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Abstract: The lack of synchronous inertia, associated with the relevant penetration of variable speed
wind turbines (VSWTs) into isolated power systems, has increased their vulnerability to strong
frequency deviations. In fact, the activation of load shedding schemes is a common practice when an
incident occurs, i.e., the outage of a conventional unit. Under this framework, wind power plants
should actively contribute to frequency stability and grid reliability. However, the contribution of
VSWTs to frequency regulation involves several drawbacks related to their efficiency and equipment
wear due to electrical power requirements, rotational speed changes, and subsequently, shaft torque
oscillations. As a result, wind energy producers are not usually willing to offer such frequency
regulation. In this paper, a new control technique is proposed to optimize the frequency response of
wind power plants after a power imbalanced situation. The proposed frequency controller depends
on different power system parameters through a linear regression to determine the contribution of
wind power plants for each imbalance condition. As a consequence, VSWTs frequency contribution
is estimated to minimize their mechanical and electrical efforts, thus reducing their equipment wear.
A group of sixty supply-side and imbalance scenarios are simulated and analyzed. Results of the case
study are compared to previous proposals. The proposed adaptive control reduces the maximum
torque and rotational speed variations while at the same time maintaining similar values of the load
shedding program. Extensive results and discussion are included in the paper.

Keywords: frequency control; isolated system; linear regression; power system stability; wind turbines

1. Introduction

The different services carried out by the transmission system operators (TSO) for a reliable and
secure power system are known as ancillary services [1]. Among them, load-frequency control
focuses on mitigating the effects of unpredictable changes both in the demand and in the generation
units that can address frequency deviations [2]. In fact, power imbalances between generation and
consumption cause frequency variations [3]. In Europe, frequency control has a hierarchical structure,
usually organized in up to five layers (from fast to slow timescales): (i) frequency containment
(also known as primary frequency control); (ii) imbalance netting; (iii) automatic and/or manual
frequency restoration (also known as secondary frequency control), and (iv) replacement [4]. If the
different reserves of such frequency control layers are consumed or unable to keep frequency within an
acceptable range, a variety of strategies called special protection systems are then used. Load shedding
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is included in those special protection systems. Moreover, it is considered as the last option to prevent
frequency instability [5]. Despite load shedding being an effective solution to prevent a power system
collapse after a major imbalance, it is considered as an undesirable situation and it is important to
reduce it as much as possible [6-8].

Traditionally, power systems have been based on conventional power plants with synchronous
generators directly connected to the grid, automatically providing their stored kinetic energy after
a generation-load mismatch [9]. However, in recent decades, power systems have been suffering a
slow change from conventional synchronous power plants to inverter-interfaced renewable energy
sources (II-RES), i.e., wind power plants based on variable speed wind turbines (VSWTs) and/or
solar photovoltaic (PV) [10]. Among them, VSWTs are considered as the most efficient, developed,
and installed renewable resource, and currently they account for more than 650 GW of installed
capacity around the world [11,12]. This remarkable integration of wind power plants requires an
important reformulation of their contribution to ancillary services [13]. Moreover, as they are connected
to the grid through power inverters, the synchronous inertia of the power system decreases when
such renewable source replaces conventional power plants [14]. Indeed, faster rate of change of
frequency (RoCoF) and larger frequency deviations are related to low synchronous system inertia
values [15]. These effects are even more critical in isolated power systems [16,17]. As a result,
Toulabi et al. consider that, due to the massive integration of VSWTs, their participation into frequency
control is necessary [18]. With this aim, different frequency control approaches can be found in the
specific literature to effectively replace conventional power plants by VSWTs and maintain a reliable
power system operation [19]. These strategies are summarized in Figure 1 according to the different
approaches [20,21].
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Figure 1. General classification for Variable Speed Wind Turbines (VSWTs) frequency control techniques.

VSWTs are designed to work in their maximum power point (MPP) according to the available
wind speed su: pampp(sw) [22]. As a consequence, the first approach (deloading technique) consists of
operating the VSWTs in a suboptimal power point py,;, below papp(sw). Therefore, a certain amount
of power Ap,; can be supplied in case of a power imbalance [23,24]. Two different possibilities are
identified [25]: (i) the pitch-angle control and (ii) over-speed control. In the first one, the pitch angle
is increased from By to 1 for a constant s,. Subsequently, the generated power p,; is below the
maximum power pppp [26-29]. When the additional power Ap is supplied, the pitch angle reduces to
Bo. The over-speed control increases the rotational speed of the rotor, shifting the supplied power p
towards the right of the maximum power ppspp [30-32]. When the additional power Ap; is supplied,
the rotor speed has to be reduced to wypp, releasing kinetic energy [33]. However, despite the fact
that this technique can improve the long term frequency regulation, it is not an economically viable
solution for wind power plants’ operators due to loss of profits [34].

Due to the power inverter, VSWTs cannot naturally provide the kinetic energy stored in their
rotor and generator. To overcome this, one or more additional control loops must be included in
the power inverter. Three different possibilities can be found in the specific literature: (i) the droop
control, (ii) the hidden inertia emulation control, and (iii) the fast power reserve approach. The droop
control provides an additional active power Ap proportional to the frequency deviation Af, following
Ap = — RAT{T’ where Ry is the droop control setting of the VSWT [35-39]. This definition of Ap gives
an adaptive response depending on the frequency excursion severity and thus emulating primary
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frequency control of conventional generation units [40]. The hidden inertia emulation control usually
includes two different loops: one considering the RoCoF and the other considering the frequency
excursion (Ap «< RoCoF & Af) [41-43]. However, there are also proposals to use only one additional
loop, being Ap o« RoCoF [44—-46]. Even though these methods improved the nadir frequency (minimum
value), a little frequency dip was observed in later stages. This was due to a small reduction in the
generated power compared to the prefault active power (thus, not operating in the MPP) [47]. The fast
power reserve approach defines the overproduction power Ap as a constant value independent of
the power system configuration and frequency deviation [48-51] or as a variable value depending on
the frequency deviation or minimum rotor speed limits [52-54]. With these three techniques, as the
additional power Ap is provided, the rotor and generator rotational speeds decrease (subsequently,
modifying their torques). Rotor speed variations cause large amplitude edgewise vibrations for the
blades [55], affecting the productivity and reducing the efficiency [56]. Large torque increases can
address severe mechanical loads on the turbine, even causing critical situations under high mechanical
stress conditions [57]. Moreover, consecutive torque increments is related to random load cycles,
with important influences on fatigue loads [58].

In this work, a new fast power reserve controller for frequency regulation is proposed for isolated
power systems including conventional generation (thermal units) and wind power plants (VSWTs).
The proposed adaptive frequency controller is based on a linear regression from different power
system parameters (i.e., RoCoF, active power supplied by each synchronous group, and synchronous
inertia) to estimate the additional power provided by the wind power plants by maintaining certain
frequency thresholds. This way mechanical stress is reduced without excessively prejudicing power
system. Subsequently, VSWTs do not always participate in the frequency control but only when they
are required according to both the monitored variables. VSWTs frequency control contributions are
thus optimized, improving the grid frequency response and providing similar or lower load shedding
actions in line with previous frequency control strategies. This proposed VSWT controller approach is
tested in the Gran Canaria Island (Canarian archipelago, Spain), an isolated power system where the
wind power capacity has doubled since 2017 (from 90 to 180 MW) [59]. Moreover, from 2005 to 2010,
more than 200 trips of generators were registered per year in the Canarian archipelago, hence activating
the corresponding load shedding programs [60].

The rest of the paper is organized as follows: Section 2 describes the mathematical model used to
simulate the power system under consideration; the new frequency control approach proposed in this
work is explained in Section 3; cases of study and simulation results are provided in Section 4; Finally,
Section 5 gives the conclusions.

2. Power System Modeling

A mathematical model has been designed to analyze the proposed VSWT adaptive frequency
control in an isolated power system. A generic wind-thermal isolated system is considered in this
study (refer to Figure 2), including steam, diesel, gas, and combined cycle units, as well as wind
power plants. Consequently, the model developed in Matlab/Simulink (2016) includes these thermal
units, one equivalent VSWT acting as the wind power plants, the automatic generation control (AGC),
the power system, and the power demand (including a load shedding scheme). The electromagnetic
transients are supposed to be much faster than the other components of the model, and their influence
in the system’s dynamics is omitted [61]. In Figure 3, the block diagram of the power system under
study can be seen.
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Figure 2. Simplified one-line diagram of the generic isolated power system.
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Figure 3. Block diagram of the frequency analysis model.
2.1. Power System

Frequency regulation based on droop speed control can be divided into two consecutive control
actions: frequency containment and frequency restoration. On the one hand, frequency containment
(or primary frequency regulation), which is based on the governor control, adjusts the active power of
the generation units to correct frequency variations. In fact, the frequency nadir is directly related with
the generator’s droop characteristic. In Spanish electric power system, primary regulation services act
up to 30 s after a frequency disturbance [62]. On the other hand, frequency restoration (or secondary
frequency regulation) refers to the AGC, adjusting the active power output of generation units to bring
system frequency back to its rated value after the governor-based primary response.

An aggregated inertial model is commonly used to analyze frequency deviations in isolated
power systems [63]. This modeling approach has been previously applied in El Hierro isolated power
system (another isle of the Canarian archipelago) in [64]. Therefore, frequency deviations are the result
of the imbalance between the power supplied by the generation units and the power demand:

af 1

= = — — Dyet Af), 1
f at Tm,ther(t) (Pther + Pw — Pdem net Af) (1)
where T, e, (t) corresponds to the total mechanical inertia of thermal units depending on the number
of generation operating units at each moment. Note that only thermal units provide inertia to the

power system, since VSWTs are decoupled from the grid through power inverters.
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When frequency disturbances are higher than certain limits, an under frequency load shedding
scheme is activated to recover the grid frequency and fulfill certain frequency range requirements.
In this work, a realistic load shedding scheme is included, consisting of the sequential and sudden
disconnection of certain amount of load as established frequency thresholds are exceeded. The load
shedding program can be found in [59].

2.2. Thermal Power Plants

The different thermal generation technologies (i.e., steam, diesel, gas, and combined cycle)
included in the isolated power system are modeled by different transfer functions proposed in [59,65].
These transfer functions supply the power variation of each thermal technology from the frequency
deviation and power reference provided by the AGC. Both the model and the parameters can be found
in [59]. Since fast response of combined cycle power plants is in charge of the gas turbines, frequency
response of combined cycle and gas units is assumed to be equal. The total thermal generation is then
the sum of each thermal unit power supplied.

2.3. Variable Speed Wind Turbines

One equivalent VSWT model aggregating all the VSWTs is used [59,66]. The proposed VSWT
equivalent model includes the wind power model and both pitch and torque maximum power point
tracking control. Further information can be found in [67]. The one-mass rotor mechanical model is
used for simulations, which is detailed enough according to [68] for power converters decoupling the
generator from the grid. The VSWT diagram is represented in Figure 4. This wind turbine model has
been previously used in [69] for short-time period frequency analysis. The equivalent aggregated wind
turbine modeling also includes the frequency control response strategy, described in Section 3.
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Figure 4. Block diagram of VSWT.

2.4. Automatic Generation Control (AGC)

The secondary control action removes the steady-state frequency error after the primary frequency
control. It is modeled similar to [70]. The total secondary regulation effort (ARR) is obtained from:

ARR = —Af Ky, @)

being K; determined according to the European Network of Transmission System Operators for
Electricity (ENTSO-E) recommendations [71]. This regulation effort is distributed among each i
synchronized thermal unit as a function of their participation factors (K, ;), which are related to the
speed droop of each unit [72]. Subsequently, the result of adding all K, ; must be one:
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APz@f - TL /ARR Kyidt = - Ky Ky dt, ©)
u,

u,i
where i represents gas, cc, die, and st respectively. All thermal units connected to the grid participate
in secondary control, whereas the participation factors of those units not connected are considered as
zero, K, ; = 0.

3. Adaptive Frequency Control Strategy—Methodology

The adaptive control approach proposed in this work tries to minimize the effort of VSWTs
when providing frequency response. The proposed approach is based on the fast power reserve
technique. This control strategy distinguishes two different periods after a sudden power imbalance:
(i) overproduction and (ii) recovery. During overproduction, the stored kinetic energy in the rotating
masses of the VSWTs is supplied to the grid as an additional active power Ap during a few seconds,
being thus py, over pypp(sw). Subsequently, the rotational speed w is reduced. Different definitions
of this Ap have been proposed. In fact, some authors consider Ap as a fixed constant value [48-51],
whereas others propose to estimate Ap as dependent on the torque limit [52] or proportional to the
frequency excursion [53]. The recovery period aims to restore w to the prefault rotational speed
value wy. To overcome this, p, should be reduced below p,,,.;(w). Previous proposals specified
an underproduction power py;p by different ways, being thus the supplied power of each VSWTs:
PW = Pmech — Pup-

In the proposed adaptive frequency control strategy, the initial value of Ap for the overproduction
period is related to the power system conditions. The authors propose a new frequency control
approach based on the methodology followed in [73]. This reference estimates the exact and minimum
amount of load needed to be shed after an imbalance depending on the RoCoF. In fact, a decision table
that links the RoCoF with the strict amount of load shedding is developed based on presimulations.
Then, the corresponding load shedding is activated after a contingency, tripping some amount of load
demand immediately [74]. In this case, the proposed adaptive controller is based on a decision table
that estimates the accurate value of Ap for the VSWT overproduction.

The first step to formulate the decision table consists of defining several simulation scenarios
that reflect the variability of the demand, the scheduling units, and/or the wind power penetration.
To estimate the overproduction power Ap after the outage of a thermal group, an iterative process
is proposed for each scenario (see Figure 5). The condition considered to calculate such Ap is that
frequency f should not be below a certain limit f;;,,, for longer than a preset time limit #;;,,. Both values
fiim and t};,,, are related to the load shedding program of the power system. A counter is thus triggered
when f is below fj;;,, computing the time that frequency is under that fj;,,. Initially, the i—scenario is
simulated assuming that the overproduction power in the first iteration j is equal to 0 (Ap; = 0). If f
is below fj;;, for longer than #;;,,, Ap; is increased by a fixed value Ap;,. with respect to the previous
iteration (Ap; = Apj_1 + Apinc) and the same i-scenario is simulated again with the new value of
Apj. When the condition is satisfied (i.e., f is below fj;;, less time that ;,,), the minimum Ap for
the i-scenario (Ap;) that VSWTs should provide has been determined (Ap; = Ap;). Note that the
overproduction power Ap is supplied with a delay of 200 ms, in order to have the measure of the
RoCoF and in line with the delay time-interval in between 50 and 500 ms suggested in [75]. Once all
the Ap values have been determined from the simulations, a mathematical relationship between such
Ap and other variables of the power system need to be found. The obtained expression will be the
decision table for the adaptive controller.
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Figure 5. Flow-chart to estimate the overproduction of VSWTs.

When a power imbalance occurs, the VSWTs’ controller determines the overproduction power Ap
according to the previous decision table. This situation causes a sudden p,, increase and, after that,
the supplied power starts to decrease. In this approach, instead of “forcing” the recovery period,
the transition to recovery is carried out by the rotor speed PI controller in the converter, which slowly
reduces the active power to achieve again pyipp(sw). In order to avoid a fast power change, that could
cause a secondary frequency dip, Ky and Kj; (proportional and integral constants of the converter,
refer to Figure 4) must be conveniently tuned. As a consequence, instead of fixing a py;p or defining an
underproduction trajectory, the converter should adapt both the electrical power and the rotational
speed to make them return to their pre-event values. Figure 6 presents the evolution of Py and w
under an imbalanced situation with the proposed approach, pointing out the overproduction and
recovery periods.
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Figure 6. Example of overproduction and recovery periods. (a) Electrical power (MW); (b) Rotational
speed (pu).
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4. Case Study—Results

The VSWT adaptive control strategy proposed in this study is applied to the Gran Canaria power
system. Gran Canaria Island belongs to Spanish Canarian archipelago, being thus an isolated power
system. Its electrical generation has always been based on fossil fuels from two power plants: Jindmar
and Barranco de Tirijana power plants. These power plants included diesel, steam, gas, and combined
cycle units. However, in recent decades, the government started to promote wind power plants’
installation, doubling its capacity up to 180 MW since 2017. Table 1 lists each thermal unit capacity of
the Gran Canaria power system.

Table 1. Gran Canaria thermal units power.

Steam Gas Combined Cycle Diesel

Py1 T72AMW  Pggi 323MW Py 2061MW  Pypy  8.5MW
Pypr T724MW  Pep 323MW  Pep 227.0MW Py 85MW

Py 556 MW Py 173 MW Piies 85MW
Pya 556 MW Py 323 MW Piiesa 205 MW
Peass 323 MW Piies 205 MW

4.1. Scenarios under Consideration

Thirty different generation mixes of supply-side programs are under study for different demands
and wind power generation. The generation mix scenarios are taken from [59], where a unit
commitment model was also included. Figure 7 presents the different supply-side energy schedule of
each program. From these generation mix scenarios, two different imbalance conditions are defined:
(i) the loss of the largest power plant and (ii) the loss of the second largest power plant. In this
way, a total of sixty different scenarios are analyzed. Figure 8 summarizes the supply-side after the
disconnection of the largest and second largest units. In addition, it also points out the percentage that
represents the loss of each unit over the total system demand.

600 |- ‘ Owindd Gas Diesel D Steam B cC ‘ ]

Generation mix of supply-side (MW)
|
\

100 - = i [ B

| | | | |
0 12345 6 78 910 1112131415 1617181920 2122232425 2627 28 29 30

Scenarios

Figure 7. Generation mix scenarios under consideration.
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Figure 8. Generation mix after disconnection (a) Largest power plant disconnection. (b) Second largest
power plant disconnection.

4.2. Decision Table Definition: Regression Analysis

From the sixty scenarios presented in Section 4.1, the corresponding Ap values are determined
following Section 3. In this work, and according to the load shedding scheme presented in
591, fiim =49 Hz, t;;,, = 1 s and Ap;,c = 0.01 pu for the Gran Canaria island power system.
A mathematical relationship between such Ap and other variables of the power system need to
be found. As aforementioned, [73] proposed to relate the power to be shed with the RoCoF by a
linear and quadratic regression, with R? = 0.951 and R? = 0.969, respectively. However, both the
linear regression and the quadratic regression of AP and RoCoF for this case study accounted for
low values of R%: R? = 0.433 for linear regression and R?> = 0.512 for quadratic regression. As a
consequence, other variables are introduced in the proposed mathematical lineal regression. By also
considering the electrical power of each thermal technology assigned in the scheduled program, the
system synchronous inertia before the incident, and neglecting all those cases in which the estimated
Ap was Ap = 0, the coefficient of determination increased to R? = 0.801 following Equation (4):

AP = —386.15 + 108.63 - ROCOF — 1.32 - Pgys +0.26 - Pyi, +0.65 - Py — 0.42 - Poc +32.92 - Ty, (4)

being AP in MW, RoCoF in Hz/s, P; in MW (i stands for gas, cc, die and st), and T, in s.
Comparing the results of AP obtained from the simulations and those estimated with Equation (4),
two additional conditions were included:
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1. If the power supplied by the combined cycle power plants before the imbalance was over 180 MW
(Pec,o > 180 MW), AP =0
2. If the estimated AP with the regression is negative (AP < 0), AP =0

Moreover, the maximum overproduction power AP of the wind power plant was considered as
20% over the installed capacity of the wind power plant, APz = 0.2 - Py,.

4.3. Results

Apart from the adaptive control approach, other frequency strategies have been simulated and
compared for the sixty scenarios under consideration:

1. Frequency control only provided by thermal power plants (referred to as without VSWTS).

2. Frequency control provided by thermal power plants and VSWTs. The overproduction is defined
as proportional to Af; change from overproduction to recovery period occurs when w/wg < 0.9,
and pyp = 0.05 pu (fast power reserve technique). It is triggered when Af > 100 mHz and the
maximum Ap = 0.15 - pyecn(w) (referred to as previous approach).

3. Frequency control provided by thermal power plants and VSWTs using the proposed control
approach (referred to as adaptive approach).

As was discussed in Section 4.1, sixty different scenarios are considered to evaluate the new
frequency control approach for VSWTs. Results are focused on four different aspects for each scenario:
(i) the minimum rotational speed w,;;,; (ii) the maximum torque Ty; (iii) the power shed due to
the corresponding load shedding programs; (iv) number of cases in which VSWTs do not participate
in frequency control with the adaptive proposed approach. Both w,,;;, and Ty, are expressed in %
with regard to the pre-event values, which is equal to their values when they do not participate in
frequency control.

Figure 9 depicts the range values of the rotational speed in % compared to the pre-event value.
When VSWTs do not participate in frequency control, its w variation is null, as they are providing
pmpp (Sw). According to these results, and depending on the frequency control strategy, important
differences can be identified. With regard to the frequency control referred to as previous approach,
and considering that the change from overproduction to recovery period is always with w/wp < 0.9,
all scenarios then give the same minimum w, which represents more than a 7% variation. Based on the
adaptive approach, w,,;, variations range in between 0 (for those cases in which the frequency control is
not activated) and 6.62%. In fact, the average w,;, variation with the proposed strategy is 2.15%. As a
consequence, the new frequency control strategy technique does not only optimize those imbalances
where VSWTs frequency control participation is required but also reduces the averaged variation of w
to more than half of the previous frequency control approaches.

Figure 10 compares the maximum torque during the VWST frequency response to the
corresponding pre-event value. These results are in line with the previous rotational speed comparison,
see Figure 9. The torque does not vary when VSWTs do not participate in frequency control, as both w
and p, remain constant. With the previous approach for VSWT frequency control, the maximum torque
variation is always the same. Moreover, this variation is over a 30% increase—in comparison to the
pre-event value, which can address relevant mechanical loads on the turbine shaft. In contrast, with the
proposed adaptive approach, the maximum Ty, variation is 26.5% (only 9 out of 60 scenarios), with an
average Tuax of 9.7%. It can be then deduced that the new frequency control approach does not only
avoid the activation of the frequency control of VSWTs in most of imbalance scenarios but also that
both w and T4 ranges are reduced significantly compared to previous approaches.
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Figure 11 shows the power shed by the load shedding program. As can be seen, it is reduced
when wind power plants participate in frequency control, compared to the current case in which only
thermal power plants are providing such ancillary service. Comparing the two different frequency
control approaches analyzed, small differences are found. The previous approach gets better results in 4
out of 60 scenarios under study, whereas the adaptive approach obtained lower load shedding values in
2 out of 60 scenarios. In the other cases, both frequency controllers obtain the same load shedding.
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Figure 11. Load shedding (a) Largest power plant disconnection; (b) Second largest power
plant disconnection.

Finally, 57% of imbalances without any VSWTs frequency response participation have
been identified. These results reduce significantly the mechanical and electrical VSWT efforts
under imbalances, maintaining similar frequency excursions to the previous control strategies.
More specifically, the VSWT frequency participation is not required to provide additional power
in 11 out of 30 for the largest power plant loss and 23 out of 30 for the second largest power plant
loss. These 34 scenarios where the adaptive frequency control is not triggered can be seen in Figures 9
and 10: imbalance scenarios will null variation of w,,;;, and Ty for the proposed control strategy.
Therefore, p, and w values keep as constant during the imbalance and, subsequently, also maintain the
torque. In addition, authors have checked that in 94% of the cases in which VSWTs are not participating
in frequency control with the adaptive approach, the power shed was initially null, pointing out that
their participation was not required within acceptable frequency excursion ranges.

As an additional result, Figures 12-14 depict the frequency evolution, load shedding, wind power,
and rotational speed for scenarios 9, 16, and 27, respectively, for the loss of the largest power plant.
Together with the aforementioned advantages of the new approach, authors also point out that the
rotational speed of VSWTs is recovered in a lower time interval than with the previous frequency
control approach. Moreover, the transition from overproduction to recovery period is also smoother,
avoiding undesirable secondary frequency dips (refer to Figure 12).
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Figure 13. Results for scenario 16 (a) Frequency (Hz); (b) Load shedding (MW); (c) Wind power (MW);
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(d) VSWTs rotational speed (pu).

5. Conclusions

Due to the massive penetration of VSWTs, their contribution to frequency regulation has become a
need. As isolated power systems have low synchronous inertia, VSWTs frequency control is even more
required. Even though different control strategies for VSWTs have been proposed in the last decade,
they usually imply important drawbacks in terms of efficiency, economic profits, and/or equipment
wear. As a result, with the aim of reducing the mechanical stress of VSWTs providing frequency
response, an adaptive control strategy is proposed in this work. Our approach is based on estimating
the minimum overproduction power provided by VSWTs following a linear regression estimation.
In this way, such overproduction power depends on some grid parameters (i.e., RoCoF, synchronous
inertia, and assigned power of thermal units before the incident). The proposed controller is compared
to a conventional fast power reserve strategy. The Gran Canaria isolated power system (Spain) is
considered as case study, analyzing sixty representative imbalance scenarios. Results show that similar
values for the power shed with the load shedding program are obtained with the two approaches.
However, the new adaptive control reduces the VSWTs maximum torque variations and the speed
variations (23% and 5% on average, respectively), in comparison to the conventional VSWTs frequency
control strategy. This is due to the smoother transition from overproduction to recovery periods, which
reduces the electrical and mechanical VSWT efforts. In addition, in 57% of the imbalance scenarios
under consideration, VSWTs are not required to participate in frequency response. Thus, both electrical
power and rotational speed are kept as constants (subsequently maintaining the torque). As a result,
a longer life span is expected for the VSWTs electrical and mechanical components.
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Abbreviations

The following abbreviations are used in this manuscript:

B Pitch angle (grades)

w Rotational speed (p.u.)

AP Overproduction power of VSWT (MW)

ARR Total secondary regulation effort

f Frequency (Hz)

P Active power (p.u.)

Sw Wind speed (m/s)

Dyt Damping factor of loads

Ky Participation factor in secondary control

P Active power (MW)

T Inertia constant (s)

0 Pre-event value (subscript)

cc Combined cycle (subscript)

dem Demand (subscript)

die Diesel (subscript)

gas Gas (subscript)

max Maximum value (subscript)

mech Mechanical (subscript)

min Minimum value (subscript)

st Steam (subscript)

ther Thermal (subscript)

w Wind (subscript)

up Underproduction (subscript)

AGC Automatic Generation Control

II-RES  Inverter Interfaced Renewable Energy Sources

MPP Maximum Power Point

PV Photovoltaic

RoCoF  Rate of Change of Frequency

TSO Transmission System Operator

VSWT  Variable Speed Wind Turbine
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