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Abstract: The aim of the study was to develop deep neural network models for laminar burning
velocity (LBV) calculations. The present study resulted in models for hydrogen–air and propane–air
mixtures. An original data-preparation/data-generation algorithm was also developed in order
to obtain the datasets sufficient in quality and quantity for models training. The discussion about
the current analytical models highlighted issues with both experimental data and methodology of
creating those analytical models. It was concluded that there is a need for models that can capture
data from multiple experimental techniques with ease and automate the model design and training
process. We presented a full machine learning based approach that fulfills these requirements.
Not only model development, but also data preparation was described in detail as it is crucial
in obtaining good results. Resulting models calculations were compared with popular analytical
models and experimental data gathered from literature. The calculations comparison showed that
the models developed were characterized by the smallest error with regards to the experiments and
behaved equally well for variable pressure, temperature, and equivalence ratio. The source code of
ready-to-use models has been provided and can be easily integrated in, for example, CFD software.

Keywords: laminar flame speed; CFD; machine learning; artificial neural network

1. Introduction and Motivation

Laminar burning velocity (LBV) of a fuel is one of its most fundamental and important properties.
Due to this, a lot of research has been conducted with the LBV as the main focus of interest. This fuel
property is known to be directly influenced by exothermicity, reactivity, and diffusivity of the fuel [1–4].
Additionally, LBV is frequently used in describing fuel combustion phenomena, like turbulent flame
structure and speed or flame extinction and stabilization [5,6]. Moreover, measurements of LBV are
important and commonly applied in validation of chemical kinetic models [7]. Another branch of LBV
usages is CFD. Combustion models often depend on flame speeds, which are divided into laminar and
turbulent. In most models, turbulent flame speed is directly dependent on LBV (and proportional to
flow fluctuations), thus accurate values of LBV are essential [8].

Machine learning (ML) is a group of algorithms that allow computers to learn, recognize patterns
in data, and predict outcomes in previously unseen conditions. Recently, ML has been employed by a
remarkable number of researchers across the world. Popularity of ML is caused by multiple factors
that have occurred in recent years, as ML and its most advanced branch, artificial neural networks
(ANN), were created many years ago, but were not widely used in the beginning. First concepts of a
“perceptron” (a basic building block of ANN, now called “neuron”) were proposed as early as 1963 by
White and Rosenblatt [9], but the developments in the ANN were hampered due to the lack of efficient
algorithms to train the models and the shortage of computation power required. The idea for a proper
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algorithm named “backpropagation” was suggested in 1986 by Rumelhart et al. [10]. This enabled the
use of complicated models such as ANN, but easy and common access to computational power—which
is critical for the widespread use of these models—was still scarce. Recent progress in ANN
training methodologies and architectures, advances in hardware (faster computers, personal laptops),
and easier access to computational power through the popularization of cloud computing lead to the
popularization of ANNs and applications in many aspects of our lives. These applications also include
engineering, where ANNs are mostly used to either make phenomena modeling faster and more
accurate or simply enable the modeling of processes that were impossible to model with traditional
approaches. For example, a type of ANN called Convolutional Neural Network (CNN) [11] was
applied to CFD code by Tompson et al. [12]. He developed a model and trained it on the results of
standard 3D simulations. Subsequently, the model was put to use to predict the pressure field in his
code for the next time step without explicitly calculating it in the first place. This approach decreased
the time required for the simulations to run by the orders of magnitude, and results obtained were
in good agreement with the original simulated data. Moreover, the model performed equally well
in other, not precalculated cases. Shang et al. [13] found another way of using ANNs to enhance
CFD code. Data from their simulations of two-phase flows of water and vapor was used as training
data for the ANNs. They were able to train two ANNs for predicting enthalpy and pressure in any
position within the computational domain with adequate accuracy. ML algorithms are also used in
real engineering scenarios in industry. For example, in oil refineries and power plants. The model
developed by Elkamel et al. [14] was used on a working oil refinery in order to predict properties
and yields of important products on a hydrocracking unit, like iC, nC, Diesel, or naphta. The error
of prediction was 8.71% compared to laboratory analyses. Predicting such parameters in near real
time allowed a much better optimization of production, as well as planning and controlling the whole
process. A power plant example is based on the work of Ibargüengoytia et al. [15], who developed a
model to predict the current value of viscosity in a fossil fuel power plant. The model was very useful,
particularly due to the fact that such property is impossible to be physically measured in real time.
Historical laboratory data was used to train their model, which was a Bayesian network [16]. As a
result, the obtained model was installed in the Tuxpan Power Plant in Veracruz, Mexico. Duer [17]
tackled a problem of an optimal maintenance system for wind farm equipment. He constructed
3 models that were tasked with evaluating the state of the wind power plant and accurately outputting
its states in order to plan and execute the object regeneration process. Duer conducted simulations and
observed that the ANN-based model performed the best and was able to optimize repairs so that no
unneeded repairs were undertaken and the equipment did not work in suboptimal conditions.

Most of the approaches for calculating LBV include the usage of analytical formulas that are just
predefined, constraint formulas fitted for experimental values for specific conditions [18] or for the
results of LBV calculations based on complex combustion chemistry mechanisms [19]. The formula
proposed by Gülder [20] may serve as a classic example here. Having LBV for specific conditions,
its values can be recalculated to different temperature and pressure using another formula. Here,
most popular choice is the so-called “power law” expression which, when supplied with proper
constants (different for each fuel, oxidizer, and author) can be used to calculate required LBV [21,22].
Constants for the “power law” can be made variable based on temperature and pressure to increase
accuracy, as presented by Müller et al. [23]. Wallensten et al. [19] in turn, in their CFD simulations of
combustion in a direct-injection gasoline engine, made those constants variable based on temperature
and equivalence ratio of the mixture. Recently, Hu et al. [24] performed measurements and developed
equations for LBV of methane–air mixture, valid at a wide range of pressures and temperatures,
by making constants for the “power law” variable based on temperature and pressure. Apart from
that, the classic approach was used by them. Dirrenberger in turn [25] introduced modified Gülder’s
equation in her work to account for ternary mixtures. She built on the binary mixtures equation
proposed by Coppens et al. [26]. In fact, the changes did make the equation flexible enough to account



Energies 2020, 13, 3381 3 of 16

for various mixtures, but also rendered it increasingly complicated to use, change, and implement.
Furthermore, the sole process of fitting such complicated equations caused numerous difficulties.

Recently, machine learning approaches have been applied in the LBV calculation. For instance,
Jach [27], coauthored by the authors of this work, tackled the development of ANN model for predicting
LBV of methane-air mixtures. She created a multivariate regression model, Support Vector Machines
(SVM), and an artificial neural network (ANN), then compared results with experimental values and
calculations from the San Diego reaction mechanism. Inputs to the models were as follows: pressure,
temperature, and equivalence ratio; while the output was the value of LBV. The work also included
description of the data preprocessing procedure and overall methodology of model preparation.
Results obtained from the ANN model were very promising. Jach et al. built on that knowledge in her
next article, where she created multiple models for single-fuel mixtures of normal hydrocarbons C1-C7
with air [28]. Once again, she created multivariate regression models, SVMs, and ANNs, and compared
results with experimental values and multiple reaction mechanisms. The accuracy of the models was
satisfactory. Moreover, she noted that calculations based on reaction mechanisms not only were
less accurate than ANN, but also their individual computational time exceeded 5 hours for all the
samples investigated. For ANN, it was a matter of seconds to calculate all the samples. This shows
the potential of using ANNs in CFD software, where it is much desired to shorten the simulation
time as much as possible while keeping high accuracy. In his study, Mehra et al. [29] performed
experimental investigations of hydrogen and carbon-monoxide-enriched natural gas mixtures at room
temperature and atmospheric pressure. He analyzed three different equivalence ratios, three different
hydrogen blends, and five different CO blends. In addition to obtaining the experimental results,
he created an ANN for predicting LBV under such conditions. Inputs to his model were as follows:
equivalence ratio, hydrogen fraction, methane fraction, and carbon monoxide fraction. In his work,
he evaluated multiple ANN architectures, changing training algorithms and the number of neurons.
In the end, the obtained model showed high accuracy in predicting LBV for multiple conditions
that were experimentally measured in the mentioned work. These examples show that machine
learning is used in LBV applications with increasing frequency. It also shows that the methodology
and technology is mature enough to be used in such applications, as the results obtained in those
works show that machine learning approaches are distinguished by high accuracy and performance.

Another reason why the authors of this work claim that ANNs are a suitable fit for LBV calculation
is connected to the known problems with experimental measurements, not only LBV. The examples of
why this is the case may be found in a recent article by Walter et al. [30], in which the authors explained
that experimental LBV data is characterized by a large scatter in measurements. This scatter is not only
introduced by the use of various experimental methods. It is also observed when the same method is
employed, but with different approaches or in different laboratories. What is more, researchers often
are reluctant to provide detailed analysis of uncertainties in their experiments. Often, one needs to
search for them in nested references, sometimes even outdated ones. Walter et al. assessed the four
most common measurement methods: Heat Flux Method, Bunsen Flame Method, Spherical Flame
Method, and Counter Flow Method. They determined approximate contributions of individual factors,
unique for each method, to the uncertainty of the conducted experiments. After reading their work,
the conclusion is that from method to method and even from laboratory to laboratory, experiments
produce different results. Common errors introduced in all methods were within 5–6%. In addition to
that, method-specific errors need to be included. These vary from 1.5% to 4%. Based on the above, it is
very challenging to determine which measurement is satisfactory, which is inadequate, and what is the
true, quantitative difference from the reality. In order to have acceptable models of LBV, we need to
have a methodology and algorithms that are able to capture a variety of experimental data and can
account for (sometimes significant) differences in multiple measurements for the same mixture and
conditions. Authors of this article propose that an ANN may serve as such a model. Neural networks
are known for being able to learn from a variety of different data, recognize hidden patterns, and adapt
accordingly. The Universal Approximation Theorem [31,32] explains this in a formal way.
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In this article, a new approach for the data preparation and calculation of laminar flame speeds
based on machine learning is proposed. Authors argue that this approach can better capture deviations
and irregularities introduced by experimental measurements of LBV mentioned in previous paragraphs
and provide a useful model to implement in CFD codes.

2. Experimental Data Sources

Experimental data from multiple publications was collected to be used during model training
and model performance evaluation. Authors focused on gathering experiments for hydrogen–air
and propane–air mixtures. Experiments needed to be clearly described and cover a wide array of
conditions (variable equivalence ratio, pressure, and temperature). An additional advantage was that
when a publication gathered multiple other data sources, such data was digitized and included in this
work. Discrepancies in experiments were in fact desired, as they introduce variability in data and make
the model more robust. That is why experiments conducted using different methods were included.

2.1. Hydrogen–Air

Experimental data of LBV measurements for hydrogen–air mixtures was taken from four different
publications and their references. Dahoe [33] conducted experiments on measuring LBV using pressure
variations in a windowless vessel. In his work, he investigated the equivalence ratio of the mixture
between 0.5 and 3.0. Initial conditions of temperature and pressure were kept constant. Additionally,
he referenced multiple other publications, which also included one that considered changes of initial
pressure and temperature. Those referenced publications were also taken into account while gathering
the data for this work. The next batch of experimental data was also prepared based on changing the
equivalence ratio of hydrogen–air mixture. Results were taken form multiple publications: works by
Tse et al. [34], Dowdy et al. [35], Egolfopoulos and Law [36], Aung et al. [37], and Kwon and Faeth [38].
Kuznetsov et al. [39] investigated LBV values of hydrogen–air mixtures at subatmospheric pressures
(1 bar–200 mbar) and elevated temperature (up to 300 °C). Experiments were performed in a spherical
explosion bomb equipped with quartz windows. They also referenced other experimental works,
the results of which were also included in the prepared dataset. The last source of hydrogen–air related
data was the publication by Pareja et al. [40]. They conducted experiments using particle-tracking
velocimetry approach and combining it with Schlieren photography. They investigated equivalence
ratios from 0.8 to 3.0. Their work contained multiple other references, which were included as well.

Ranges of the resulting dataset were as follows: pressure 0.2–2.07 (bar), equivalence ratio
0.153–4.028, and temperature 289–573 (K). Total number of experimental points: 577.

2.2. Propane–Air

For propane–air mixtures, 3 main publications were taken into consideration. Similarly, as with
hydrogen–air mixture, the data from references of these works was also included. Ebaid et al. [41]
performed a series of LBV measurements on a built experimental setup consisting of K-type
thermocouples in a cylindrical vessel. They investigated 3 different initial pressures (0.5, 1,
and 1.5 bar) and temperatures (300, 325, and 350 K) over a variable equivalence ratio (0.6–1.5).
In their work, they referenced a couple of other publications, the data from which was included
in the dataset of this article. A batch of experimental data was obtained from 2 articles by
Vagelopoulos et al. [42,43], in which LBV for a wide array of equivalence ratios was measured.
Finally, a work by [18], which gathered multiple data sources for multiple mixtures of fuels with
air, including propane, was used in the present article to digitalize all the data referenced by them.
Their aim was to construct LBV correlations, but apart from that, the study proved very useful in
collecting the data from multiple articles in one place.

Ranges of the resulting dataset were as follows: pressure 0.49–20 (bar), equivalence ratio 0.594–1.7,
and temperature 298–811.22 (K). Total number of experimental points: 536.



Energies 2020, 13, 3381 5 of 16

3. Data Preprocessing

An essential part of every ML model preparation process is the preprocessing of data. It is known
that ML models are just as good as the data that is used to train them [44]. There are two main
requirements for the data to be useful to train ML models, quantity and quality. ML models need large
datasets in order to be trained well. A small training dataset will very often result in a model that is
not capable of generalization when fed with new data for predictions. In order to avoid this, new data
needs to be gathered or simulated. This is especially true for ANNs, which require significantly
more data for proper training than simpler algorithms, such as Support Vector Machines or Random
Forest. This is caused by the complex nature of ANNs and the number of variable parameters to
train. Quality of the data can be checked and ensured in many different ways and is a challenge
itself. Fundamental methods include checking data for outliers and missing values, then imputing
or removing these from the dataset. These cover the algorithms that fill them with the median value,
the mean value, last known value, or interpolate data between two nearest points. More sophisticated
approaches include such algorithms as Singular Value Decomposition [45], K-Nearest Neighbors [46],
or Deep Neural Network approaches (DNN) [47], where DNN is just a Neural Network with more
than 1 hidden layer. Taking the above properties and statements into consideration, the present work
put emphasis on data preprocessing. An original data generation algorithm was developed, one that is
based on experimental data and standard deviation of the measurements. The algorithm steps that
were followed to obtain a proper and useful dataset to train the models on are listed below:

• Removal of the outliers and using linear interpolation to fill those values;
• Rounding of data (precision of 10 for temperature (K), 0.01 for pressure (bar) and 0.01 for

equivalence ratio (fraction));
• Approximation of experimental data (over each variable separately);
• Approximation of the standard deviation of experimental data (over each variable separately);
• Data simulation (over each variable separately).

Firstly, a standard outlier-detection-algorithm was used, which deleted entries that differed
by more than three standard deviations from the mean value. Those values were replaced by a
linear interpolation of two nearest values in the dataset. Then, the data needed to be rounded.
This is caused by the fact that a common basis for variability of different parameters was needed.
Consequently, if the temperature was, for example, 290, 293, and 300 K, and pressure 0.250 and
0.300 bar, usually no more than two or three measurements for different values of equivalence ratio
for these conditions were available. Moreover, the values needed rounding because of the way they
were digitalized from the articles (by clicking on the plots, and automatically reading clicked values
with high precision), which, for example, resulted in multiple values very close to 293 K, as opposed
to a couple of entries for exactly this temperature. During the analysis of experimental data from the
referenced articles, we found that the number of samples from each separate source is usually not
larger than 20–30 measurements. Even summing these samples over multiple articles, the overall
number of samples was definitely insufficient to be utilized as training dataset for a neural network.
It was necessary to conduct data simulation in order to increase the number of samples. The procedure
we followed was as follows: In the preprocessed experimental data (as described above), find all
unique pairs of 2 variables (unique pairs of p and T, of p and φ, and of φ and T). For each unique
pair, find unique values of the 3rd variable. For example, having p = const and T = const, the result
is LBV = f (φ). For each of these relations, a polynomial regression model was fitted to represent
mean values in this collection of measurements. Powers of the polynomial were as follows: p = 2,
T = 1, φ = 2. Additional models were fitted for standard deviation (SD) of the measurements.
This information was usually not available, but the result of digitalizing the data was that multiple
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values for the same parameter were often present. Based on that, we made the assumption that SD
could be approximated using formula (1), commonly known as the range rule of thumb [48].

SD ≈ max−min
4

. (1)

Consequently, the resulting polynomial approximations were used to perform data simulation.
In one simulation step, it was assumed that LBV followed the Normal Distribution for every given
changing variable, while keeping the other 2 constant. The LBV probability density function (PDF) is
described with the following formula (2):

f (x|µ, σ2) =
1

σ
√

2π
e−(x−µ)2

/
2σ2

, (2)

where µ (mean) and σ (standard deviation) were calculated using the polynomial approximations of
mean value in the experiments and SD values, respectively.

A total of 7300 points for hydrogen–air mixture and 5200 points for propane–air mixture was
randomly sampled from an individual PDF for every distinct value of LBV. An exemplary visualization
of the generated data is shown in Figures 1 and 2.

Generated data was used as a training dataset for models. The test set was the raw
experimental data.

Figure 1. Simulated mean laminar burning velocity (LBV) (line) for H2–air, as a function of equivalence
ratio. Dots represent the experimental data.

Figure 2. Simulated points (crosses) for C3H8–air, as a function of equivalence ratio. Dots represent the
experimental data.
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4. Model Construction, Tuning, and Training

The two models were built with the following assumptions about their architectures:

• Initial conditions: 1 atm, 300 K;
• Three inputs: pressure (bar), temperature (K), and equivalence ratio (fractional form);
• One output: LBV (m/s);
• Hidden layers activation functions: hyperbolic tangent;
• Output layer activation function: identity.

The exact model structure, including the number of hidden layers, the number of nodes in each
layer, and the L2 regularization parameter [49], was derived by means of a hyperparameter grid
search [50] using the following constraints:

• The number of hidden layers ranging from 1 to 4;
• The number of nodes (equal in every hidden layer) between 2 and 5;
• The regularization parameter: 10−3, 10−4, 10−5, 10−6, 10−7, or 0.

In order to develop the models, we used R programming language and FCNN4R package [51].
Using a 5-fold cross-validation [52], all combinations of described hyperparameters were evaluated
on the training set. Cross-validation is a method of subsequently dividing (folding) the data into
two parts, then training the algorithm on one of the parts and evaluating its performance on the other.
The overall performance is usually a mean value calculated from all the folds. This technique helps
to prevent overfitting, which can be noticed when algorithms produce good results on the data they
were trained on (or very similar data), but they do not generalize and perform poorly on the data not
included in training [44]. We used Rprop [53] algorithm to optimize the ANN weights. It was set to
minimize the mean squared error (MSE) between the training dataset and predictions. Data scaling to
the range of [−1,1] was applied before model tuning and training, with the aim to reduce the training
time and help the algorithm to converge. The result of the model tuning phase was the following
optimal hyperparameters: 3 hidden layers with 4 nodes each and the L2 regularization coefficient
equal to 10−7. Based on the fact that the optimal architecture of both models resulted in the same setup,
it can be assumed that in case of applying such modeling for different mixtures, a good choice of the
architecture would be the one considered in this work. The final model visualization is presented
in Figure 3.

Figure 3. Final model schema

5. Model Validation

Subsequently to model tuning and training, each model’s predictions were compared to the
raw experimental data for the corresponding mixture. Table 1 shows the metrics which outline the
performance of the models. R-squared (R2) is an indicator that shows the variability and quality
of the fit between model and data. The closer to 1, the better [54]. In addition to the models’
performance, analytical formulas were tested for reference metrics. Used formulas were chosen



Energies 2020, 13, 3381 8 of 16

based on the ones that can be found in ddtFoam [55], an open-source Deflagration-to-Detonation solver
for OpenFoam software [56], as the aim is to implement the developed LBV models in a modified
solver. For hydrogen–air mixture, we used Ardey’s [57] formula (3) as a reference:

sL0 = −40452 · y4
H2

+ 21026 · y3
H2
− 3721.6 · y2

H2
+ 238.11 · yH2 − 1.5938

sL = sL0

(
T

Tre f

)α (
p

pre f

)β

,
(3)

where

sL0 —LBV of hydrogen–air mixture in reference conditions;
yH2 —mass fraction of hydrogen in the mixture;

sL —LBV of hydrogen–air mixture in given conditions;
Tre f —reference temperature, 298 K;
pre f —reference pressure, 1.013 · 105 Pa;

p —pressure the LBV is calculated for (Pa);
T —temperature the LBV is calculated for (K);
α —mixture-specific constant, 1.75;
β —mixture-specific constant, −0.2;

while for propane–air, we used Gülder’s [20] formula (4):

sL0 = 0.396 φ0.12 exp(−4.95(φ− 1.075)2)

sL = sL0

(
T

Tre f

)α (
p

pre f

)β

,
(4)

where

sL0 —LBV of hydrogen–air mixture in reference conditions;
φ —equivalence ratio of propane–air mixture;

sL —LBV of hydrogen–air mixture in given conditions;
Tre f —reference temperature, 298 K;
pre f —reference pressure, 1.013 · 105 Pa;

p —pressure the LBV is calculated for (Pa);
T —temperature the LBV is calculated for (K);
α —mixture-specific constant, 1.624;
β —mixture-specific constant, −0.301.

Table 1 shows that ANN model performed well and was clearly better at calculating LBV than
the exemplary analytical models. R-squared for both mixtures was above 0.9 (0.9192 and 0.9755
for hydrogen–air and propane–air, respectively), which indicates adequate fix and capturing of the
variability in the data. When investigating mean absolute percentage error (MAPE), one can notice
that for both models they are very similar (15.69 and 15.89). This, along with the high R-squared
values, indicates that models work equally well for both mixtures and are not dependent on the fuel.
MAPE of the order of 15% looks like a good place to improve the models, but one needs to notice
the mentioned high-variability and high-spread of experimental data. Based on that, such errors are
expected. Looking into the performance of the analytical models, it may be noticed that MAPE of
the propane–air formula is actually lower than that of the ANN model. Additionally, other metrics
like R-squared and mean absolute error look very good for this formula. However, it needs to be
noted that a lower MAPE for the formula resulted in a lower (worse) R-squared. This indicates that
there is always a trade-off in how models fit the data, and that above a certain threshold, it is hard to
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continue improving without sacrificing other properties. The ANNs performed well in optimizing
the fit and making it adequate in every case. The supremacy of ANN models may be clearly seen
in Figures 4–7, which show comparisons of experimental vs. calculated values for hydrogen–air
analytical formula and ANN, and propane–air formula and ANN, respectively. The closer the points
to the diagonal (the dotted line), the better the fit. Especially in Figure 6, it can be observed that
the fit for the formula for propane–air is acceptable for small velocities; however, for the larger ones
(above approximately 1 m/s), the formula highly underestimates the LBV values. Such spread and
inconsistency are not observable in Figure 7, which represents the fit of the ANN model for propane–air.
Here, errors are evenly distributed across the values of the LBV. For hydrogen, Figure 4 shows high
error and inadequate fit of the formula, which confirms numbers found in Table 1. The formula highly
overestimates the LBV for this mixture, while Figure 5 clearly shows a much better fit. Obviously,
some spread can also be seen, but as mentioned before, this spread is to be associated with the high
variability, uncertainty, and the nature of the experimental measurements of LBV.

Table 1. Models and reference analytical formulas performance metrics on the test (experiments)
dataset. ANN—artificial neural network.

Mean Absolute Error (m/s) Mean Absolute Percentage Error (%) R-Squared

ANN H2—air 0.3023 15.69 0.9192

Analytical formula H2—air 1.5118 34.78 0.7014

ANN C3H8—air 0.047 15.89 0.9755

Analytical formula C3H8—air 0.0641 14.71 0.9089

Figures 8–10 show exemplary plots of experimental data, analytical formulas, and ANN
predictions over variable pressure, equivalence ratio, and temperature, respectively, for hydrogen–air
mixture. While one variable was assumed changing, the other two variables were left constant.
Plots show that ANN is capable of making predictions over all of its inputs and does not indicate any
visible loss of accuracy during this task. Values predicted by the ANN stick reasonably closely to the
experimental values. The output is very similar for Figures 11–13, which present analogous plots but
for propane–air mixture. Importantly, as shown by Table 1 and previous paragraphs, the analytical
formula performs noticeably better in comparison with the experimental data than its counterpart for
hydrogen–air mixture.

Figure 4. Formula calculations vs. experiments comparison for H2–air mixture.
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Figure 5. Model prediction vs. experiments comparison for H2–air mixture.

Figure 6. Formula calculations vs. experiments comparison for C3H8–air mixture.

Figure 7. Model prediction vs. experiments comparison for C3H8–air mixture.
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Figure 8. Exemplary comparison of models predictions, analytical formula calculations, and experiments
for variable pressure, constant temperature of 373 K, and constant equivalence ratio of 0.51. H2–air mixture.

Figure 9. Exemplary comparison of models predictions, analytical formula calculations, and experiments
for variable equivalence ratio, constant temperature of 373 K, and constant pressure of 1 bar. H2–air mixture.

Figure 10. Exemplary comparison of models predictions, analytical formula calculations, and experiments
for variable temperature, constant pressure of 1 bar, and constant equivalence ratio of 0.84. H2–air mixture.
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Figure 11. Exemplary comparison of models predictions, analytical formula calculations, and experiments
for variable pressure, constant temperature of 350 K, and constant equivalence ratio of 1.1. C3H8–air mixture.

Figure 12. Exemplary comparison of models predictions, analytical formula calculations and
experiments for variable equivalence ratio, constant temperature of 644 K, and constant pressure
of 1 bar. C3H8–air mixture.

Figure 13. Exemplary comparison of models predictions, analytical formula calculations,
and experiments for variable temperature, constant pressure of 1 bar, and constant equivalence ratio
of 1. C3H8–air mixture.
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6. Conclusions

In this work, multiple deep neural network models for predicting LBV values for hydrogen–air
and propane–air mixtures were developed and validated. Additionally, the data preparation process
was described in detail as authors believe it was crucial in achieving good performance of the models
considered in this work. This process can be further enhanced or even adapted for the use in other
modeling tasks that heavily depend on the experimental data. The models’ inputs were pressure (bar),
equivalence ratio, and temperature (K). Based on the provided values, models were able to calculate
LBV (m/s) values with high accuracy for a wide range of input values. Main metrics: R-squared
and MAPE showed an adequate fit and small error, taking into consideration the issues connected
with experimental values of LBV mentioned in the “Introduction and Motivation” section. Moreover,
the results of the models were compared with exemplary analytical formulas for calculating LBV
that are widely used in CFD codes. The developed model outperformed the analytical formulas in
how well they fit the data. The analytical formula for propane–air LBV values also resulted in a good
performance, achieving smaller MAPE than the ANN model. However, as could be noticed in the
plots later on, it sacrificed the fit to the data, especially for the larger LBV values, which proved that
ANNs can asses those kinds of situations and adapt accordingly, resulting in the most optimal fit.
The successful development of both models demonstrated that ANNs can be used to model LBV
of many mixtures, not only those considered in this work. It was shown that the cited publications
also prove this statement. It occurred that the only requirement for developing such models is the
availability of the data. Summing up, the ANNs predictions phase is fast enough to be integrated into
CFD code and used instead of the analytical formulas to achieve higher accuracy of LBV-based models
without sacrificing a noticeable amount of the simulation time.

Models developed in this work can be accessed via the link provided in the supplementary materials.

Supplementary Materials: The models presented in this study are available on github as C source code under
the following address: https://github.com/konradmalik/ann-laminar-burning-velocity.git.
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