insignificant. Only the Silphium biomass
showed a clear dependency of BD to temperature. The increase in drying temperature caused an
increase in BD. A comparison of the milling systems showed that the hammer system gives a material
with slightly higher BD values compared to the knife system. The exception was for Silphium,
where this dependence did not occur.

In general, higher values of BD are better, especially for the agglomeration process. High BD
ensures the maximization of the number of contacts between the particles in which connections are
formed during agglomeration [62,107]. Therefore, the measure of grindability is the BD value of the
material after grinding. In this way, we can only compare the values of materials with the same
specific density. In order to make this comparison independent of DE, we used bed packing density ϕ,
and the obtained results are presented in Figure 10. The specific density of the tested materials changes
the drying temperature, which is most probably the effect of temperature-induced shrinkage of the
material. These changes are presented in Table 3.
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Table 3. Raw material specific density DE (g/cm3).

Raw Material
Drying Temperature (◦C)

60 100 140

Fagus 0.63 0.65 0.69
Miscanthus 0.36 0.37 0.38

Pinus 0.48 0.52 0.55
Silphium 0.2 0.22 0.23

The results presented in Figure 10 gives more complex information than the crude bulk density.
Comparing the tested materials, the highest ϕ values were obtained for Silphium, followed by
Miscanthus, Fagus, and the lowest was for Pinus. In most cases, the value decreased with the
temperature, a different course is characteristic of Silphium biomass. The influence of the grinding
system was insignificant, and the biggest differences were observed for Miscanthus.

The analysis of ϕ allows us to indicate which of the tested variants is characterized by a high
gesture of packing particles in the mass and which of them is not. Bed packing density is one of the
factors that can be correlated with bed structure. Silphium (temperature 100 ◦C, hammer system)
had a value of ϕ 0.71. This is close to the highest regular packing of identical balls in volume
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(hexagonal cubic packing, hcp) in which case, ϕ is 0.74 [107–109]. On the other hand, the value obtained
for random packing (rp) of identical balls was in the range of 0.57–0.68 [110]. In the case of Pinus, in the
best variant, the ϕ only reached 0.43, which was lower than the above-mentioned values. The Fagus
obtained a ϕ reduced to lower values of the quoted range and Miscanthus shifted to upper values.
Therefore, the wood biomass showed worse deposit filling parameters and the herbaceous biomass
showed better vales. This may be caused by the shape of the particles forming the deposit. In the
case of Miscanthus, and especially Sylphium, the spongy core is similar to a spherical one during
grinding (Figure 11). In a mixture with elongated grains (originating from grinding rest part of steams),
this resulted in better filling of the available space. In the case of wood biomass, the shape of all particles
is elongated. As shown by Meng et al. [110], as the elongation of the deposit-forming particles increases,
the value of ϕ decreases

To specify the changes of ϕ before and after grinding, it is necessary to specify the relative
change of this parameter during grinding (Table 4). The results obtained clearly indicate that the
best grindability determined by the relative ϕ change was obtained for Miscanthus (values in the
range of 28–43.4) and clearly the lowest by Pinus (4–13.3). The knife grinding system in each case
caused a slight decrease in grindability compared to the hammer system. This may indicate that these
grinding systems generate different particle shapes, which affects the relative ϕ value. An analysis
based on grindability plot, which takes into account only particle size, did not show differences
between the grinding systems. Depending on the material and grinding system, the temperature had
a different effect. In the case of Fagus, the lowest values were obtained for material dried at 100 ◦C.
Pine grindability decreased with increasing drying temperature, while for Silphium, it increased.

Table 4. Biomass grindability defined as relative change of ϕ.

Grinding System Temperature (◦C) Fagus Miscanthus Pinus Silphium

hammer
60 26.2 35.4 13.3 25.6

100 22.8 35.5 13.3 31.6
140 25.4 43.4 10.8 31.6

knife
60 23.9 31.8 9.5 21.3

100 20.4 27.9 7.5 29.7
140 20.7 37.4 4.0 29.3

The relative increase of ϕ, in this case, was a very good measure of grindability. It is based on the
shape of the particles and changes in the arrangement in the material caused by milling. However,
it does not give information about the degree of grain reduction, so the analysis of the grinding process
should combine the grindability determination based on the analysis of PSD (proposed grindability plot)
and ϕ changes. Correlation of these two ways of describing grindability is not possible because PSD
is based on changes in grain size without taking into account their shape, while ϕ is based on the
interconnection of grains of different shapes in space.
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3.3. Grindability from the Aspect of Energy Demands

The estimation of energy expenditure is important in assessing the profitability of technology.
One of the key indicators is the net energy demand, which is the energy consumption of the process.
Very often, the energy consumption is related to a unit of mass or volume. Analysis of the Enet.s

(Figure 12) indicates that the hammer system is more energy consuming. In any case, the increase in
energy consumption compared to a knife system is at least twofold. The highest values were achieved
for Miscanthus and Fagus. It is hard to determine any clear correlation of Enet.s and drying temperature.
In the case of the hammer system, we observed an upward trend for Fagus and a downward trend
for Miscanthus. In other cases, the differences were not significant. In general, the lowest net energy
demands were obtained for Silphium. For this type of biomass, Enet.s was on a similar level within the
milling system. At this stage, it is not possible to state the reason for these differences.
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The grindability criterion is more precise in energy demands analysis. It gives information on
which part of energy was used to produce the finest particles. In general, this can be treated as
milling efficiency. Figure 13 presents the G0.25 in relation to the temperature and grinding system.
As in the Enet.s case, better results were obtained for the knife system. There were more visible relations
with temperature. In all cases, an increase in drying temperature provided positive feedback to the
G0.25 factor. This shows that materials dried in high temperature are vulnerable to producing finer
particles at output during milling. Furthermore, for Silphium, there was a very noticeable relation.Energies 2020, 13, x FOR PEER REVIEW 16 of 22 
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Energy demands analysis is a very complex process, in which several factors need to be considered.
In this case, the energy demands to mill 1 kg of material is not an unambiguous indicator, especially when
we consider the grinding quality (PSD). The G0.25 factor gives clear information about the effectiveness
of the process. A steep change in this parameter for Miscanthus (hammer system) showed that there
were some changes in structure during drying in high temperatures. These changes mainly affected
friability, but in the case of the knife system such tendency was not visible.

As the G0.25 factor was established for grain milling, doubts arise about the practical mining of it
in the case of biomass. It is hard to compare these two processes, as flour usually needs to be ground to
a very fine powder. Biomass used in conventional pulverized boilers should be fine (below 0.25 mm)
such as coal. On the other hand, there is solid biofuel production, where coarser fractions are required.
This requires adaptation of the indicator to the technology needs. At this stage, it is not possible to
develop such a dependency, and further research is needed.

4. Conclusions

The paper presents three different methods of determining biomass grindability. Standard particle
size distribution analysis was extended to the form of the author’s own graphical analysis. This method,
in combination with the relative variability of bed packing density and grindability criterion, allowed us
to make the following conclusions:

• The biomass origin affects the grindability. On the basis of the grindability plot, Miscanthus was the
most susceptible to grinding and Fagus was the least. Analyzing the relative changes of Miscanthus
ϕ also showed the highest susceptibility, however, the Pinus biomass was the least vulnerable.
In the case of G0.25, the least effort should be made to grind Miscanthus with a knife system and
the largest for Fagus with a hammer system (regardless of drying temperature). The exception
was Miscanthus dried at 60 ◦C, which had the highest value of G0.25 of all test variants

• Analyzing the influence of drying temperature, the grindability plot did not indicate any noticeable
trends. The relative change of ϕ, clearly correlated with drying temperature. This effect is different
with the material. For Miscanthus and Silphium, the grindability increased with the temperature,
in contrast to Pinus. In the case of Fagus, the best grindability was characterized by a temperature
of 100 ◦C. Taking into account G0.25, in each case, we observed a decrease in the input into the
process as the drying temperature increased.

• The type of milling system, according to the grindability plot, had little influence on the course
of the milling process (slightly better parameters can be obtained with a hammer system).
The analysis of the relative values of ϕ changes also allowed us to state that this system will cause
larger changes, and thus the milling process evaluated according to this indicator is better than
with the knife system. However, the analysis of the G0.25 clearly shows that the knife system is up
to twice as energy efficient.

For each material, the drying temperature was selected individually depending on the indicator
that we wanted to obtain (e.g., Silphium dried at 60 ◦C obtained the best results according to the
grindability plot, the greatest change of ϕ occurred when the temperature exceeded 100 ◦C, and the
lowest energy consumption was characteristic of grinding this material dried at 140 ◦C). According to
the grindability plot and the relative ϕ change, the hammer system was slightly better, but the G0.25

clearly indicates that the knife system was more energy efficient. The knife system was also connected
with the greater susceptibility of this system to damage caused by foreign bodies in the form of stones
or metal parts entering the mill.

The results in a broad and multi-aspect way describe the biomass grinding process assessed in
terms of the achieved product parameters and energy consumption. Further research should focus on
determining not only how the PSD, ϕ, or G0.25 changes, but also what changes the grinding process
should lead to. This means that the optimal PSD and BD of a given biomass type should be determined,
depending on its use after the milling process (compaction or combustion).
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6. Szufa, S.; Wielgosiński, G.; Piersa, P.; Czerwińska, J.; Dzikuć, M.; Adrian, Ł.; Lewandowska, W.; Marczak, M.
Torrefaction of Straw from Oats and Maize for Use as a Fuel and Additive to Organic Fertilizers—TGA
Analysis, Kinetics as Products for Agricultural Purposes. Energies 2020, 13, 2064. [CrossRef]
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37. Bryś, A.; Zielińska, J.; Głowacki, S.; Tulej, W.; Bryś, J. Analysis of possibilities of using biomass from cherry
and morello cherry stones for energy purposes. E3S Web Conf. 2020, 154, 01005. [CrossRef]

38. Hebda, T.; Brzychczyk, B.; Francik, S.; Pedryc, N. Evaluation of Suitability of Hazelnut Shell Energy
for Production of Biofuels. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia,
23–25 May 2018; Volume 17, pp. 1860–1865.

39. Stelte, W.; Sanadi, A.R.; Shang, L.; Holm, J.K.; Ahrenfeldt, J.; Henriksen, U.B. Recent developments in biomass
pelletization—A review. BioResources 2012, 7, 4451–4490.

40. Larsson, S.H.; Thyrel, M.; Geladi, P.; Lestander, T.A. High quality biofuel pellet production from
pre-compacted low density raw materials. Bioresour. Technol. 2008, 99, 7176–7182. [CrossRef]

41. Mandels, M.; Hontz, L.; Nystrom, J. Enzymatic hydrolysis of waste cellulose. Biotechnol. Bioeng. 1974, 16,
1471–1493. [CrossRef]

42. Tymoszuk, M.; Mroczek, K.; Kalisz, S.; Kubiczek, H. An investigation of biomass grindability. Energy 2019,
183, 116–126. [CrossRef]

43. Dyjakon, A.; Noszczyk, T. The Influence of Freezing Temperature Storage on the Mechanical Durability of
Commercial Pellets from Biomass. Energies 2019, 12, 2627. [CrossRef]

44. Serrano, C.; Monedero, E.; Lapuerta, M.; Portero, H. Effect of moisture content, particle size and pine addition
on quality parameters of barley straw pellets. Fuel Process. Technol. 2011, 92, 699–706. [CrossRef]

45. Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A review of biomass densification systems to develop
uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefining 2011, 5, 683–707.
[CrossRef]
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Szlęk, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 411–418, ISBN 978-3-030-13887-5.

http://dx.doi.org/10.1016/j.fuel.2013.04.048
http://dx.doi.org/10.1016/j.apenergy.2012.01.002
http://dx.doi.org/10.1016/j.enconman.2018.05.063
http://dx.doi.org/10.1016/j.biombioe.2010.11.003
http://dx.doi.org/10.1016/j.powtec.2019.11.048
http://dx.doi.org/10.1016/j.powtec.2018.12.037
http://dx.doi.org/10.1080/02773813.2019.1652324
http://dx.doi.org/10.1016/j.fuproc.2008.12.009
http://dx.doi.org/10.3390/en13040910
http://dx.doi.org/10.1016/j.fuproc.2016.02.013


Energies 2020, 13, 3392 21 of 22

75. Bergström, D.; Israelsson, S.; Öhman, M.; Dahlqvist, S.A.; Gref, R.; Boman, C.; Wästerlund, I. Effects of
raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Process.
Technol. 2008, 89, 1324–1329. [CrossRef]

76. Jannasch, R.; Quan, Y.; Samson, R. A Process and Energy Analysis of Pelletizing Switchgrass—Final
Report Prepared for: Natural Resources Canada, Alternative Energy Division. Available online: https:
//reap-canada.com/online_library/feedstock_biomass/11%20A%20Process.pdf (accessed on 1 June 2020).

77. Mani, S.; Tabil, L.G.; Sokhansanj, S. Effects of compressive force, particle size and moisture content on
mechanical properties of biomass pellets from grasses. Biomass Bioenergy 2006, 30, 648–654. [CrossRef]

78. Relova, I.; Vignote, S.; Leon, M.A.; Ambrosio, Y. Optimisation of the manufacturing variables of sawdust
pellets from the bark of Pinus caribaea Morelet: Particle size, moisture and pressure. Biomass Bioenergy 2009,
33, 1351–1357. [CrossRef]

79. Zafari, A.; Kianmehr, M.H. Factors affecting mechanical properties of biomass pellet from compost.
Environ. Technol. 2014, 35, 478–486. [CrossRef]

80. Shaw, M.D.; Karunakaran, C.; Tabil, L.G. Physicochemical characteristics of densified untreated and steam
exploded poplar wood and wheat straw grinds. Biosyst. Eng. 2009, 103, 198–207. [CrossRef]
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