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Abstract: The integration of renewable resources is quickly growing in the Nordic power system
(NPS), and it has led to increasing challenges for the operation and control of the NPS. Nordic
countries require that the first-generation power plants have a more flexible operation regime to
overcomes power imbalances coming from fluctuations of the demand and supply. This paper assesses
optimal frequency support of variable-speed hydropower plants installed in Telemark and Vestfold,
Norway, considering future scenarios of NPS. The total kinetic energy of the NPS is expected to be
significantly reduced in the future. This paper looks into the implementation of hydropower units
with a variable-speed operation regime and battery energy storage systems (BESS), equipped with
fast-active power controller (FAPC) technology, to provide fast frequency response after a system
frequency disturbance. The frequency support was formulated as an optimization process; therefore,
the parameter of the FAPC was optimally calculated for future scenarios of low inertia in NPS.
Three main futures scenarios were developed for technology penetration in the Vestfold and Telemark
area in Norway. The simulation results showed that the integration variable-speed hydropower units
and BESS technologies improved the frequency response even in low-kinetic energy scenarios.

Keywords: battery energy store system; converter-fed synchronous machine; doubly fed induction
machine; fast active power injection controller; frequency control; frequency support; future Nordic
power system; kinetic energy; variable-speed hydropower plants

1. Introduction

Close to 80% of the electricity produced the Nordic countries is already emission-free with
hydropower alone representing half of all electricity generated in the region [1]. Hydroelectricity is
a significant source of energy, mainly in Nordic countries, especially in Norway. The Norwegian
hydropower system was developed over a period of more than 100 years; however, the substantial
capacity of the hydropower plants was installed from the 1950s until the end of the 1980s [2]. Official
figures indicate the installed capacity of the Norwegian power supply system was 33,755 MW(at the
beginning of 2018) and normal annual production was 141 TWh [3,4]. In Sweden, most hydropower
installations are from the 1950s and 1960s [2,4]. Installed hydropower capacity in Sweden was
16,506 MW in 2018 [3]. Many of those power plants installed in Nordic countries have reached an
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age when upgrading and extension are needed, primarily because of the state of the mechanical and
electrical equipment.

The modern power system is experiencing many changes. One of them is the increased volume
of highly variable power generation coming from renewable resources like wind power and solar.
As a consequence, the generation mix must be able to deliver a fast response in order to deal with the
high variability of renewable sources. Thus, the pressure is on the traditional generation of power
systems to adapt faster to variations in demand; this situation puts extra-stress on the traditional
dispatchable resources such as conventional hydropower plants. The secure and economical operation
of the modern power system requires the generation power plants to have a more flexible operation
regime to keep the balance coming from the fluctuations coming from the demand and supply.

The majority of the hydropower plants in operation today are based in classical damp, and they
are equipped with classic fixed-speed synchronous generators directly connected to the grid. They are
carefully controlled in order to adapt to the system frequency (e.g., 50 Hz). This approach makes
the operation regime as a constant speed operation where the speed of rotation is set by the optimal
speed of the hydraulic machine. The traditional hydropower plants are based on generation units
equipped with traditional Francis turbines; they are designed for a wide range of heads and flows.
The conventional pump and storage power plants are equipped with reversible pump-turbines to
have a runner with fixed geometry. In both cases, controlling the rotational speed and efficiency of
the generation units at several regimes is not always possible, the hydraulic efficiency is high at the
operating design point, but it drops when the operation is changed from this point at the fixed speed.

A more attractive option is to allow the hydraulic turbine to operate at an adjustable speed,
as a consequence, enabling high efficiency at load level different to operating design point. From the
operational point of view, the variable speed operation of the hydro turbine is very attractive because
add the needed flexibility require to tackle the balancing challenges coming from the renewable
generation. The variable speed of the hydraulic turbine offers many other benefits such as [4]:
extending the life-time of the turbine by reducing the tear and wear of the mechanical elements of the
hydraulic turbine. Also, it produces a substantial decrease in the number of starts and stops, yielding
less runner fatigue damage. Moreover, it improves efficiency with significant variation in the head,
at part load and with large discharge variations. Furthermore, a lower number of generation units are
needed to handle substantial variations in discharge and improves the ability to control active power
in pumping mode.

The installations of the hydropower plants were forced to change due to the integration of new
technologies in the power system, new market requirements, and improved designs and materials.
The combination of hydropower plants with a variable speed regime and a renewable resources,
like wind power and solar, seem to be a solution to maintain the balance between the generation and
the demand in the Nordic power system since it is expected that 90% of the electrical production
coming from wind and hydropower in the year 2050. Moreover, there are several projects of exchange
energy between Nordic countries and other countries in Europe. For instance, Norway has a plan to
import the excess of wind-generation from Denmark and export hydro-generation back when wind
power plants have low energy production, allowing Denmark 40% of its total production to come
from renewable sources. Like this example, there are projects with Netherlands, Sweden, and Finland,
and there are plans for a similar project with Germany and the UK [5].

The purpose of this research paper is evaluating the future of the Nordic power system in terms
of frequency stability considering the predicted decrease of the total kinetic energy and the increase
of the power demand in the forthcoming 20 years. The imminent dismissing of high inertia power
plants (thermal and nuclear power plants) as well as the inclusion of more intermittent sources
(wind and solar power plants) raises the need to evaluate the retrofit of the existing hydropower
plants. Retrofitting the conventional hydropower plants by including variable speed regime using
converter-fed synchronous machines and doubly fed induction machine is the most viable option for
the Nordic power system, due to the high dependence on energy production coming from hydropower



Energies 2020, 13, 3377 3 of 24

plants that it will experience in the upcoming years and in addition to the capability to regulate the
frequency and efficiency that these variable speed technologies offer. Furthermore, the installation of
the battery energy storage system in the Nordic power system is considered, since it can provide fast
frequency support, it can contribute to system inertia, and its costs have been decreasing in recent years.
These three technologies are equipped with a frequency sensitive control that determines the amount
of active power that will be delivered to face a frequency disturbance. It is of interest to evaluate how
those technologies can improve the frequency response facing the decreasing kinetic energy when a
disturbance occurs. To carried out this study a portion of the Norwegian power system was modelled
in DIgSILENT® PowerFactoryTM, and a set of future scenarios were defined following the predicted
changes on the Nordic power system in the next 20 years. The parameters of the frequency sensitivity
control were optimized to provide optimal frequency support to the Nordic power system and enhance
the frequency response. The improvement of the frequency response was evaluated by computing
several frequency indicators.

The rest of this paper is organized as follows: Section 2 presents a detailed description of the
pumped-storage hydropower plants and the variable-speed hydro plants. Section 3 introduces the
principle of the battery energy storage system. Section 4 describes the frequency control optimization,
its formulation and the frequency indicators. Section 5 is dedicated to present the future scenarios
of the Nordic power system for the period 2020–2040. Section 6 presents the result of evaluating the
defined future scenarios. Section 7 provides the main conclusions of this research paper.

2. Pumped-Storage Hydro Plants (PSHPs)

Hydropower has been a source of mechanical power since ancient times, used to grind flour but
also for many other tasks. One of those tasks is producing electricity, and for this purpose, hydropower
is used for four different approaches: conventional (dams), pumped-storage (PS), run-of-the-river
(ROR), and tide. The conventional dams are the most widely used approach to hydropower production.
Norway has more than 900 hydropower plants, and they provide nearly 96% of its electricity, making it
the sixth-largest hydropower producer in the world. On the other hand, an opportunistic approach of
using hydropower production is the so-called pumped hydro storage (PHS); it is the oldest technology
for large-scale energy storage. Around 1392 MW of the total installed capacity (33,755 MW) in Norway
are PHS, and there is more potential by retrofitting or updating the installed hydropower plants.
The PHS uses a convenient and straightforward principle with two water reservoirs located at different
altitudes; when water is released from the higher reservoir to the lower reservoir the kinetic energy of
the water flow released is used by the hydro turbine and generator to produce electricity. There is the
possibility of using electricity from the power grid to refill the higher reservoir by using the hydro
turbine in pump operation mode.

2.1. Variable-Speed Operation of PSHP

Several types of runners are available for hydropower plant application: Pelton, Francis, and Kaplan.
Traditionally, the hydropower units are optimally designed to operate a specific rotational speed, head,
and discharge. Thus, a fixed speed operation regime allows only very limited deviations of head and
discharge because of its geometry. The hydraulic turbine may reach its maximum efficiency of energy
conversion, cavitation and vibration-free operation when working at rated conditions (rotational speed,
head, and discharge). The hydraulic efficiency curve for fixed speed operation is designed so that the
efficiency is highest at the best point for which the turbine is designed. Therefore, if the operating point
is moved away from the best point, the efficiency drops. The Francis turbine type is one of the most
flexible runners because it allows a wide variation of the operation discharge. However, changes in the
head results in an extreme reduction on hydraulic efficiency and the variable speed operation can be
particularly advantageous in Francis turbines with high specific speed (nqA).
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The steady-state operation of a hydraulic runner, such as the Francis turbine, is characterized by
the rotational speed (n) and the discharge (Q):

n11 =
nD
√

H
(1)

Q11 =
Q

D2
√

H
(2)

where H is the nominal head (m), Q the rated discharge (m3/sec), n the nominal speed (rpm), and D the
runner diameter (m). The above equation can be used to create the topographic curves for a given
turbine of pump–turbine working in turbine mode, also known as a Hill diagram (see Figure 1). For a
typical Francis turbine, the efficiency hill chart is given in unit values n11– Q11 where unit speed (n11)
and unit discharge (Q11) are given in (1)–(2) and the unit power (P11) is calculated as:

P11 =
P

D2
1

√

H3
(3)

where P is the power input of the turbine (typically in MW).
The values n11 and Q11 lies close to the best point of operation (‘bep’ in Figure 1) that gives the best

efficiency of the runner. Consider a hydraulic turbine working at the ‘bep’ 1O and then the operating is
shifted to 2O (discharge and speed maintained but the head is reduced) as a consequence the efficiency
drops from η1 to η2. Recovery to η3 efficiency ( 3O) is possible by reducing the speed to n4, with further
improvement possible ( 4O, 5O) by decreasing the discharge (from Q4 to Q5).

Figure 1. Hill diagram showing the topographic curves of efficiency for a pump–turbine operating in
the turbine mode.

From the previous analysis, it is shown that the turbine efficiency is higher for variable speed
operation than for fixed speed operation, but that the efficiency gain is smallest at the best point
of operation at rated power and head. Some scientific publications have demonstrated that the
hydraulic efficiency would be 3–10 percentage points higher for variable speed than for conventional
operation [4,6].

Figure 2 shows representative hydraulic turbine efficiency curves over a range of head and power
output for both single and adjustable speed units. From this figure, it is clear the hydraulic efficiency
gain is most significant at low power outputs and low head [7,8]. There is some additional efficiency
gain at operation above rated power and rated head, but the main benefits of variable speed operation
are achieved at operation below the best point [4].

There are several advantages of the variable speed of the hydraulic turbines. However, traditional
hydropower units are not designed to operate at variable speeds; in fact, they are designed and built to
operate at a fixed speed to obtain a constant frequency by using a classical synchronous generator
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directly connected to the power networks. The authors in Reference [6] found that by using a DC rather
than an AC link, it was no longer necessary to tie the generator synchronously to the system frequency;
in fact, the speed of the hydraulic turbine could be adjusted freely to satisfy the load demand at the
maximum possible hydraulic efficiency. The results in Reference [6] indicated that in addition to an
increased hydraulic turbine efficiency of a partial load, the efficiency of large synchronous machines
operated with loads lower than the rated output power had been found to increase with variable speed
operation [4,6]. At partial loading, down to 40% of rated power, the efficiency of the synchronous
machine was found to increase by up to one percentage point [4].

Figure 2. Hydraulic turbine efficiency (%) versus: (a) rated head (% of the rated value) and (b) rated
power output (% of the rated output power), considering fixed-speed and variable-speed operation.

The first implementations of variable-speed technology started during the early 1990s, and it was
mainly dedicated for reversible pump-turbines (RPTs) installed at pumped-storage power plants in Japan
and Europe. Installations of this technology were recently done for pumped-storage projects in India
and China [9], Slovenia [10], Japan [11], South Africa [12], and Switzerland [13].

2.2. Generator Technologies for Variable-Speed Operation of PSHP

The variable operation of the hydro turbine offers many advantages, and the majority of
the generation technologies used to enable variable speed use of power electronics converters.
Two technologies are the most used today to achieve the variable-speed operation conditions in
hydropower units [14]:

• Doubly fed induction machines (DFIMs);
• Converter-fed synchronous machines (CFSMs).

The CFSM is recognized to have superior performance, but one crucial drawback to this technology
is that it requires a fully rated power electronic converter (FRPEC), the use of a FRPEC implies a
high-cost, and it is not suitable for high power levels. As a consequence, the DFIM results to be a
more attractive option for variable-speed hydro turbines at high power levels applications, because the
power electronic converter itself can be considerably smaller (size of converter ~10m3/MVA [12]), as it
is not rated to 100% of the generator capacity as in the CFSM.

2.2.1. Doubly Fed Induction Machines (DFIMs)

Doubly fed induction machines (DFIMs) have been used for many years in variable speed
wind turbines, with a successful market share in modern wind farms. The DPIM for variable speed
application has been proved, and it is a very mature option for the development of variable-speed
hydropower units; in fact, this technology has been applied for pumped storage plants [14] with power
ratings up to 400 MVA.

Figure 3 shows a general scheme of a DFIM used for a variable-speed hydro turbine. The DFIM is
coupled to the hydro turbine, the DFIM stator is directly connected to the grid, while the rotor windings
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are connected via a power electronic converter, using slip rings. The power electronic converter consists
of a back-to-back converter, i.e., rotor side converter (RSC) and grid-side converter (GSC), which has a
power rating on the partial scale of the DFIM rated power. The DFIM uses the exchange between the
wound rotor and the power electronic converter to provide the speed variation. Therefore, the stator
needs to be oversized in sub-synchronous mode, due to the additional power transiting from the rotor
to the stator. The power electronic converter is rated to a lower than the generator capacity, as power
just needed to feed the excitation, which is a function of the expected speed variation. The DFIM rotors
typically have two to three times the number of turns of the stator, leading to a higher rotor voltage
and lower current [15]. Doubly fed induction machine technology is generally the preferred solution
for large unit outputs (>100 MW) [16].

Figure 3. Schematic representation of asynchronous variable speed with doubly fed induction machines
(DFIM) technology.

2.2.2. Converter-Fed Synchronous Machines (CFSMs)

Converter-fed synchronous machine (CFSM) technologies use a classical synchronous machine
that is connected to the power system via a full-rated power electronic converter.

Figure 4 shows a general scheme of a CFSM used for a variable-speed hydro turbine. Typically,
a back-to-back voltage source converter (VSC) is used to connect two AC sides using a DC link.
The back-to-back power electronic converter allows decoupling the frequency of the synchronous
machine from the AC grid, allowing a wide range of rotor speed and frequency variation. The generated
variable frequency is converted into DC power before being inverted to AC power in a desired
continuously frequency that is the synchronous frequency of the power system. As all generated
power must pass through the power electronic converters, they must be rated to the full power of
the generator with a relatively high cost, as a consequence, the application of the CFSM is limited to
relatively low power ratings (<100 MW) [17]. Also, another important consideration of the CFSM is
the space required to accommodate a new generation unit. Finally, another element to consider in the
CFSM is the efficiency drops due to the losses in the back-to-back converter [17].

Figure 4. Schematic representation of synchronous variable speed with converter-fed synchronous
machine (CFSM) technology.
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3. Energy Storage System to Support Hydropower Sources in the NPS

Hydropower units have two main characteristics that have made them take a prominent role in
the power system: are categorized as a renewable resource and have higher controllability compared
to both wind and solar power. Moreover, hydropower turbines as today provide a natural inertial
response. This characteristic is crucial for frequency control purposes, especially as the low inertia
scenarios in the NPS, as caused by the decommissioning of high inertia power sources (nuclear, thermal)
and the grown replacement by intermittent sources (wind, solar) with low inertia [18]. This paradigm
change makes it necessary to introduce new technologies that can be used to give support and help
to maintain system frequency. The use of energy storage systems (ESSs) has gotten a much more
significant role to keep the balance in the power system by storing energy and converting it back when
it is needed [19]. The global database for the Department of Energy (DOE based in USA), which was
last updated 18th February 2020, shows that there are over 1600 ESSs projects in the world: 763 of
battery energy storage system (BESS), 350 of pumped hydro storage, 53 of the flywheel, 29 of the
supercapacitor, and the rest belong to another kind of ESSs [20]. Most of the projects are combined with
wind or solar plants, but they could also be combined with hydropower generation units to increase
the flexibility of the units. Of the technologies that are currently on the market, BESS seems to be the
best suited to increase the stability of the system in cooperation with hydropower units because it offers
very high efficiency and energy density, fast response and has long time life [21]. Therefore, in this
research paper, BESS technology is integrated into combining with the variable speed technologies as
an alternative to facing the dropping of system inertia in the future years.

Battery Energy Storage System

The battery energy storage system (BESS) follows a process of three main stages consisting of
converting the electrical energy into another energy form, the storage of the transformed energy during
a period of time, and the transformation of the stored energy into electrical energy again. Those three
steps are related to three main subsystems [22]:

1. Power conversion system: this subsystem consists of an electrical or an electromechanical device
that allows converting electrical energy;

2. Battery energy system: the principal element of this subsystem is an electromechanical energy
storage technology (battery) to store/deliver the energy;

3. The controllers associated to the BESS: this subsystem has a set of controllers that can be divided
into two categories: (i) fast inner controller is directly connected to the power conversion system
and is related to the control of the converter’s AC currents of the dq-axis, and (ii) slow outer
controllers groups three controls P-Q control, fast active power control, and battery charge control.

4. Frequency Control Optimization

This section is dedicated to describing the frequency control considering the TSO/DSO iterations.
Moreover, it is fully explained the fast-active power controller as a control strategy to provide fast
frequency response to the power system. Finally, the frequency control optimization is the formulate
based on the gain of the FAPC installed at the DFIM, CFSM, and BESS technologies to minimize the
maximum frequency deviation following a system frequency disturbance.

4.1. Frequency Control and TSO/DSO Interactions

The increasing integration of intermittent power sources such as wind and solar plants has created
an intrinsic uncertainty in the power balance between the production and the consumption of energy
in the power system. This issue has limited the transmission systems operators (TSOs) operational
capabilities, and the power system security has become dependent on the intermittent power sources
available in the distribution network. To counteract the effects of low inertia, TSOs have resorted to the
use of ESSs installed in the distribution network to provide fast frequency response (FFR) by absorbing
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or injecting active power to the grid. Therefore, the interaction of the TSOs and the distribution system
operators (DSOs) can help to balance the power supply and as a consequence has an effective frequency
control [23].

The TSO/DSO interactions can be described considering a transmission system equipped with NSG
synchronous generators connected to NDS distribution systems through sub-transmission networks
which contains power transformers and protection equipment. After a power imbalance, in the primary
frequency control period, the dynamic of the automatic voltage regulation and power system stabilizer
can be overlooked, and the frequency dynamics can be written using the swing equation [24]:

2Hk
ω0

dwk
dt = Pm,k − PSG,k −Dk(ωk −ω0)

dδk
dt = ωk −ω0 ∀k = 1, 2, . . . , NSG

(4)

where ωk is the angular speed, Dk is the damping coefficient, Hk is the inertia constant, Pm,k is the
mechanical power, and PSG,k is the electrical power of the k-th synchronous generator. Moreover, ω0 is
the nominal angular speed.

Meanwhile, the FFR support to the TSO from the DSOs consider the contribution of the active
power delivered by the ESSs installed in the grid. This paper considers three technologies that can
provide FFR support to the power system: DFIM, CFSM, and BESS. The DSO is denoted by the network
model of Vestfold and Telemark area in Norway connected to the TSO represented by the Nordic
power system (NPS) equivalent. The total active power contributing to FFR (PFFRC) can be written as:

PFFRC =

NDFIM∑
i=1

PDFIM,i +

NCFSM∑
j=1

PCFSM, j +

NBESS∑
k=1

PBESS,k ∀


i = 1, 2, . . .NDFIM

j = 1, 2, . . .NCFSM
k = 1, 2, . . .NBESS

(5)

where PDFIM,i represent the active power of the i-th DFIM, PCFSM,j is the active power of the j-th CFSM
and PBESS,k is the active power of the k-th BESS.

4.2. Fast Active Power Controller (FAPC)

The natural resistance of the synchronous generator to angular acceleration after a disturbance
comes from an inherent physical characteristic of its rotor, called inertia. This rotational inertia offers to
damp to the frequency. The scientific literature presents several controllers trying to mimic the behavior
of the synchronous generator by using power electronic converters (PECs). The main objective of the
PECs-based controllers enabling FFR of the PEC by injecting/absorbing active power using the local
measured frequency [25].

The fast-active power (FAP) controller is an FFR model that uses the frequency deviation to
regulate the injection/absorption of the active power of the PEC. The FAP controller injects active power
when the power system has an under-frequency condition, and it absorbs active power when the power
system is facing an over frequency condition. Moreover, the energy available in the DC side of the PEC
determinates its limits of operation. The FAP controller is able to deliver the fully active power in less
than one second typically after measurement of frequency deviation [26]. According to the classical
control theory, the FAP controller can be modelled implementing two strategies: proportional control
action and derivative control action. The proportional control action approach is used in this paper.

The proportional control action is linear feedback control in which the controlled variable is
adjusted by a gain that is proportional to the deviation of the measured value from the desired value.
In the proportional FAP (PFAP) controller the controlled variable is the active power, the desired
value is the nominal frequency (f 0), and the frequency deviation (∆f ) is represented by the difference
between f 0 and the local measured frequency (f ). Moreover, the gain is the droop coefficient (Kd) of
the ESS. Considering a dead band, saturation and that Kd can be varying between a range of values,
i.e., Kd ∈[Kd,min, Kd,max], the power–frequency characteristic of the PFAP controller is shown in Figure 5.
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Figure 5. Power–frequency characteristic of the proportional fast active power (PFAP) controller.

Mathematically speaking, the PFAP controller is described as follows:

P =


Kp f absortion if f > fmax

0 not acting if fmin ≤ f ≤ fmax

−Kp f injection if f < fmin

(6)

4.3. Optimization of the System Frequency Response

The classical synchronous generator response to a power imbalance is defined by the amount
of the kinetic energy stored on the rotating masses and the droop value used in the governors of
the synchronous generators. These two variables influence the frequency response of the power
system and therefore, the amount of active power provided by the generators to recover the balance
between generation power and demand power. The imminent substitution of power plants based
on synchronous generators by new technologies such as DFIM, CFSM rise the need to analyze the
repercussions that they have on the frequency response. Since the DFIM, CFSM technologies are
equipped with fast active power injection controllers, the frequency response of the power system can
be substantially improved by the appropriate amount of active power contribution. Therefore, it is of
utmost importance defining the correct settings of the droop coefficient (Kd) of the PFAP controller.

This section is dedicated to presenting the main frequency response characteristics and describing
the optimization approach used to compute the optimal settings of the droop coefficients.

4.3.1. Frequency Response Indicators

The power system requires several control actions to maintain the balance between the power
generation and the power demand, one of them is the primary response or primary frequency control.
The primary response typically takes place within the first 10–30 s after a frequency event occurs,
and it is very important since it acts to reduce de frequency deviation. The synchronous generators
cannot restore a power imbalance instantaneously. Therefore, the KE stored in rotating masses acts in
a small-time frame (typically less than 10 s) to arrest the frequency deviation, until the governor is
activated. As a consequence, the primary response involves two processes: the inertial response and
governor action, as shown in Figure 6. Due to the PFAP controllers are a sensitivity frequency control,
the active power is delivered with a very short time-delay, and its rate of change can be proportional to
the rate of change of frequency (see Figure 6b).

The main frequency response indicators are illustrated in Figure 6a and are defined following [27]:

• Minimum frequency (fmin): denotes the minimum value that the frequency reaches during the
transient response after a frequency event. It is computed as the difference between the nominal
frequency (f0) and the maximum frequency deviation (∆fmax) during the transient response,
i.e., fmin = f0−∆fmax.

• Minimum time (tmin): is the time at which the frequency reaches its minimum value (fmin) and its
maximum deviation (∆fmax). The inertial response begins from the disturbance start (ts) until the
frequency reaches its minimum value at tmin; after that, the governor action initiates.
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• Rate of Change of Frequency (ROCOF): represents the speed at which the frequency changes in one
second, i.e., it is the time derivative of the frequency and it is described as ROCOF = df /dt (Hz/s).

• Steady-state frequency (fss): is the value at which the frequency settle, typically is after the inertia
response and the governor action, at this point, the ROCOF is zero. This indicator gives a measure
of the ability of the power system to recuperate after a frequency event.

Figure 6. (a) frequency response and (b) active power contribution by the proportional fast active
power (PFAP) controller of a power system after a frequency event.

4.3.2. Optimization Problem

The volume of active power delivered by PFAP controllers, to arrest the frequency decaying,
depends on the Kd value. Therefore, the main objective is formulating the problem of determining the
settings of Kd as an optimization problem which allows minimizing the maximum frequency deviation
(∆fmax) by supplying the proper amount of active power.

Decision Variables

The optimization problem is formulated considering the technologies for variable speed operation
(i.e., DFIM and CFSM) and the battery energy storage system (BESS). The droop coefficients of these
three technologies were used as decision variables. The set of decision variables of each technology
were vectorially expressed as:

Kα =
[

Kd,α,1 Kd,α,2 · · · Kd,α,i · · · Kd,α,Nα

]
∀ i = 1, 2, . . .Nα (7)

Kβ =
[

Kd,β,1 Kd,β,2 · · · Kd,β, j · · · Kd,β,Nβ

]
∀ j = 1, 2, . . .Nβ (8)

Kγ =
[

Kd,γ,1 Kd,γ,2 · · · Kd,γ,k · · · Kd,γ,Nγ

]
∀ k = 1, 2, . . .Nγ (9)

where Kd,α,i is the droop coefficient of the i-th DFIM, Kd,β,j is the droop coefficient of the j-th CFSM
and Kd,γ,k, is the droop coefficient of the k-th BESS. Nα, Nβ, and Nγ is the number of DFIM, CFSM
and BESS connected to the power system, respectively. Computing the optimal settings of Kd the
active power injection by the PFAP controller is defined, and the frequency response can be improved.
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Therefore, the decision variable vector (x) is comprised of Kd of all technologies equipped with the
PFAP controller (i.e., DFIM, CFSM, and BESS), and it is written as:

x =
[

Kα Kβ Kγ

]
1×(Nα+Nβ+Nγ)

(10)

The decision variables were constricted by considering the upper and lower limits to maintain the
setting values of the PFAP controllers inside realistic physical values. The upper and lower limits are
defined as:

KL
α < Kα < KU

α

KL
β < Kβ < KU

β

KL
γ < Kγ < KU

γ

(11)

where the superscripts L and U indicate the lower and upper bounds of the droop coefficients of
DFIM (Kα), droop coefficients of CFSM (Kβ), and droop coefficients of BESS (Kγ), respectively.

Objective Function

The constant change in the production of energy or its demand cause second-by-second small
variations in the system’s frequency. When a power imbalance occurs (generally caused by the sudden
increase of demand or an outage of single/multiple generation units) the system frequency decrease.
The depth to which the system frequency drops (fmin) depends on the amount of the kinetic energy
stored on the synchronous generators. If the frequency falls too low, the under-frequency relays may be
activated the load shedding to arrest the frequency decaying and recover the frequency. To avoid the
activation of the under-frequency protections and, therefore, the unnecessary disconnection of loads,
it is essential to limit the drops of the frequency by minimizing the maximum frequency deviation
(∆fmax).

As it was intended to minimize the maximum frequency deviation regardless of where in the
system the disturbance occurs, the frequency of the power system was represented adopting the concept
of center of inertia (COI). The frequency of the center of inertia (fCOI) was computed as the inertia
weighted average of the frequencies of all generators connected to the power system. Mathematically
speaking, fCOI is written as [22]:

fCOI =

NG∑
i=1

Hi fi

HT
(12)

where Hi and fi are the inertia constant and frequency of the i-th generator, respectively. HT is the total
system inertia computed as

∑NG
i=1 Hi and NG is the number of generators connected to the power system.

The objective function to minimize the maximum frequency deviation of the center of inertia
(∆fCOI, max) is written as:

min
x

[ f (x)] = min
x

[∆ fCOI,max(x)] =
∣∣∣ f0 − fCOImin

∣∣∣ (13)

5. Defining of Future Scenarios

This section is dedicated to defining a series of possible scenarios for the integration of DFIM, CFSM,
and BESS technologies. The future scenarios were constructed taking into account the technological
advances that would have been done in the most recent years, the market/policies of today, and the
future Nordic power system.

5.1. Nordic Power System (NPS)

The Nordic power system (NPS) is the synchronous power system that spans the four countries of
Denmark, Finland, Norway and Sweden. No significant changes in the installed capacity of hydropower
in the NPS were expected, but there was a shift from the use of conventional power sources, such as
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thermal power and nuclear power, to more intermittent sources [2]. Table 1 shows an overview of the
expected variations in the production of wind, thermal, and nuclear power in the interval from 2020
to 2040.

Table 1. Power generation in the NPS in the period 2020–2040 [2].

Source 2020 (GW) 2030 (GW) 2040 (GW) Change 2020–2040 (%)

Wind 20 30 45 +125
Thermal 8 5 3.5 −56
Nuclear 12 10.5 2.5 −79

Table 1 shows that the majority of the nuclear power in the NPS will be decommissioned before
2040 and that the reduction in nuclear power will be compensated by an increase in wind power.
The wind turbines will not be placed in the same location as the nuclear power plants, and this will
change the layout and composition NPS in the future. The NPS will have a more significant percentage
of intermittent power sources that is located further from the loads, which will put a more significant
strain on the transmission grid.

The load is estimated to increase in the coming years, and they estimate that it will reach a peak
load of 79 GW in 2040, the relationship between the estimated production and consumption in the
NPS in the coming years is shown in Figure 7.

Figure 7. Production and consumption in the NPS (2018) and forecast by 2040 [3].

Figure 7 shows that it is estimated that the peak consumption in the NPS will exceed the installed
capacity of regulated power production. This means that the NPS will be reliant on the intermittent
power production and imports, to ensure the system stability, and prevent the need for load shedding.
This will also make it very important that the regulated power production is flexible so that it can be
used to keep the system stability.

A report carried out in 2016 by the Nordic TSOs highlights five key subjects as the main future
challenges for the Nordic grid [4]:

• System flexibility;
• Generation adequacy;
• Frequency quality;
• System inertia;
• Transmission adequacy.

The main causes of these issues are the transition to a more electrified society (system flexibility,
generation, and transmission adequacy), the decommission of nuclear power and greater penetration
of wind and solar (system inertia, generation and transmission adequacy) and the overall decrease in



Energies 2020, 13, 3377 13 of 24

the system inertia (frequency quality and system inertia). These issues led the Swedish TSO to carry
out a survey, which looked on the future market situation until 2040 for the NPS, which included their
estimation of the future development of the system inertia, which is shown in Figure 8.

Figure 8. System inertia in the NPS for the period 2020–2040 [5].

Figure 8 shows that the inertia in the NPS will decrease gradually over the next couple of decades.
One important factor for the year 2020 is the low inertia situations is presented in periods with a low
load in the NPS, in contrast, for the year 2040, a portion of the low inertia condition is produced at
hours with a high system load.

This also shows that it is necessary to introduce new sources of system inertia, to replace the high
inertia sources that are planned to be decommissioned in the next 20 years. This is required to ensure
that the system inertia does not reach a critically low level, which will lower the frequency quality
and make the system vulnerable for fault situations. Another major factor that has to be considered is
that Sweden is planning to decommission all of its Nuclear power production in the next 20–30 years.
This means that the rotational inertia of the NPS is considered to decrease in the same time period,
as the nuclear powerplants are getting decommissioned. The estimated rotational inertia that will be
used in the simulation is shown in Table 2, and the values are taken from Figure 8.

Table 2. Rotational energy in the NPS (GW·s) for the period 2020–2040.

Level 2020 2030 2040

High 260 255 190
Low 174 159 105

The peak load of the NPS is expected to increase in the simulation period to around 79 GW in
2040. The estimated load for the simulation period 2020–2040 is shown in Table 3, and it is estimated
from Figure 7.

Table 3. System load of the NPS (GW) for the period 2020–2040.

Level 2020 2030 2040

High 72.6 75.8 79
Low 28.6 31.8 35

5.2. Future Scenarios

The major waterways in the NPS are already used for hydropower production or are considered as
natural reserves, so it is not expected that there will be built out any new big hydropower plants in the
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100MW class in the near future. Therefore, the most significant evolution in the hydropower production
in the NPS will be the reinvestment or expansion of already existing powerplants. This reinvestment
or expansion can vary from a reduction the friction of the shafts to increase the overall efficiency of
the plant, to overhauling the complete powerplant, which includes building a new power station
with the state-of-the-art control units and turbines. The decrease of rotational energy and the increase
of the general load is decreasing the overall system stability, and this means that the system gets
more vulnerable for disturbances. The scenarios in this paper will look into the impact of introducing
hydropower generation units with a variable speed operation regime and battery energy storage
systems on system stability.

The scenarios are built considering ten-year interval at 2020, 2030 and 2040. Each ten-year interval
considers three main scenarios:

• Scenario 0: This scenario considers only the maintenance action of the existing hydropower
units in the system. Therefore, new types of technologies are not integrated into the system;
the purpose of this scenario is observing the performance of the NPS to a disturbance with the
existing conventional power plants based on synchronous generators any other technology is
assumed to be no frequency sensible.

• Scenario 1: In this scenario, some significant hydropower generation (greater than 100 MW) will
be replaced with DFIM units and medium hydropower generation units (less than 100 MW) will
be substituted with CFSM units. This will be done in two intervals: three units will be replaced in
the year 2030, and an additional four will be replaced in the year 2040. This scenario will mainly
focus on looking into how the implementation of variable-speed hydro will impact the overall
system frequency stability.

• Scenario 2: This scenario follows the same pattern as Scenario 1, but also it will include the
installation of five BESSs, one will be introduced in the year 2030, and the remaining four will
be implemented in the year 2040. This scenario investigates the benefits related to the system
stability installing BESS in the NPS.

The scenarios defined above will be focused on the case of the low rotational energy since it
represents the critical operation of the NPS.

5.2.1. Year 2020

For the year 2020, the model is used as it is, without any changes to the NPS model. This year will
be used as a reference point, to see how the future scenarios will compare to the current state of the
NPS. Therefore, only Scenario 0 will be performed considering the amount of low rotational energy
established for this year in Table 2.

5.2.2. Year 2030

The year 2030 will experience a slight drop in rotational energy, as the most significant drop of
rotational energy is expected to happen in the interval 2030–2040, as the Swedish nuclear powerplants
will be decommissioned because of old age. Therefore, it is not expected to be any major changes in
the stability of the NPS in this year. The DFIM technologies are expected to be the dominant solution
with variable-speed hydro for high power applications, so any big powerplants over 100 MW will be
built with the use of DFIM, while smaller powerplants under 100 MW will use CFSM technologies as
the preferred solution. The battery energy storage system could still be considered as too expensive to
be implemented in the NPS, because of the low power prices, but it could be possible that there will be
implemented a demo installation of batteries at one of the smaller hydropower plants, to see how it
can be implemented in the NPS in the future.
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Scenario 0

For this scenario is it only expected to be done maintenance and retrofitting to a level that all the
power stations have the same capabilities as they have in today’s NPS. The total kinetic energy of the
NPS decreases 8.62% concerning the year 2020, taking a value of 159 GW·s.

Scenario 1

In this scenario, the total kinetic energy is the same as Scenario 0, but there will be introduced
variable speed capabilities at three of the systems powerplants. Two powerplants over 100 MW,
are replaced with DFIM technology and one medium-sized hydropower generation unit will be
substituted with CFSM. The total production capacity of variable-speed hydropower plants installed
in the NPS is 374 MVA. The location of the different varied speed installations in the model are
summarized in Table 4.

Table 4. Varied speed installations in the NPS model in the year 2030.

Power Station Installed Capacity (MVA) New Technology

Såheim 189 DFIM
Hjartdøla 130 DFIM

Fjone 55 CFSM

Scenario 2

Scenario 2 will follow the same pattern as Scenario 1 when it comes to the changes on the
powerplants, but there will also be installed a BESS at busbar to one of the powerplants, to help with
system support. The location and size of the BESS in the NPS model are shown in Table 5.

Table 5. Battery installations in the NPS model in the year 2030.

Power Station Installed Capacity of the Plant [MVA] BESS Capacity (MVAh)

Fjone 38 55

5.2.3. Year 2040

The NPS will experience a significant drop in the total kinetic energy in the year 2040 due to
the expected decommission of the Swedish nuclear powerplants. In this ten-year interval, the peak
consumption will exceed the installed capacity of regulated power in the NPS. As a consequence,
the NPS will be more dependent on a more flexible power supply from the regulatable power sources,
to keep a stable system frequency and it will also require the introduction of synthetic inertia to ensure
a satisfactory level of inertia in the system.

CFSM will become the dominant technology of variable-speed hydropower plants when it comes
to power applications less than 100 MW. It is also expected that BESS declining in price, so it could be
even more attractive to be used as system support in the NPS.

Scenario 0

Year 2040 will experience a reduction of the total kinetic energy of the NPS around 39.66%
regarding the year 2020, taking a value of 105 GW·s. In this scenario, it is only expected to be done
maintenance and retrofitting to a level that all the power stations have the same capabilities as they
have in today’s NPS.

Scenario 1

In the year 2040, in addition to the three powerplants already installed in the year 2030 two
DFIM (Såheim and Hjartdøla) and one CFSM (Fjone), it will be retrofitted four powerplants with
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varied speed hydro. From the four powerplants retrofitted, one powerplant over 100 MW is replaced
with DFIM technology, and three medium-sized hydropower are substituted with CFSM since it is
expected that CFSM will be the dominating technology on the market at this time. The total number
of variable-speed hydropower plants installed in the NPS is seven, and its total capacity is 794 MVA.
Summarization of all the varied speed hydro installations in the NPS model is shown in Table 6.

Table 6. Varied speed installations in the NPS model in the year 2040.

Power Station Installed Capacity (MVA) New Technology

Såheim 189 DFIM
Hjartdøla 130 DFIM

Mår 190 DFIM
Fjone 55 CFSM
Mæl 38 CFSM

Skollenborg 99 CFSM
Svelgfoss 93 CFSM

Scenario 2

Scenario 2 considered the same powerplants retrofitted as in Scenario 1, with the same type of
technology choice. In this scenario, in addition to the BESS installed in the year 2030 (Fjone), it will
also be introduced four BESS in different sizes, providing a total of 275 MVA. The location and capacity
of all the installed BESS are shown in Table 7.

Table 7. Battery installation in the NPS model in the year 2040.

Power Station Installed Capacity of the Plant (MVA) BESS Capacity (MVAh)

Fjone 38 55
Mæl 38 38

Fritzøe 7 7
Skollenborg 99 99

Svelgfoss 93 93

6. Simulation and Results

6.1. Vestfold and Telemark System

The authors of this research paper developed a network model of the Vestfold and Telemark area
in Norway using data publicly available; as a consequence, the model may have discrepancies to the
real model. The network model represents the 132 kV network in the geographical area of Vestfold and
Telemark interconnected to the Norwegian power system at 420 kV and 300 kV. The network consists
of 109 busbars from 11 kV (generation voltage level) up to 420 kV and the total active power demand
in the regional system is Pd = 1643 MW divided between 58 different lumped loads in varying sizes,
from 16 MW and up to 62 MW. The total installed capacity in the regional network is PG = 1083 MVA
divided between 20 hydropower generation units (from 2.3 MVA up to 190 MVA). The Vestfold and
Telemark network imports Ptie = 560 MW from the Norwegian power system to cover the total power
demand. Figure 9 shows a geographical representation of the Vestfold and Telemark power system,
where the green areas represent the loads and the red areas represent the hydropower generation units.

The scenarios defined in the previous section are assessed considering a frequency disturbance
applied to the power system at t = 0 s and observing the indicators of the frequency of the centre of
inertia (fCOI): maximum frequency deviation (∆fCOI, max), minimum frequency (fCOI, min), minimum
time (tCOI, min), the maximum rate of change of frequency (ROCOFCOI, max), and steady-state frequency
(fCOI, ss). The frequency disturbance is defined as the sudden disconnection of a large generation unit
∆P = 1300 MW.
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Figure 9. Geographical representation of the Vestfold and Telemark power system.

The under-frequency scheme of the Nordic power system is implemented to operate in a
mandatory range, starting at a frequency level of 48.7–48.8 Hz until a final frequency level of 48 Hz [28].
Therefore, the minimum frequency (fCOI, min) should not reach values below 48.7 Hz to avoid the
trigger of the under-frequency relay, and it can be done by the implementation of the DFIM, CFSM,
and BESS technologies.

The described power is modelled in DIgSILENT®® PowerFactoryTM version 2020 to assess the
performance of the system frequency response, a closed-loop framework using Python is used to
automatize simulation during the optimization purpose. The optimization procedure was performed
using the Sequential Least SQuares Programming method [29]. The simulation process consists
of time-domain simulations using RMS values from DIgSILENT®® PowerFactoryTM to obtain the
frequency response of Vestfold and Telemark power system. The total simulation time is 150 s since this
timescale is adequate to replicate the phenomenon related to the electromechanical variables. Moreover,
Scenario 0, Scenario 1, and Scenario 2 of each ten-year interval were used to assess the performance of
the frequency response considering the effect of the DFIM, CFSM and BESS technologies.

6.2. Base Case: Scenario 0

Scenario 0 denotes the outlook at which the NPS does not create any changes on the hydropower
plants thought the 2020–2040 period; the only maintenance is carried out on the hydropower plants.
However, during the 2020–2040 period, the NPS suffers a decreasing of the total kinetic energy of
8.62% and 39.66% regarding the year 2020, respectively. The decreases in the kinetic energy produce a
deterioration in the frequency response after being inserted a frequency disturbance (∆P = 1300 MW at
t = 0 s) as shown in Figure 10.

Figure 10. Comparison of the frequency response for decreasing the kinetic energy in the period
2020–2040 on Scenario 0.

Although the frequency is recovered after a few seconds and the power system remains stable
on the three ten-year intervals (2020, 2030, and 2040), the frequency indicators are several affected
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by the decreasing of the kinetic energy as described in Table 8. As the kinetic energy decreases,
the frequency minimum (fCOI, min) reaches its deepest values and, as a consequence, the maximum
frequency deviation (∆fCOI, max) grows. Moreover, the speed at which the frequency falls in the year
2040 (i.e., the maximum ROCOF (ROCOFCOI, max)) increases by approximately 41.5% concerning the
year 2020. The deteriorating of these indicators is directly related to the inertial response since the
synchronous generators do not have enough energy stored on its rotating masses to try to arrest the
frequency drop.

Table 8. Summary of frequency response indicators for Scenario 0: the year 2020, 2030, and 2040.

Year Total Kinetic Energy
(GW·s)

∆fCOI, max
(Hz)

fCOI, min
(Hz)

tmin
(s)

ROCOFCOI, max
(Hz/s)

fCOI, ss
(Hz)

2020 174 0.738 49.265 8.132 −0.186 49.723
2030 159 0.806 49.194 7.912 −0.204 49.697
2040 105 1.258 48.742 9.182 −0.318 49.536

From the results of Table 8, it is necessary to include other technologies that can provide frequency
support, especially in the year 2040, where the grates drop of inertia occurs. In the year 2040, fCOI, min
reaches values that are on the under-frequency load shedding operation zone, and it can produce
the activation of the under-frequency relays and start an unnecessary load shedding or even worst
produce an instability condition.

6.3. Optimized Response: Scenario 1 and Scenario 2

This section is dedicated to assessing the solution of the objective function formulated in (13),
which the primary purpose is minimizing the maximum frequency deviation of the frequency of the
centre of inertia (∆fCOI, max) and compute the optimal settings of the droop coefficients of the DFIM
(Kd,α), CFSM (Kd,β) and BESS (Kd,γ,k) technologies. In this stage, Scenario 1 and Scenario 2 are evaluated,
Scenario 1 denotes the perspective of substituting several big and medium hydropower plants by DFIM
and CFSM technologies, respectively. Meanwhile, Scenario 2 considers replacing big and medium
hydropower plants with DFIM and CFSM technologies and additionally install several BESS at a key
point of the NPS.

6.3.1. Year 2030

For this year, the objective function defined in (13) is evaluated to compute the optimal droop
coefficients (Kd,α, Kd,β and Kd,γ) of Scenario 1 and Scenario 2. The optimization solution is presented in
Table 9.

Table 9. Optimal droop coefficients (Kd,α, Kd,β and Kd,γ) of Scenario 1 and Scenario 2 in the year 2030.

Power Station Technology Scenario 1 Scenario 2

Såheim DFIM 0.0001 0.0001
Hjartdøla DFIM 0.0072 0.0001

Fjone CFSM 0.052 0.0001
Fjone BESS - 0.0001

The optimal coefficients obtained from the optimization are used to set the parameters of the PFAP
controllers, and system frequency is evaluated by inserting a frequency disturbance of ∆P = 1300 MW
at t = 0 s. The frequency response of Scenario 0, Scenario 1, and Scenario 2 is shown in Figure 11.
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Figure 11. Frequency response after inserting a frequency disturbance of ∆P = 1300 MW at t = 0 s with
a total kinetic energy of 159 GW.s.

From Figure 11, it is evident that the frequency response was improved by the inclusion of DFIM
and CFSM technologies for Scenario 1 regarding Scenario 0. Moreover, in Scenario 2, the frequency
response was enhanced concerning Scenario 1 due to the inclusion of BESS. The improvement of the
frequency response in Scenarios 1 and Scenario 2 was mainly related to the fast action of the PFAP
controllers, since those controllers deliver the proper amount of active power to stop the frequency
deviation. The total active power contribution of the power plants to the disturbance is presented in
Figure 12.

The frequency response indicators of the three scenarios assessed in the year 2030 are depicted
in Table 10. this table, it is possible to observe that the optimized PFAP controller can improve the
frequency response indicators concerning Scenario 0, even when the total kinetic energy decreased
regarding the year 2020.

Figure 12. Total active power contribution of synchronous generators (Scenario 0), synchronous
generators, DFIM and CFSM (Scenario 1) and synchronous generators, DFIM, CFSM and BESS
(Scenario 2) in the year 2030.

Table 10. Frequency response indicators of Scenario 0, Scenario 1 and Scenario 2 in the year 2030.

Scenario ∆fCOI, max
(Hz)

fCOI, min
(Hz)

tmin
(s)

ROCOFCOI, max
(Hz/s)

fCOI, ss
(Hz)

0 0.806 49.194 7.912 −0.204 49.697
1 0.759 49.241 7.912 −0.195 49.720
2 0725 49.275 7.995 −0.196 49.734

Figure 13 presents the minimum frequency (f min) and the maximum ROCOF that the synchronous
generator experiences in Scenario 1 and Scenario 2. This figure shows that the inclusion of BESS makes
that f min of all synchronous generators connected to the NPS reduces and the maximum ROCOF has a
slight decrease.
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Figure 13. Frequency indicators of the synchronous generators in operation for Scenario 1 and Scenario
2 of the year 2030: (a) minimum frequency (fmin) and (b) Maximum ROCOF.

6.3.2. Year 2040

The year 2040 is critical due to the fact that it experience a substantial decrease in total kinetic
energy (around 39.66% regarding the year 2020), and it produces that the minimum frequency reaches
values inside the operation zone of the under-frequency loads shedding. For this year, the objective
function defined in (13) is evaluated to compute the optimal droop coefficients (Kd,α, Kd,β and Kd,γ) of
Scenario 1 and Scenario 2 and the optimization solution is presented in Table 11.

Table 11. Optimal droop coefficients (Kd,α, Kd,β and Kd,γ) of Scenario 1 and Scenario 2 in the year 2040.

Power Station Technology Scenario 1 Scenario 2

Såheim DFIM 0.0001 0.0001
Hjartdøla DFIM 0.0975 0.0001

Mår DFIM 0.0001 0.0001
Fjone CFSM 0.0126 0.0001
Mæl CFSM 0.0001 0.0001

Skollenborg CFSM 0.0152 0.0001
Svelgfoss CFSM 0.0298 0.0001

Fjone BESS - 0.0001
Mæl BESS - 0.0001

Fritzøe BESS - 0.0001
Skollenborg BESS - 0.0001

Svelgfoss BESS - 0.0001

The optimal coefficients obtained from the optimization were used to set the parameters of the
PFAP controllers, and the system frequency was evaluated by inserting a frequency disturbance of
∆P = 1300 MW at t = 0 s. Figure 14 depicts the frequency response of the Scenario 0, Scenario 1 and
Scenario 2. In this figure, it can be observed that Scenario 1 and Scenario 2 presents an improvement in
the frequency response compared with Scenario 0. Moreover, in Scenario 2, the minimum frequency
significantly decreases in comparison with Scenario 1. The slight drop of frequency, around 80 s in
Scenario 2, was produced by the discharge of the BESS, they already delivered the active power to
arrest the frequency decline and to reduce the minimum frequency, and then start the charging process.
This process is clearly shown in Figure 15, where the total contribution of active power is shown.
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Figure 14. Frequency response after inserting a frequency disturbance of ∆P = 1300MW at t = 0 s,
with a total kinetic energy of 105 GW.s.

Figure 15. Total active power contribution of synchronous generators (Scenario 0), synchronous
generators, DFIM and CFSM (Scenario 1) and synchronous generators, DFIM, CFSM and BESS
(Scenario 2) in the year 2040.

Table 12 presents the frequency response indicators of the three scenarios assessed in the year
2040. From this table, the Scenario 1 and Scenario 2 shows that the optimal parameters of PFAP
controller can significantly enhance the frequency response indicators concerning to Scenario 0 to face
an important decreasing in the total kinetic energy, as considered in the year 2040. The installation
of variable-speed hydropower technologies in the NPS allows reducing the minimum frequency of
0.127 Hz and the maximum ROCOF 0.036 Hz/s moving the frequency out of the under-frequency load
shedding operation zone. However, the minimum frequency value remains near to the under-frequency
load shedding operation zone. Scenario 2, which includes the installation of BESS, present a significant
diminution of the maximum frequency deviation of 0.408 Hz, which places the minimum frequency
outside the zone of the under-frequency load shedding activation. The maximum ROCOF, as well as
the steady-state frequency, are improved.

Table 12. Frequency response indicators of Scenario 0, Scenario 1 and Scenario 2 in the year 2040.

Scenario ∆fCOI, max
(Hz)

fCOI, min
(Hz)

tmin
(s)

ROCOFCOI, max
(Hz/s)

fCOI, ss
(Hz)

0 1.258 48.742 9.182 −0.318 49.536
1 1.131 48.869 6.905 −0.282 49.609
2 0.850 49.150 7.223 −0.274 49.660

Figure 16 shows that the minimum frequency and the maximum ROCOF of the synchronous
generators connected to the NPS are substantially improved with the inclusion of BESS as
frequency support.
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Figure 16. Frequency indicators of the synchronous generator in operation for Scenario 1 and Scenario 2
of the year 2040: (a) minimum frequency (fmin) and (b) Maximum ROCOF.

Due to the converter decouples DFIM, CFSM, and BESS technologies from the source (the primary
source had enough energy to cope with the frequency support) they were the same in the sense of
active power delivery, and the optimal droop coefficients (Kd,α, Kd,β, and Kd,γ) of the PFAP controller
are computed based on the active power available to deliver and the frequency deviation. Therefore,
the optimal droop coefficients obtained from the optimization process for Scenario 2 indicates that
DFIM, CFSM and BESS have the same rate to deliver the active power, i.e., the droop coefficients forces
the source to deliver the active power at the maximum rate (0.001) in order to provide a quick active
power response and avoid the frequency drops below 48.7 Hz.

7. Conclusions

The simulation results show that retrofitting the conventional hydropower plants by incorporating
variable-speed technologies in the upcoming years will allow dealing with the problem of increasing
renewable sources and the decreasing of the system inertia in the NPS. In the future, the hydropower
units will require to be more flexible, and this flexibility can be reached by the incorporation of variable
speed technologies, which provide more efficient than conventional hydropower units when the
generation units are producing outside its rated head/output values.

The approaches presented in this paper demonstrates the positive benefits of incorporating
the doubly fed induction machine, converter-fed synchronous machine and battery energy storage
system technologies as a reliable tool to ensure the frequency stability of the NPS in the perspective of
disconnection of several thermal and nuclear power plants and therefore low levels of kinetic energy.
The doubly fed induction machine and converter-fed synchronous machine technologies shown
superior performance compared with the synchronous generators since those technologies can modify
the active power depending on the speed variation range and therefore, resulting in a high ability to
regulate the frequency especially in scenarios of low kinetic energy. Moreover, the incorporation of the
battery energy storage system provides frequency support by supplying fast active power, covering
the lack of active power, especially in scenarios of great inertia reduction such in the year 2040.

The optimization of the parameters of the PFAP controller allows for providing the optimal amount
of active power to recover the frequency deviation. Furthermore, the optimal values of the droop
coefficients allow stopping the frequency de decaying and avoid the under-frequency load shedding
relays activation. In addition, the formulation to optimize the droop coefficients permit limited the
minimum frequency and therefore, substantially improved the frequency response indicators when
doubly fed induction machine, converter-fed synchronous machine and battery energy storage system
technologies are installed in the NPS.
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