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Abstract: By replacing conventional supplies such as fossil fuels or internal combustion engines
(ICEs), this paper presents a new configuration of hybrid power sources (HPS) based on the integration
of a proton-exchange membrane fuel cell (PEMFC) with batteries (BATs) and supercapacitors (SCs)
for hydraulic excavators (HEs). In contrast to conventional architectures, the PEMFC in this study
functions as the main power supply, whereas the integrated BAT–SC is considered as an auxiliary buffer.
Regarding shortcomings existing in the previous approaches, an innovative energy management
strategy (EMS) was designed using a new mapping fuzzy logic control (MFLC) for appropriate power
distribution. Comparisons between the proposed strategy with available approaches are conducted
to satisfy several driving cycles with different load demands and verify the strategy’s effectiveness.
Based on the simulation results, the efficiency of the PEMFC when using the MFLS algorithm increased
up to 47% in comparison with the conventional proposed EMS and other approaches. With the
proposed strategy, the HPS can be guaranteed to not only sufficiently support power to the system
even when the endurance process or high peak power is required, but also extend the lifespan of the
devices and achieves high efficiency.

Keywords: modeling of PEMFC; EMS for hybrid PEMFC; rule-based EMS; fuzzy logic system

1. Introduction

Hydraulic excavators (HEs) are essential to construction and agriculture [1–11], however, existing
issues such as low energy efficiency and carbon emissions in HEs using an internal combustion engine
(ICE) have urgently imposed alternative energy requirements with the aim of reducing environmental
and economic problems. In the trend of exploring and developing alternative power sources to take
the place of fossil fuels, the proton-exchange membrane fuel cell (PEMFC) has become a potential
candidate due to its high performance in high energy conversion efficiency, low chemical pollution,
quiet operation, low weight, and low volume, especially in producing zero-emissions. However,
low power density and slow power response are drawbacks of the PEMFC. Moreover, transient change
in the load demand due to complicated requirements or working terrains is difficult to adequately
satisfy using the standalone PEMFC. Furthermore, when the HEs are in regeneration modes or when
the PEMFC releases more power than the demand, the PEMFC itself is not able to store the excess
energy. A power deficiency when increasing the operating load and the waste power in the case of
regeneration mode require at least one auxiliary device to enhance and optimize performance.
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The first integrated configuration was reported by Yi et al. [12]. In his study, the integration of
a fuel cell (FC) with batteries (BATs) was proposed as a power source for the HEs based on workload.
The BAT is expected to be remarkably ideal and supportive storage in HEs. Nevertheless, the required
hydraulic power in this paper indicates an abrupt and un-cyclical power demand under workloads of
placing soil and putting it down after the HE has completed a slewing motion. In practice, HEs have
to complete many combinations of motion (e.g., lifting, moving, rotating, braking, and auxiliary
systems), which also generates transient power loads. Consequently, the BATs cannot sufficiently
adapt in the case of rapidly changing power. Gong et al. [13] proposed the integration of the FC with
an ultra-capacitor and derived a strategy to minimize an equivalent fuel consumption. Li et al. [14]
proposed a suggested configuration comprising the PEMFC integrated with supercapacitors (SCs) for
construction machines and developed an algorithm for an energy management system (ems) strategy
that relies on model predictive control (MPC) [15]. The results indicated that this configuration could
effectively adapt to the system operation and the state of charge (SoC) of the SCs could be maintained
in good condition. Based on these approaches, Li et al. improved his algorithm and applied it to
an excavator with the same configuration as the integrated power source [16]. Although the above
works revealed that good results can be achieved, the SC cannot sufficiently supply energy when
a high load power requires endurance missions regarded the SC characteristics, as presented in [17].
Accordingly, the SC is suitable when a large amount of power is required to support and absorb the
transient peak power, whereas the BAT is capable of storing large amounts of energy and is useful
for sustaining energy in the long term. Therefore, the use of the BAT–SC is more efficient than using
segregated equipment, thus increasing workability and system reliability. The integration of BAT–SC
with the PEMFC can achieve a higher performance, reduce system size, and minimize the fuel economy
cost. Nevertheless, another issue arising from integrating the three devices is how to effectively manage
the complex HPS. Thus, the design of an energy management strategy (EMS) is required to split the
energy from the powertrain and appropriately distribute it to other components.

The literature on lightweight hybrid electric vehicles [18–23] provide helpful references for
effectively delivering power between the components of the integrated system using the EMS. In [18],
Vanessa et al. formulated a strategy in which the FC functioned as a primary source, whereas the
BAT and SC functioned as buffer supplies. The order of using each component was explained by
a flowchart in which the state of charge of each device was considered critically. In [19], Aya et al.
expressed two configurations for vehicles: the hydrogen fuel-saving control strategy (HFS-CS) and the
life cycle saving control strategy (LCS-CS). However, according to the two flowcharts, instability due to
overcharging in each device or a lack of power in both SC and BAT can occur because the order of use
is not appropriate. Zhang et al. suggested a strategy for the hybrid FC–BAT–SC power-sharing on a
tram [20]. As obtained from the literature, most of those studies have focused on sketching the EMS in
flowchart form without considering the change phase between the different modes. This implies that
all components can be operated by switching modes (simply ON/OFF) to satisfy specific conditions.
This may cause a delay to the system and cause instability due to sudden change, thereafter degrading
the performance of the devices over time. Based on the fact that the status change of devices (especially
for the FC and BAT, which have slow dynamics responses) requires a certain time to meet the demanded
tasks, this is not feasible when simply embedding these flowcharts into real test benches. Consequently,
many studies have been implemented to overcome this drawback.

A fuzzy logic control (FLC) has been highlighted as a powerful tool to work out the complex issues
concerning system logic. The use of the FLC was first suggested by Agustín et al. [24]. In his study,
FLC was employed to split power for each device. The inputs of the FLC included the power required,
SC state of charge (SoCSC), and BAT state of charge (SoCBAT), and the output was the demanded
power for the PEMFC and BAT. The rules specified in the FLC were designed by following specific
criteria. In [25], Li et al. proposed using FLC for energy and battery management in a series of
hybrid electric vehicles. The study indicated that using FLC could constrain the system so that it
operated within the fuel economic region and avoided the over-discharge of the BAT. In [26], Li et al.
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employed the FLC to manage power-sharing between three different sources and guarantee their
performance. The simulations were implemented in four standard driving cycles and the results
proved that the suggested algorithm could satisfy the power demanded in comparison with other
methods. Using the advantages of FLC, Issam et al. applied this technique for the EMS used in
stand-alone applications [27]. Another application was introduced by Fei et al. when a master–slave
EMS-based fuzzy logic hysteresis state machine was exploited for power split management applied to
a PEMFC–lithium battery–supercapacitor (PEMFC–LIB–SC) hybrid tramway powertrain system [28].
Saman et al. [29] utilized fuzzy rules combined with a genetic algorithm (GA) to improve the
vehicle’s dynamic performance of the hybrid FC–BAT–SC system and fuel economy. As the author
claimed, the study contributed to related research from different aspects. Summarizing from previous
approaches, Yakup et al. realized an analysis and comparison of several control methodologies for
fuel-saving in hydrogen fuel cell vehicles integrated with BAT and SC [30]. In [31], Zhang et al.
conducted an investigation on unplugged electric vehicles (UEVs) by employing an online fuzzy for
the power management of the HPS composed of the PEMFC and BAT, and presented the procedure
for power split management. The power required from the FC was produced after being processed
in the FLC. The pulsed-power profile was used to verify its effectiveness and stability to the rapid
change of the instantaneous high-power demand. With a similar rule-based approach used in previous
works, Cong et al. established a new on–off power following a strategy-based fuzzy algorithm
for FC extended-range vehicles in which the BAT was employed as the main source while the FC
was considered as an extender for the system [32]. The simulation demonstrated that good results
and improvement could be accomplished in both system dynamics and economy. Eckert et al. [33]
utilized GA to optimize the lower and upper values of the membership function to maximize system
performance. In [34], Ameur et al. proposed a master–slave fuzzy algorithm to design the EMS to
effectively manage a hybrid power system and prolong all component lifespans.

Based on the literature, the FLC that mimics human knowledge [35–37] is an appropriate tool
for establishing the EMS and applying it to the complicated hybrid system. Despite achieving
good performance, few studies have reported on an application of these accomplishments for HEs.
Furthermore, due to mimicking designer knowledge, it is challenging to achieve a good performance
without setting an appropriate value and condition for the fuzzy system. Optimization methods have
been successfully applied for the experimental system; nevertheless, most configurations have been
conducted in two-device configurations such as FC–BAT, FC–SC, and BAT–SC. When configurations
of three devices are considered, the power-sharing strategies are more complicated. Although the
FLC, known to mimic designer knowledge, is difficult to design, it is still a suitable solution for
a power-sharing design of a hybrid FC–BAT–SC. This technique can cover all scenarios of the working
operation and mutual influences of charging–discharging mode in BAT–SC to maintain the high
performance of all components. Considering the advantages of the integration of FC–BAT–SC and
a lack of algorithms when designing the EMS for HEs, this study proposed a novel algorithm in which
the FLC is exploited as the EMS to appropriately distribute power to each component. Building on our
previous work in [38], we focused on how to operate all components in an optimal condition as the
prior criterion to increase efficiency, thus prolonging lifespan and reducing costs. In order to handle
these problems, an optimal mapping FLC (MFLC) was systematically designed based on a self-tuning
methodology to generate the optimized parameters of all devices, thus adjusting power-sharing.
The contributions of this research are as follows:

(1) With our experience in fluid power and construction HEs, we proposed a novel configuration for
the integration of FC–BAT–SC and attempted to apply it to HEs. In contrast to the conventional
configuration in which the BATs are considered as the main supply, in this configuration, the FC
functions as the main power source, and the BAT–SC is attached as supplements.

(2) A novel EMS strategy was introduced in which the MFLC was designed to match the optimal
condition during operation. While FLC was employed to distribute sufficient power to each
component under different scenarios, the mapping condition was first introduced to calculate
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a suitable fuel cell power. This control scheme is the key point to addressing problems associated
with HE power distribution, which are considered as constrained multi-objective problems.
The effectiveness of the proposed algorithm was validated by the standard driving cycle in which
all working operations of the HE were investigated.

(3) The regenerative mode of the HEs is mentioned and the difficulty in designing power-saving
transmission for regeneration is explained.

(4) The dynamic model of the entire system comprising the HE and integrated power sources were
derived in detail. This model was simulated in a co-simulation AMESim-MATLAB/Simulink
environment. The HE model was simulated in the AMESim software, whereas the models of
FC, BAT, and SC were derived and performed in a MATLAB/Simulink software. The goal of this
study was how to establish a real-time EMS, achieve the demand of the powertrain, and stabilize
the entire platform when highly-fluctuating power occurred.

(5) Finally, comparisons between the proposed algorithm with other conventional approaches
are discussed to verify the effectiveness of the new configuration compared to previous
conventional approaches.

The rest of this paper is organized as follows: Section 2 expresses the modeling of all components.
Based on the characteristics of each device, the new configuration and the proposed EMS with
regeneration mode are introduced in Section 3. Section 4 describes the MFLC based on the proposed
EMS to achieve high efficiency and performance. To verify its advantages, comparative simulations
between the proposed and conventional EMSs are discussed in Section 5. Finally, Section 6 summarizes
and presents potential future applications.

2. System Configuration and Devices Modeling

2.1. Hydraulic Excavator Configuration

The power demand for running the HE is simply based on the total power needed for moving each
element as requirements, driving crawlers, and running the hydraulic circuit. In the entire hydraulic
system as depicted in Figure 1, the total power is a product of the outlet pressure and the flow rate of
the hydraulic pump [39]:

Pp =
p(t) ×D× n(t)

600× η(t)
(1)

PM =
Pp

ηM
(2)

where p, D, n, and η are the pressure (bar), displacement (l/rev), rotational speed (rev/min),
and volumetric efficiency of the hydraulic pump, respectively. PM is the computed motor power
to drive the hydraulic pump (kW); ηM is an efficiency dropped when converting electric power to
mechanical power.

The hydraulic circuit of the HE is inherited from the AMESim library and described in Figure 1 [40].
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Figure 1. Excavator AMESim hydraulic model.

2.2. Fuel Cell Modeling

The PEMFC model is referred to in [41–45]. The dynamics of a single fuel cell is calculated
as follows:

Vcell = ENernst −Vact −Vconc −Vohmic (3)

ENernst = 1.229− 8.5× 10−4(T − 298.15) +
RT
2F

ln
[
p′H2

(p′O2
)0.5

]
(4)

Vohmic = iRint (5)

Vact = ξ1 + ξ2T + ξ3T ln(c′O2) + ξ4T ln(i) (6)

Vconc =
RT
nF

ln
(

(i/A)L

(i/A)L − (i/A)

)
(7)

where ENernst, Vact, Vconc, and Vohmic are voltage losses of the thermodynamic potential, activation
process, concentration, and ohmic voltage loss, respectively. p′H2

, p′O2
, T, R, and F represent the

hydrogen and oxygen partial pressure, cell temperature, universal gas constant, and Faraday constant,
respectively. Rint is the internal resistance of the electrolyte membrane; c′O2 is the oxygen concentration
at the cathode/membrane interface; ξ1 . . . ξ4 are parametric coefficients; and i is the cell current [38].

Due to the double capacitor layer effect at the electrode–electrolyte interface, the voltage drop can
be computed as [46]

dVd
dt

=
i

Cdl
−

Vd
RdCdl

(8)

Rd =
Vact + Vconc

i
(9)

where Rd is the activation resistance and concentration resistance, and Vd is the voltage drop.
The voltage of a single cell and total voltage when combining the number of cells N can be

computed as
Vcell = ENernst −Vd −Vohmic (10)

Vstack = NVcell (11)
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On the anode-side, the reactant flow model is given by the following:

Va

RT

dp′H2

dt
=

.
mH2,in −

.
mH2,out −

Ni
2F

(12)

.
mH2,out = ka

(
p′H2
− ptan k

)
(13)

Vc

RT

dp′O2

dt
=

.
mO2,in −

.
mO2,out −

Ni
4F

(14)

.
mO2,out = kc

(
p′O2
− pBPR

)
(15)

Ptot =
.

mH2,used∆H =
Ni
2F

∆H (16)

where Va,
.

mH2,in,
.

mH2,out are the anode volume, hydrogen inlet, and outlet flow rates through the fuel
cell (FC) stack, respectively. ka is a flow constant for the anode, and ptan k is the pressure of the hydrogen
tank. Vc,

.
mO2,in,

.
mO2,out are the cathode volume, oxygen inlet, and oxygen outlet flow rate through

the FC stack, respectively. kc and pBPR are the flow constant in the cathode and oxygen pressure at
the outlet, respectively. Ptot denotes a total power input of the system, which changes linearly with
hydrogen consumed, and ∆H is the hydrogen enthalpy of combustion.

Finally, the electrical output power can be obtained as

Pelec = Vstacki (17)

2.3. Supercapacitor Modeling

The SC was selected as the first support unit to supply different power between the demand and
power generated from the FC and BATs in the case of sudden change due to its advantages such as
high power density, fast charge, and high release power. Without using a SC, the FC and BATs have to
manage the entire required workload even when high peak power happens, thus degrading lifespan,
or increasing the size and costs in a trade-off [47]. Moreover, as Phatiphat stated in [48], when the time
constant is less than 0.1 s, energy cannot be obtained from the same sized BAT, but the SC can totally
provide energy at a very high rate. This is the highlighted advantage of the SC. Many different models
have been suggested using the RC circuit. The equivalent SC model can be referred to in [48–50].
Naturally, the SC consists of capacitors and resistors that represent the charging and discharging
units, and an equivalent parallel resistor is the self-discharging loss [51]. The unit cell of the SC was
constructed with two RC branches in a parallel manner, as presented in Figure 2 [52].
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R1 R2
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v1 v2

Rf

iSC

vSC

SLOW CELLMAIN CELLLOSSES

 
Figure 2. A simplified model of the supercapacitor. Figure 2. A simplified model of the supercapacitor.

As depicted in Figure 2, the main cell, R1C1, specifies the immediate response during the charge
or discharge process within a short time duration [53]. All charged energy is in the capacitor C1 of
the immediate branch at the end of the charging mode. Then, the charge re-splits itself to the second
slow cell, R2C2. The resistor Rf denotes a leakage behavior based on the fact that there always exists
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a leakage current flow of the SC during a self-discharge phenomenon [54]. This current leakage is
approximately several milliamps in a large SC. The model of SC is derived as

Usc = Ns_sc

(
v1 + R1

Isc

Np_sc

)
(18)

i1 = C1
dv1

dt
=

dQ1

dt
= (C0 + Cvv1)

dv1

dt
(19)

Q1 = C0v1 +
1
2

Cvv2
1 (20)

i1 = isc − i2 (21)

v2 =
1

C2

∫
1

R2
(v1 − v2)dt (22)

Q2 =

∫
i2dt (23)

where Usc and Isc are the voltage and current of the pack SCs; and vsc and isc are the voltage and current
of an elementary SC. Ns_sc and Np_sc denote the number of SCs in a serial connection and the number of
parallel branches, respectively. i1 and i2 are the current through the main cell and the slow cell. Q1 and
C1 are the instantaneous charge state of the main cell. v1, v2 is the voltage of the first and secondary
branches. Q2 and C2 are the instantaneous charge states of the slow cell.

Finally, the SoCSC is an important parameter to evaluate the state of the SC bank for designing the
EMS. The change rate of the SoCSC is proportional with the charging current isc [55]:

d
dt

SoCSC =
iSC

QSCmax
(24)

where QSCmax denotes the maximum capacity of the SC.

2.4. Battery Modeling

The BAT is the second buffer supply for the system when the FC and/or the SC cannot maintain the
workload demand during the endurance process. The BAT model is constructed with specific invoked
parameters to evaluate its working status, thereby establishing criteria for effectively initializing the
EMS. The BAT model used in this study follows the circuit proposed in [56].

E = E0 −KBAT
QBATmax

QBAT
+ ABATeB(QBAT−QBATmax) (25)

Vbat = E−RBATiBAT
PBAT = VBATiBAT

(26)

QBAT = QBAT(t0) −

t∫
t0

iBATdτ (27)

where E is the controlled voltage source; VBAT and PBAT are the BAT voltage and output power,
respectively; QBAT and QBATmax denote the instant and maximum BAT capacity, respectively; iBAT is
the load current; and t is time parameterized. ABAT is an exponential zone amplitude (V).

The SoCBAT can be derived from the current charge and the maximum charge of it.

SoCBAT =
QBAT

QBATmax
(28)
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The SoCBAT is another important parameter, along with the SoCSC, that reveals the device status
and is invoked to assess the available energy remaining. The direction of the current determines the
charge or discharge mode of the BAT. Compared with the BAT model in [47,57,58], this model gives the
shortened form and can be used in both charge and discharge mode without losing its characteristics.

2.5. DC/DC Converter Modeling

For the studied hybrid electric excavator system, the BAT and SC were interfaced with the DC bus
by using a bidirectional DC/DC converter, which can allow energy flow in both directions. The PEMFC
system was linked with the DC bus via a buck DC/DC converter, which can adapt the voltage level of the
DC bus. These DC/DC converters are the crucial execution devices of the energy management process,
which can regulate an output voltage and current using a local controller. The energy management
process is at a higher level than a local controller of the DC/DC converters and it is assumed that
the time constant of the inductors in the DC/DC converters are much greater than the switching
period [59]. Therefore, once the inner-loop subsystem is well controlled, it can respond immediately to
the reference. Thus, it is reasonable to reduce the fast dynamics of the DC/DC converter using the
following equivalent static model [60,61].

VI −Vh = L
diL
dt

+ iLRL (29)

Vh = κDCVO (30)

iO = κDCiLηεDC (31)

where VI, VO are the DC/DC converter input and output voltage, respectively; RL is the resistor of the
inductor and L is its inductance; κDC is the ratio of converter output and input voltage; iL and iO are
currents through the inductor and the output current of the converter, respectively; ηDC is the converter
efficient; ε = 1 for boost mode or the bidirectional mode with iOVO ≥ 0 and ε = –1 for bidirectional
mode when iOVO < 0.

3. Configuration and Proposed Energy Management Strategy (EMS) for the Hydraulic Excavator

3.1. Hybrid Power Hydraulic Excavators Configuration

The hybrid power HE (HP–HE) was constructed as depicted in Figure 3a, in which the ICEs
were alternatively replaced by the hybrid FC–BAT–SC power source and electric motor. The entire
system can be considered as the HPS associated with the hydraulic actuators (HAs) through the DC
bus. The HPS comprises the PEMFC functioning as the primary supply and the BAT–SC functioning as
auxiliary buffers. The goal of the HPS is to supply power as the load power required and store energy
in the case of regeneration. The power induced from the HPS provides power to the electric motor
through DC/DC converters, and the electric motor drives the practical hydraulic system. The HAs
consisted of three hydraulic cylinders for the driving boom, arm, and bucket, and one swing hydraulic
motor for driving the HE body. The movement of the three cylinders was distinguished by using a main
control valve block to control the flow rate to each actuator. Furthermore, the HAs were extended by
the regeneration part to recover the energy-saving when the boom automatically moves down due to
gravity, as shown in Figure 3b.
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Figure 3. The structure of the new configuration: (a) hybrid power hydraulic excavators (HEs) and
(b) hydraulic circuit for boom energy regeneration part.

3.2. Proposed Energy Management Strategy (EMS)

Based on the fact that HEs perform various functions such as digging, lifting soil, spinning, ground
leveling, and so on, an EMS was proposed to productively achieve the requirements. Improving the
system performance and considering regeneration mode for saving energy were taken into consideration.
From the requested motions of the excavator, the power required (Pred) was determined as a reference
for running the power from the HPS. The SoCBAT and the SoCSC were used to evaluate the state of
the components. Furthermore, the minimum SoC signed by SoCBAT_min and SoCSC_min was used to
monitor when the two devices needed to be charged. The flowchart of the proposed EMS is depicted
in Figure 4.

As depicted in Figure 4, in the beginning, the power required was examined to determine if
its value was negative. In this case, the HE is moving downhill, when the swing is braking after
spinning the entire body, or when the boom is moving down, whereas other elements do not operate.
When these events happen, the BAT–SC is not required to release power. Instead, depending on the
level of the power-saving, the FC is switched OFF or runs in an optimal value in which the highest
efficiency can be achieved to charge the BAT–SC.

Otherwise, when Preq is positive, the following circumstances should be considered. If the
power demand is less than the nominal power of the FC (Pfc_n), the FC primarily supplies power
to the system and charges the auxiliary supplements for later use. The charging is stopped if the
SoCBAT/SoCSC reaches the maximum value (SoCBAT/SoCSC = SoCMax). If the load demand exceeds
the FC nominal power, the combination between the FC and BAT or SC is considered, if their power
can sufficiently satisfy the load demand. This scenario is highlighted in light blue and light green in
Figure 4. The combination of FC–SC is considered in the case when the BAT cannot satisfy the sudden
change in power required, as explained in the SC modeling part. Otherwise, the prior combination of
FC–BAT is used. During this process, if the SoCBAT (or SoCSC) drops to the minimum level, the SC
(or BAT) is alternatively used, and the other device is alarmed and switched to charge mode. If the
Preq exceeds the combination of FC–BAT (or FC–SC), all devices enter together and provide power to
the system. During these processes, the SoCBAT and SoCSC should be monitored and the SC is always
charged first.
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instance, the boom is moving down automatically due to gravity), while the others continuously 
operate as usual. This implies that the power sources supplying progress for the system and power-
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3.3. Regeneration Mode

In electric vehicles (EVs), the charge mode occurs when the cars are moving downhill or braking,
while the FC is still supplying power to the system. One important point to clarify is that the charge
and discharge mode cannot simultaneously occur as analyses in conventional algorithms. Since the
BAT–SC is connected with only one engine and the engine is directly coupled with two-back-wheels,
by using bi-directional DC/DC converters in the hybrid source, the state of the devices can be easily
switched to capture or release power, depending on the state of the system and can be used in the
same transmission line.

In contrast to the EVs, the powertrain of the HEs consists of various links (boom, arm, bucket,
swing, and crawlers). Therefore, designing the regeneration mode in the HEs is more complicated than
that of the EVs. We need to consider a case when one link is in a power-saving procedure (for instance,
the boom is moving down automatically due to gravity), while the others continuously operate as usual.
This implies that the power sources supplying progress for the system and power-saving progress
from one or more elements occur at the same time. Hence, we cannot apply the same design as that of
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the EVs. For general hydraulic circuits, one sub-system should be connected as the second line for
saving energy. Consequently, in this design, the circuit diagram for hybrid sources is separated into
two distinguished transmission lines: one for supply and one for regeneration. The power captured
from the generation is transmitted through the second transmission line.

4. Fuzzy EMS for the Integrated System

According to the working principle presented by the above flow chart, the power obtained
from the driving cycle can be separated into four cases: high power, medium power, low power,
and regenerative mode. The conventional EMS can simply be considered as an on–off switch between
devices. However, this method may generate a delay to the system, as explained in the Introduction.
In practice, the change in the status of devices requires a certain time to achieve and adapt to the
required tasks. This problem can be handled by employing a FLC, which is known to be a useful
tool to split and distribute power. This method was previously suggested by [18]. In this approach,
the prior SoCSC is retained so that the stability of the SoCSC is maintained in an acceptable condition.
However, in practice, maintaining the SoCSC in an acceptable condition is not as important as that of
BAT due to its specification. In large systems that always work under high power for an extended
period, the BAT operation and its status should be regulated so that its SoC exhibits variation or is
prevented from dropping down to a very low value as a solution to prolong life-time. The efficiency
curve of the PEMFC is shown in Figure 5.
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As shown in Figure 5, efficiency does not increase as power increases. High power achievement
requires more energy from the auxiliary devices (cooling or heating system), thus reducing the overall
efficiency of the system. Therefore, designing an algorithm to maintain high efficiency when operating
the FC is practically prioritized as the main criterion. Thereby, we can reduce hydrogen consumption
and limit the on/off cycles of the system to extend lifespan. The FLS was set up with the following
criteria to satisfy the above analysis:

• Increase the FC efficiency and minimize hydrogen consumption.
• The SoCBAT should be frequently maintained within the range of 0.5~0.9 as a solution to

prolong lifespan.
• The SoCSC should be maintained at a high level to boost the power in the case of an emergency.

Therefore, the fuzzy control rules can serve to map the input linguistic variables Preq, SoCBAT,
and SoCSC to the output linguistic variables Pfc, PBAT, and PSC, respectively. The input linguistic Preq is
characterized by four membership functions as four levels of operation. The input linguistics SoCBAT
and SoCSC are characterized by five membership functions (L (Low), ML (Medium–low), M (Medium),
MH (Medium–high), H (High)). The output linguistics of the FC-PFC_ref are characterized by four
membership functions (O (Off), L (Low), M (Medium), H (high)), whereas the output PBAT is a gain
distributed within [−1,1] interval and characterized by nine membership functions (NVB (Negative



Energies 2020, 13, 3387 12 of 27

Very Big), NB (Negative Big), NM (Negative Medium), NS (Negative Small), Z (Zero), PS (Positive
Small), PM (Positive Medium), PB (Positive Big), PVB (Positive Very Big)). The matrix rules in the four
cases are expressed in Tables 1–4. The membership function of the inputs and outputs are described in
Figure 6.

Table 1. High power required.

Phigh

Pfc_ref |PBAT

SoCSC (0.2~0.9)

L ML M MH H

SoCBAT
(0.5~0.9)

L H PS H PS H PS H PS H PS
ML H PB H PB H PB H PM H PM
M H PB H PB H PB H PM H PM

MH H PVB H PVB H PVB H PVB H PVB
H H PVB H PVB H PVB H PVB H PVB

Table 2. Medium power required.

Pmed

Pfc_ref |PBAT

SoCSC (0.2~0.9)

L ML M MH H

SoCBAT
(0.5~0.9)

L H Z H NS H NM H NB M NB
ML H PS H Z H NS M NM M NM
M H PM H PS M Z M NS M NS

MH H PB M PM M PS M Z M NS
H M PVB M PB M PM M PS M Z

Table 3. Low power required.

Plow

Pfc_ref |PBAT

SoCSC (0.2~0.9)

L ML M MH H

SoCBAT
(0.5~0.9)

L H Z H NS H NM H NB M NB
ML H PS H Z H NS M NM L NM
M H PM H PS M Z L NS L NS

MH H PB M PM L PS L Z L NS
H M PVB L PB L PM L PS L Z

Table 4. Regeneration mode.

Pfc_ref|PBAT|Psc
SoCSC (0.2~0.9)

L ML M MH H

SoCBAT
(0.5

~
0.9)

L NS NVB NS NVB NM NVB

O
pt

im
al

va
lu

e NB NM NVB NS

O
pt

im
al

va
lu

e

ML

O
pt

.v
al

ue NS NVB

O
pt

im
al

va
lu

e NS NVB NS NVB NM NM O
pt

.v
al

ue

NB NS

M Z NVB Z NVB NS NVB NS NM O NM Z

M PS NVB PS NVB Z NVB O NS NM O NS Z

H PM NVB PM NVB O PS NVB O Z NM O NS Z

For the regeneration mode, because the excavator does not require any power from the power
supply, the power of the FC is adjusted to operate at maximum efficiency in the case of charging
auxiliary devices when the SoC drops down to a low value and off when the SoC level is high.
Furthermore, the power of BAT and SC power are assigned as outputs of the FLC. The fuzzy rule of
the regenerative mode is presented in Table 4.
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For the regeneration mode, because the excavator does not require any power from the power 
supply, the power of the FC is adjusted to operate at maximum efficiency in the case of charging 
auxiliary devices when the SoC drops down to a low value and off when the SoC level is high. 
Furthermore, the power of BAT and SC power are assigned as outputs of the FLC. The fuzzy rule of 
the regenerative mode is presented in Table 4. 
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Figure 6. Structure of the FLS: (a) membership functions of inputs and (b) membership functions
of outputs.

In this study, triangular membership functions are exploited as depicted in Figure 6. The left side
illustrates the inputs of the FLS in which the power required Preq, SoCBAT, and SoCSC are considered;
the right side is the product including the FC power and gains of the BAT for charging or discharging
mode. Additionally, to match the aforementioned criteria, the four following requirements should
be satisfied:

• In the case of low devices SoC (SoCBAT and SoCSC are low), the FC power can be set up to a high
value for quick charging, even when the system is operating with medium or low power required.

• For medium and low power required, if the SoCBAT is greater than medium level, the BAT charges
the SC instead of using FC; therefore, the FC does not need to run at a high value, and the efficiency
can be increased consequently.
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• In the case of charging, the SC is always charged so that a good condition of the SoCSC can be
maintained for later use.

• The final goal is to force the FC power to the highest efficiency point, as shown in Figure 5.

The completed control schematic diagram is depicted in Figure 7.
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Since the power of the system in some cases can be referred to as the mixture between two cases,
(for instance, if the required power is 85 kW, then this value can belong to both high power and medium
power), then the scheduling gains is used to calculate the exact output power of the FLC. Let us

define the vector K =
(
α β γ σ

)T
as the gains of the high power, medium power, low power,

and regenerative power, respectively. Then, the output power is calculated as:

P∗FC = KTP∗FC = αP∗FC1 + βP∗FC2 + γP∗FC3 + σP∗FC4 (32)

where P∗FC =
(

P∗FC1 P∗FC2 P∗FC3 P∗FC4

)T
is an output of the four FLC, respectively, K =(

α β γ σ
)T

is calculated as:



K =
(
α β γ σ

)T
=

(
0 0 0 1

)T
i f Preq ≤ xreg

K =
(
α β γ σ

)T
=

(
0 0 1 0

)T
i f xL,1 ≤ Preq ≤ xL,2

α = 1− sat
(
|xH−Preq|
xH−xM,2

)
β = 1− sat

(
|xM,1−Preq|
xM,1−xL,2

)
×

∣∣∣sign(xM,1−Preq)−sign(xL,2−Preq)
∣∣∣∣∣∣sign(xM,1−Preq)

∣∣∣+∣∣∣sign(xL,2−Preq)
∣∣∣

− sat
(
|xM,2−Preq|

xH−xM,2

)
×

∣∣∣sign(xM,2−Preq)−sign(xH−Preq)
∣∣∣∣∣∣sign(xM,2−Preq)

∣∣∣+∣∣∣sign(xH−Preq)
∣∣∣

γ = 1− sat
(
|XL,2−Preq|
xM,1−xL,2

)
Otherwise

K =
(
α β γ σ

)T
=

(
0 1 0 0

)T
i f xM,1 ≤ Preq ≤ xM,2

K =
(
α β γ σ

)T
=

(
1 0 0 0

)T
i f Preq ≥ xH

(33)

Consequently, the FC power used for the net is computed as

PFC_net = ηFCP∗FC (34)

5. Numerical Simulation and Discussion

5.1. Parameters Setup for Simulation

In this section, the simulations and comparisons between the proposed control strategy with
previous approaches are examined to evaluate the effectiveness of the proposed HPS under different
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working conditions. The simulations were conducted in a co-simulation between LMS AMESim 15.2
software and MATLAB/Simulink 2019a as depicted in Figure 8.
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The LMS AMESim, known as specialized software for dynamic simulation with various
applications, was employed to express the HE configuration. The parameters for simulating the HE
are described in Table 5. The modeling of the HPS was deployed in MATLAB/Simulink, in which
all mathematical equations were embedded, and the results were displayed with a sampling time of
10 ms. The component sizes of the HPS were reasonably chosen to satisfy the demand and verify the
proposed methodology as listed in Tables 6–8. The testing trajectories of the boom, arm, and bucket of
the excavator are described in Figure 9, and the required power from those motions is performed in
Figure 10.

Table 5. Parameters for the excavator model.

Component Value Unit

Boom cylinder
(Piston diameter × Rod diameter ×

Stroke length)
0.35 × 0.22 × 1.8 m

Arm cylinder 0.18 × 0.125 × 1.7 m
Bucket cylinder 0.21 × 0.13 × 1.33 m
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Table 6. Fuel cell system parameters [38,41].

Parameter Value Unit

Number of cells N 35 -
Number of stacks - 18 -

Rated power - 3.6 kW
Membrane thickness - 178 µm

Anode pressure pH2 3 atm
Cathode pressure pO2 3 atm

Cell area A 232 cm2

Coefficients

ξ1 −0.948 -

ξ2
0.00286 + 2 x10–4

× ln(A)
+ 4.3×10–5

× ln(cH2)
-

ξ3 7.6 × 10–5 -
ξ4 –1.93 × 10–4 -

Membrane resistivity parameter - 12.5 -
Fuel cell capacitance Cdl 0.035 × 232 F

Flow constant for the anode ka 0.065 mol s–1 atm–1

Flow constant for the cathode Kc 0.065 mol s–1 atm–1

Anode volume Va 0.005 m3

Cathode volume Vc 0.01 m3

Hydrogen enthalpy of combustion ∆H 285.5 × 103 kJ mol–1

Thermal resistance - 0.115 C.W–1

Total energy (for 6 h) - 302.522 kWh

Table 7. Supercapacitor parameters [52].

Parameter Value Unit

Model - BCAP3000 -
Number of supercapacitors NS_SC 80 -

Rated voltage - 2.7 V
Absolute maximum voltage - 2.85 V
Absolute maximum current - 1900 A

Rated capacitance - 3000 F
Capacitance in the main cell C0 2100 F

- C1 623 F
Capacitance in the slow cell C2 172 F
Resistance in the main cell R1 0.36 × 10–3 Ω
Resistance in the slow cell R2 1.92 Ω

Table 8. Battery parameters [38].

Parameter Value Unit

Capacity QBATmax 6.5 Ah
Rated voltage - 1.2 V

Battery constant voltage E0 1.2848 V
Internal resistance RBAT 0.0046 Ω

Number of batteries - 360 -
Exponential zone amplitude ABAT 0.144 V

exponential zone time constant inverse B 2.3077 (Ah)–1

Polarization resistance constant KBAT 0.01875 Ω

Regarding the working cycles in Figure 9, the characteristic line sloped down when the element
moved down (i.e., the cylinder retraces and increases when the element moves up, i.e., the cylinder
is extending. With the driving cycles shown in Figure 9, changes in the characteristic lines result in
changes in the power required, as depicted in Figure 10, for instance, referring to the driving cycle (a) at
the time of the 5th to 10th second when all three elements are moving, the power required in Figure 10
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increases. Through the power curve, the power needed to run the boom was the highest compared
with that of the other two; in particular, the power curve increased significantly when the boom moved
up. After that, at the time of the 25th second, all elements were kept in a fixed position and the power
decreased. Therefore, the buffer supplements were charged at these times as in this scenario.
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5.2. Simulation Results and Discussion

In this section, the two simulations comprising the proposed EMS in [38] and the proposed fuzzy
EMS (F–EMS), as expressed in Section 3, were conducted and compared with the three other strategies:
(1) conventional EMS (C–EMS) [62], (2) HFS–CS, and (3) LCS–CS in [16].

The responses of the total power supply, FC, BAT, and SC are described in Figures 11–14,
respectively. In each figure, the responses when embedding the proposed EMS, proposed F–EMS,
C–EMS, HFS–CS, and LCS–CS are depicted in sub-figures (a), (b), (c), (d), and (e), respectively. The total
power supplied from the proposed algorithm is depicted in Figure 11a and proposed F–EMS is depicted
in Figure 11b. The other results when embedding the C–EMS, HFS–CS, and LCS–CS into the system
are depicted in Figure 11c–e, respectively. These results reveal that the proposed strategies can provide
sufficient power to the system and maintain stable levels during an endurance process; consequently,
good performance can be achieved.

In contrast, the other EMS strategies were not capable of maintaining sufficient energy. For this
reason, the C–EMS did not consider the charging process for auxiliary devices when their SoCBAT/SoCSC
dropped to a low level. When the SoCBAT/SoCSC reached the minimum level as shown in Figure 15,
the supplements were out of power and could not support the system.

As a result, the system can not complete the requirement due to the shortage of power, starting at
the time of the 140th second. For the two HFS–CS and LCS–CS strategies, charging procedures were
considered in which the positive power of the auxiliary devices indicates that they are in discharge
mode, whereas the negative value indicates that they are in charge mode. However, instability occurs
due to the inappropriate order of using devices. Starting at the time of the 210th second, when the
SoCBAT/SoCSC dropped down to the minimum level, the chattering phenomenon took place because
the devices immediately switched from releasing to charging mode when the SoCBAT/SoCSC hit the
minimum level. Subsequently, when the SoCBAT/SoCSC is greater than the minimum level, the states
of the devices instantly shift from charging to releasing the power, despite low remaining power.
These processes repeatedly occur and generate high-frequency fluctuations. Therefore, these paradigms
need to be noticeably improved based on the fact that either the system has to stop for charging like in
conventional algorithms, or employ another strategy to maintain performance.
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Figure 15. State of charge of (a) SC–SoCSC, and (b) BAT–SoCBAT.

Compared with the three previous strategies, the proposed algorithm, which considers all
circumstances for stable power-sharing, has greater endurance and the supplements are considerably
maintained in good condition to extend the duration for the requirements. As expressed in Figure 15,
the SoCBAT varied negligibly from 0.769 at the start to 0.7685 at the end of the process. The SoCSC had a
periodic oscillation around the value of 0.6 with a high magnitude due to the high power required.
Moreover, for the proposed EMS, the Pfc was maintained at constant power and was only switched off

in the case that no power was required. Consequently, the BAT and SC are charged every time when
high power is not required. However, this is not an optimal solution for the EMS since overcharge
happened in the SC at the time of the 50th second, as shown in Figure 15. Moreover, the SoCBAT
increased from the beginning to the end of the process because when the SC reached the maximum
level, no additional power could be captured and the excess power from the FC was transferred to
the BAT. Due to maintaining the constant level, the FC required more hydrogen consumption and the
FC efficiency was low as a result. This issue was resolved by using the F–EMS employing the MFLC
as explained in Section 4. Based on the comparison between the two proposed EMSs, the FC in the
F–EMS consumes less fuel than that of the proposed EMS and is forced to the rated power to increase
efficiency. The BAT takes the place of the FC in charging energy for the SC and maintaining it in good
condition, instead of using the FC all the time.

Referring to the FC model in Section 2, the efficiency of the FC can be calculated as [63]

E f f =
Pelec
Ptot
×max

(
0, 1−

Paux

Pelec

)
(35)

The comparison of the efficiency for the two proposed algorithms is depicted in Figure 16.
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As revealed in Figure 16, the maximum efficiency that the FC can reach when applying the
proposed EMS was approximately 37% due to maintaining the constant value of 65 kW. Conversely,
the efficiency when embedding the F–EMS was higher than that of the proposed EMS due to reducing
the hydrogen consumption. With the response of the FC shown in Figure 12a, the efficiency of the FC
could reach up to 47%. The average efficiency of the FC increased from 32% when using the proposed
EMS to 42% when applying the F–EMS under the same conditions. Furthermore, the number of
ON/OFF switches decreases as a solution for extending the FC lifespan.

6. Conclusions

The new configuration for the hydraulic excavators equipped with a hybrid power source
comprising the fuel cell, batteries, and supercapacitors with the proposed EMS is the merit of this
paper. Instead of using one auxiliary supplement until it runs out of power and using the other as a
compensation supply later, the EMS was exploited to distribute the energy from the powertrain to
each device so that good performance is achieved and the lifespan of all components can be extended.
The simulation results displayed that the proposed EMS can satisfy the requirements in comparison with
other previous approaches under different working conditions. Moreover, the generation procedure
was considered as the time for healing buffer supplements. In a going effect, the use of the proposed
F–EMS confirmed its effectiveness when reducing the fuel consumption in the FC while maintaining
the SC in a good condition for use in the event of an emergency. The achievements in this study can
not only guarantee power supply performance and prolong the lifespan of all devices, but also reduce
the fuel consumption and increase the efficiency of the system. Therefore, this study is a premise for
developing a hybrid power source for construction machinery in the future.
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Abbreviations and Nomenclature

BAT Batteries p Pump pressure

C-EMS
EMS

Conventional energy management
strategy
Energy management strategy

PBAT
pBPR
ptan k

Battery output power
Oxygen pressure at the outlet
Pressure of the hydrogen tank

FLS Fuzzy logic system Pelec Electric output power

F-EMS Fuzzy energy management strategy
PM
PP

Motor power
Pump power

MFLC
HEs
HPS
HFS-CS

Mapping fuzzy logic control
Hydraulic excavators
Hybrid power source
Hydrogen fuel-saving control strategy

Ptot

p′H2
, p′O2

Q1, C1

Total power input of the system
Hydrogen and oxygen partial pressure
Instantaneous charge state of the
supercapacitor main cell

LCS-CS
PEMFC

Life cycle saving control strategy
Proton-exchange membrane fuel cell

Q2, C2

QBAT

Instantaneous charge state of the
supercapacitor slow cell
Instant BAT capacity

SC Supercapacitors QBATmax Maximum BAT capacity
SoCBAT
SoCSC

Battery state of charge
Supercapacitor state of charge

QSCmax
R

Maximum SC capacity
Universal gas constant

c′O2
Oxygen concentration at the
cathode/membrane interface

Rd
Activation resistance and concentration
resistance of the FC
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A
ABAT

Cell area
Exponential zone amplitude

Rint
Internal resistance of the electrolyte
membrane

B Exponential zone time constant inverse
RL
t

Resistor of the inductor
Time parameterized

D
E

Pump displacement
Batteries controlled voltage source

T
Usc

Cell temperature
Pack supercapacitor voltage

ENernst
Voltage losses of the thermodynamic
potential

v1, v2 Supercapacitor voltages of the first and
secondary branches

F Faraday constant vsc Elementary SC voltage
i Cell current Va Anode volume

iBAT
i1

Battery load current and
Supercapacitor current through the
main cell

Vact

VBAT

Activation process voltage
BAT voltage

i2
Supercapacitor current through the
slow cell

Vc

Vconc

Cathode volume
Concentration voltage

iL Currents through the inductor Vcell Single cell voltage
iO Output current of the converter Vd Drop voltage
isc Elementary supercapacitor current Vohmic Ohmic voltage loss
Isc

ka

Pack supercapacitor current
Flow constant for the anode

VI, VO
DC/DC converter input and output
voltage

kc Flow constant in cathode Vstack Fuel cell stack voltage
KBAT Polarization resistance constant ξ1 . . . ξ4 Parametric coefficients

L
.

mH2,in,
.

mH2,out

Inductance
Hydrogen inlet and outlet flow rates
through fuel cell stack

∆H
α, β, γ,
σ

Hydrogen enthalpy of combustion
Mapping condition coefficients

.
mO2,in,

.
mO2,out

Oxygen inlet, and oxygen outlet flow
rate through the fuel cell stack

η

ηDC

Pump volumetric efficiency
The converter efficient

n
N

Pump rotational speed
Number of cells

ηM
Efficiency of converting electric power
to mechanical power

Ns_sc
Number of supercapacitors in serial
connection

κDC
Ratio of the DC/DC converter output
and input voltage

Np_sc
Number of supercapacitors in parallel
branches
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