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Abstract: Defects in high voltage transmission line components such as cracked insulators, broken
wires rope, and corroded power line joints, are very common due to continuous exposure of these
components to harsh environmental conditions. Consequently, they pose a great threat to humans
and the environment. This paper presents a real-time aerial power line inspection system that aims to
detect power line components such as insulators (polymer and porcelain), splitters, damper-weights,
and power lines, and then analyze these transmission line components for potential defects. The
proposed system employs a deep learning-based framework using Jetson TX2 embedded platform
for the real-time detection and localization of these components from a live video captured by
remotely controlled drone. The detected components are then analyzed using novel defect detection
algorithms, presented in this paper. Results show that the proposed detection and localization system
is robust against highly cluttered environment, while the proposed defect analyzer outperforms
similar researches in terms of defect detection precision and recall. With the help of the proposed
automatic defect analyzing system, manual inspection time can be reduced.

Keywords: deep learning; Convolutional Neural Networks; HV transmission line components;
digital image processing; defect analysis; corrosion; power line detection; electrical safety

1. Introduction

The basic components of the electricity transmission system or grids include transmission power
line, transmission towers, insulators, balisor beacon, sag adjusters, etc., play an important role in the safe
transmission of electricity between a grid station and a local distribution station [1]. These components
bear extreme weather conditions (direct exposure to sunlight all day, strong winds, snow, rain, etc.),
high mechanical tension, and extreme temperature due to high voltage, and thus, are prone to physical
defects [2]. Due to the high uncertainty in the duration of life of these components, these electrical
components are subject to periodic inspection throughout the year. Conventional inspection methods
include a manual visual inspection by a trained electric repairman who climbs the transmission
tower and visually looks for defects or inspects the electrical health of the components using probing
methods, which is not only time-consuming, expensive, and labor-intensive but also life-threatening [3].
According to the Occupational Safety and Health Organization (OSHA), 576 fatalities and accidents
related to electric repairmen were reported between May 2016 and April 2017, only in North America [4].
To avoid such incidents, electrical companies are now incorporating patrolling helicopters for inspection
and repairing operations of these electrical components in remote areas and ground vehicles in urban
areas to take high-resolution pictures or videos of the power lines, transmission towers, and insulators,
and then analyze them for their potential defects [5].
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Recently, thanks to the exciting progress in the field of image processing and computer vision
techniques, there has been a lot of development for automatically detecting power line components
such as power lines [6–9], electric poles [10–12], and insulators [13–16], and analyzing their defects
[1,17] using aerial or ground images. Most of these schemes process recorded videos offline by
extracting hand-crafted features and then using sliding window-based techniques.

The related studies on electrical component detection can be classified into three categories,
depending upon the modalities of feature description and localization schemes:

1.1. Handcrafted Feature-Based Detection (Do not Include Any Learning)

A simple and preliminary method that is only limited to detect tempered glass insulators was
proposed by [16]. The method involves binarizing the image with a set threshold and then applying
morphological operations, but this method does not address varying lighting conditions. Some other
simple methods limited to detect glass insulators only are presented in [13,14]. These methods
suggested the use of color features for insulator detection. Other than the transmission line insulators,
a recent study [18] proposed a deformable part model (DPM) for detecting rod-insulators in high-speed
railway catenary systems. The image acquisition system for this method is mounted on the top of the
inspection vehicle, which takes close-shot images of the insulators from a fixed distance. The image
acquisition system is also equipped with light illuminators, which really help in pre-processing of
the insulator images. Although this method shows good recall (above 98%), it suffers low precision
(approximately three false positives per image). Li et al. [2] proposed to use local and global saliency
maps [19] for separating the insulator region from a non-insulator region. Yu et al. [20] presented
an insulator segmentation method that evolves a curve iteratively using texture and shape priors.
However, these methods [2,19,20] only work when the texture and intensity of the background and
the foreground regions are distinctive. This condition normally occurs only when aerial images of
insulators are taken from closer proximity.

Edge-based feature extractor was proposed in [15] to detect porcelain insulators from images
taken from unmanned aerial vehicles (UAV). However, [15] did not present sufficient experimental
results to support the robustness of their proposed methods against cluttered backgrounds.

In order to localize multiple insulators jointly, Zhao et al. [21] proposed a Markov Random Field
(MRF) model by grouping the appearance similarities of the glass and porcelain insulators. Although
the proposed method is robust against the complex background, its effectiveness is guaranteed only
when a group of insulators appear together in the image, which limits the application of this method.

In situations where sufficient training data is not available, these methods can provide a basic level
of component detection. However, these methods are very prone to failure in case of slight variations
in illumination and view point, which are inevitable in outdoor environments.

1.2. Handcrafted Feature-Based Detection (Include Learning)

Liao and An [22] proposed a new multiscale and multi-feature (MSMF) descriptor to detect
polymer insulators from aerial images, by matching them with saved features in visual vocabulary.
In [23], Haar-like rectangular features and AdaBoost were used for insulator detection. However, a 3D
graphics software was used to generate positive samples of insulators to train the Adaboost classifier,
instead of using real insulator images which reduce the robustness of the system. Zuo et al. [24] also
proposed Haar features and cascade of classifiers to detect glass insulators from aerial images and then
segment the insulator using color features. The basic problem with using Haar features in insulator
detection is that Haar features cannot handle large rotation and view-point changes.

Li et al. [25] trained Support Vector Machines (SVM) classifiers using vertical profile projection
curve features to detect insulators in a sliding window fashion. Wang et al. [26] used Gabor features to
train binary SVM classifiers to detect insulators. To avoid the slidingwindow-based approach, [26]
proposed to binarize the input image and apply SVM classifier to the areas where the possibility of
having an insulator is high, followed by morphological operations to segment the insulator. Both of
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the shape features in [25,26] rely upon the repeating pattern on the insulator, which is well observed
only when the insulator images are taken at a near frontal viewpoint, hence making these methods
vulnerable to viewpoint changes. Jabid and Uddin [27] trained SVM classifiers using a local directional
pattern (LDP) to detect insulators in images taken from streets.

These sliding window-based component detection methods lack generalizability and suffer from
low detection speeds, because these methods scale and rotate the input image to multiple sizes and
multiple orientations in order to address the size and rotation variations.

Oberweger et al. [28] presented a novel approach to detect insulators in aerial images, based on
discriminative training of local gradient-based descriptors and a subsequent voting scheme. They also
addressed the flashover and splits defect detection in polymer insulators. Their method computes
a dissimilarity score between a faulty cap and the rest of the caps in the same insulator by using
the distance of a descriptor to the k-nearest neighbors as an estimate for local descriptor density,
considering that the outlier (i.e., faulty cap) has a lower local density in high dimensional space.
However, the supposition becomes invalid if the fault is present in multiple caps of an insulator.

1.3. Convolutional Neural Network-Based (CNN) Detection

Due to the enormous variations of the appearances of insulators caused by scale, viewpoint, color,
and occlusion, developing an effective transmission line component inspection system becomes a
challenging problem [21]. Cluttered backgrounds also increase the complexity of the manifold nature
of the problem and often increase the computational cost. Besides, the viewpoint, arbitrary in and
out-of-plane rotation makes the detection problem highly challenging. A large number of existing
insulator detection methods address just a subset of the variations without having the capacity of
dealing with every one of them. In contrast, CNN-based object detectors such as YOLO (You Only
Look Once) [29], Faster-RCNN (Region-based Convolution Neural Network) [30] and SSD (Single
Shot Detector) [31] have not only shown high detection accuracies on unconstrained object detection
datasets but also shown their robustness by effectively solving more general computer vision tasks
such as scene recognition, object attribute detection, with minimal architectural changes [32]. This is
one of the major motivations of using CNN for the detection of transmission line components in our
work. Given the power of CNN features, this research aims to automatically aggregate the best set of
numerous low-level features for various types of components in the CNN training routine. Some of
the recent studies has also used CNN-based frameworks [5,33] and shown improved performances.
Moreover, recent advances in deep learning algorithms and graphic processing hardware (GPUs)
have paved ways to develop robust image processing algorithms on embedded platforms, enabling
real-time processing.

Convolutional Neural Network (CNN)

Convolutional neural networks are a class of deep, feed-forward (not recurrent), special type of
artificial neural networks popular in the field of image processing for their robustness [32]. In contrast
to the simple neural networks or multilayer perceptron (MLP), where the output of a neuron is decided
by the scalar product operation between the weights of the connections and the outputs of the previous
neurons, convolutional neural networks employs convolutional layers followed by an activation
function to decide the output of the neurons. Unlike MLPs, the CNNs also add pooling layers to
successively reduce the feature dimensions and to reduce the number of parameters in the network.
Due to the fully-connected layers at the input of MLPs, they are not translation invariant, and hence
not ideal to be used in image processing. CNNs, however, employs variant-sized sliding filters that are
updated during the training process to add translation and scale invariance properties, making them
ideal choice for image processing. Variants of CNNs also use fully-connected layers at the final stage
of the network in order to aggregate the information generated from the final convolutional features
and to generate final classification.
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The task of object detection from images involves predicting the location and the category label or
class name of the object in the image. The location of the object is usually represented by a bounding
box (using the coordinates of the corners of the bounding box). In order to train the CNN-based object
detectors, the images are passed as input to the network. During the training process, the network
predicts the location and class name of the objects in each image, which is compared with the ground
truth bounding box annotations for that image using a loss function. The output of the loss function
is back-propagated to the network which in turn updates the weights of the convolutional filters to
predict better results. The training is stopped when the output of the loss function becomes very small
or saturated.

For power line detection, most of the related work uses edge detection followed by post-processing
and then the Hough line algorithm to detect lines in the edge map. Alka et al. [34] presented a scheme
that shows the superiority of using the Canny filter over the Gabor filter for power line detection.
In another study [7], an edge drawing algorithm (EDLines) is proposed to draw lines using a gradient
map. The algorithm extracts line segments by connecting local maxima with other responses after
sliding a 3 × 3 kernel. Liu et al. [8] proposed a power line detection algorithm for guiding unmanned
aerial vehicle (UAV). The method applies a steerable filter to the input image and then uses connected
component analysis to connect the ridge points. Finally, collinear line segments are linked to form a
long line by using the line fitting algorithm. The images are taken from right above the power lines,
by flying the UAV 20 to 60 m exactly above the power lines, hence the power lines appear parallel to
each other. However, flying the UAV exactly above the power lines is not recommended due to safety
reasons. Again, these methods report the accuracies on a very small dataset, i.e., eight images [34],
29 images [7], six images [8], which do not guarantee the robustness of the algorithm. While general
line detection methods like Hough and Line Segment Detector (LSD) [35], when applied to power line
detection [8] result in many false positives due to manual parameter selection. A method to alert pilots
to avoid hitting into power line is proposed in [36], however, the method only detects the presence or
absence of the power line in a given frame of the video using a trained SVM classifier.

With the rapidly expanding scale of power grids, conventional methods of manual inspection
using electro-magnetic field meters are far from satisfying the growing demand, because of the
vulnerability to bad weather conditions, high prices, and low accessibility [37–39]. Even though
there are a number of proposed systems for automatic insulator detection from aerial images taken
using patrolling helicopters and power line robots [40,41], the high price, low stability, and less robust
algorithms make them less viable.

Hence, this paper proposes a complete real-time transmission line components inspection
framework that can detect power lines and various kinds of electrical components including insulators,
splitters, connectors, etc. from live video, taken from a drone quad-copter, and can be subsequently
examined for potential defects. In order to assist the camera system to detect transmission line
components in live video, a CNN-based transmission line components detector is trained and
embedded on an NVIDIA Jetson TX2 board (NVIDIA Corporation, Santa Clara, CA, USA). To the best
of authors’ knowledge, there has been no study where CNN is ported to GPU-equipped embedded
platform to detect and classify different types of power line components from a live video. In addition,
the embedded platform also detects the power line using proposed power line detection algorithm.
The proposed transmission line components detection and defect analysis system is highly robust
against the cluttered background, occlusion, arbitrary orientations, diverse lighting conditions, and
viewpoint changes.

The main contributions of this study are:

1. Unlike earlier studies that use handcraft features, this study explores the robustness of the CNN
features and uses them for the task of multi-type HV transmission line components detection in a
highly cluttered environment.

2. Successful implementation of an embedded system for real-time processing of drone videos with
CNN-based transmission line components detection framework. Unlike previous CNN-based
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transmission line component detection frameworks where the CNN-based detector is just focused
to detect one type of insulator and GPU resources are left unused, this article successfully
demonstrated the feasibility of using real-time transmission line component detector that is
trained to detect nine different transmission line components with above 90% recall. Moreover,
the CNN-based detector is optimized to fully utilize the GPU resources and exhibit real-time
processing capabilities.

3. A light-weight and robust power line detection algorithm is also proposed in this paper.
4. A novel defect analysis method is proposed that can detect multiple defects in transmission line

components, such as broken sheds in insulators, balisor fading, broken wires, rust in sag adjustors,
splits in insulator, etc. Other than broken shed defects, these transmission line component defect
analyzing methods have never been covered in previous studies.

5. A complete transmission line component inspection system is presented and its robustness and
real-time performance are evaluated.

The rest of this paper is organized as follows. In Section 2, a detailed overview of the proposed
system is provided. In Section 3, the CNN-based electrical components detection mechanism and the
experimental setups used to train those detectors are discussed. The proposed power line detection
algorithm, and the explanation of novel algorithms to detect the different types of transmission line
components defects are also presented in Section 3. With the comparison to the state-of-the-art,
the experimental results and performance analysis of the complete transmission line components
detection and defect analysis system is provided in Section 4. Finally, this study is concluded with
future directions.

2. Proposed System

This section presents a detailed overview of the proposed system. Figure 1 gives a brief introduction
to familiarize the reader with the visual properties (i.e., shape, color, etc.) of the transmission line
components discussed in this paper. The actual functionality of these components is beyond the scope
of this paper. As shown in Figure 1, the proposed system can detect nine different types of transmission
line components, having different colors, sizes, and shapes. It is worth mentioning that the proposed
system is scalable (can detect more types of electrical components) and requires minor modifications in
training and detecting routines.
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Figure 1. Example images of various types of transmission line components that can be detected by
the proposed system. (a) Transmission tower; (b) lightning arrester (LA); (c) suspension-type—white
porcelain insulator; (d) suspension type red porcelain insulator; (e) polymer insulator; (f) spacer; (g) sag
adjuster with bolted tension clamp; (h) vibration damper; and (i) balisor.
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The overall system diagram of the proposed transmission line components inspection system is
shown in Figure 2. Based on the implementation details, the inspection system is partitioned into two
modules: (i) detection module and (ii) defect analysis module. The capturing and detection module is
embedded on the Jetson TX2 board (does real-time processing), while the defect analysis module is
implemented on the server machine (for offline processing).Energies 2018, 11, x FOR PEER REVIEW  6 of 24 
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Video acquisition is the first step of the overall inspection process which involves capturing the
video of transmission line components using a camera mounted on a drone. The videos captured
and analyzed in this paper are taken in the rural areas of the Gyeonggi-do province of South Korea.
These areas are full of mountains, forests, and fields, making it difficult for any ground vehicle
to cover the area. A drone has the benefit of flying to the top of transmission towers, which are
normally higher than trees, hence avoiding any obstacles. Next, in the detector stage, the frames of
the video are processed by a real-time CNN-based rotation invariant transmission line components
detector embedded on the Jetson TX2 board which is mounted on the drone. Jetson TX2 is a fast and
power-efficient (7.5-watt) embedded AI computing device, equipped with 8GB RAM, a dual-core 64-bit
CPU, a quad-core ARM processor and a 256-core NVIDIA Pascal GPU. The detected components are
passed to the defect analyzer that inspects each type of defect independently. Once a particular defect
is detected at the defect analysis stage, the defect analyzer returns the probability of having that defect
which is then compared with a predefined threshold value to decide the severity of the defect.

In addition to the transmission line components detected by the proposed CNN-based detection
framework, the electrical power line is detected using a novel algorithm, which is presented in
Section 2.2. In contrast to [8], the drone is flown 10~20 m away from the power line, which also
prevents any possible damage to power line in case of sudden failure. In summary, the proposed
system detects ten transmission line components and analyzes their defects. In the later sections,
detailed explanations of those steps shown in Figure 2 are given.
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2.1. CNN Based Robust Transmission Line Components Detector

Handcraft features, such as Histogram of Oriented Gradient (HOG) and Scale Invariant Feature
Transform (SIFT) descriptors produced large performance gains a decade ago. However, due to
diversity of appearance, illumination conditions, and background, it is difficult to manually design a
robust feature descriptor to perfectly describe all kinds of objects. Currently, deep convolutional features
are providing a better breakthrough in object detection, classification, etc. With several experiments
using off-the-shelf-CNN (originally trained for ImageNet) and trained SVM classifiers, Razavian et
al. [32] showed that CNN features proved to be a strong competitor to the most sophisticated and
highly tuned state-of-the-art image classification and recognition methods. Therefore, in contrast with
the handcraft features used in the previous studies, the proposed system uses CNN for the difficult task
of detecting different types of transmission line components from highly cluttered videos. Training
CNN for detection requires a large dataset of annotated transmission line image data which is one
of the reasons why CNN was not used in previous related studies. However, in this work, a large
and diverse set of aerial videos of the transmission line system is acquired and annotated to train the
CNN-based transmission line components detector.

Deep learning-based object detection frameworks usually contain a region proposal network
(RPN) [30] in order to detect objects in all possible locations within an image, avoiding the classical
sliding window-based approach. Still, the RPN-based object detection is computationally expensive,
and hence their implementation on embedded systems does not meet the speed requirements. Darknet’s
open-source neural network framework and object detection system, YOLO version 3 [42] is used in
the research, which is the state-of-the-art, real-time object detection method. The high detection speed
of YOLO reaches 30 frames per second on NVIDIA Titan X GPU (NVIDIA Corporation, Santa Clara,
CA, USA), which makes it a suitable candidate to develop real-time applications. The high detection
speed comes from the fact that YOLO divides the whole image into fixed-sized regions and predicts
bounding boxes and confidence scores for each region, rather than generating the region proposals
first and then applying the detection network to those regions separately [29].

The CNN-based transmission line components detector presented in this paper is trained to
detect nine different types of transmission line components, i.e., transmission towers, LA, porcelain
suspension type insulators (with red caps (PorSTI-R), and with white caps (PorSTI-W)), polymer
suspension type insulators (PolSTI), power line spacers, balisors, vibration dampers, and sag adjusters.
The original Darknet-53 network of YOLO V3 scales the object to three different levels during the
training and testing time, and the applies a 1 × 1 filter to detect the object in three different scales,
which, although improve the overall detection accuracy, but also increases the detection time. On
the NVIDIA Jetson TX2 board, this results in a detection rate of 3 fps. In the inspection videos of
transmission line components, it is observed that whenever the drone moves toward the transmission
towers, components are detected at multiple scales. But detecting the same components at multiple
scales in consecutive frames of the inspection video is a redundant operation. Therefore the scaling
layers of the Darknet-53 network are removed.

The proposed CNN-based framework divides the input video frame into fixed-sized S × S regions,
and from each region, it predicts 11 bounding boxes using 11 anchor boxes. To generate good anchor box
priors, the ground-truth bounding box sizes are clustered into 11 groups using K-means clustering [42].
The decision to cluster the size priors into 11 groups is based upon the aspect ratios in which these
transmission line components can appear. Figure 1b–e shows similar aspect ratios while Figure 1a
shows an entirely different aspect ratio.

As both the PorSTI-R and PorSTI-W suffer from the same defects, they need not be differentiated
at the detection step. Hence, the CNN-based transmission line component detector is trained with
eight classes combining PorSTI-R and PorSTI-W into one class. The detector is taught with a faster
learning rate for the first half of the network training process so that the network can quickly learn
to distinguish between different types of components. In the next stage, the learning rate is slowed
by a factor of 10 after every 1000 iterations for the remainder of the training process, which allows
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the network to slowly learn the details of the shape, color, and context of each component. Figure 3
example detection results of the trained network.
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Figure 3. Detection results of the different types of electrical components, (a,b) PorSTI-W and damper
weights, (c,d) PorSTI-R and PolSTI, (e) spacer, (f) balisor, (g) LA and PorSTI-W, (h) sag adjusters and
PorSTI-R, and (i,j) transmission towers, by the trained transmission line components detector. Each
component appears with a random orientation, view point, lighting conditions, shapes, colors, and
scales, yet it is detected by the CNN-based detector robustly.

As shown in Figure 3, the CNN-based rotation invariant multi-type transmission line components
detector is robust against various viewing angles, scales, aspect ratios, partial occlusions, lighting
variations, and cluttered environments.

The CNN-based transmission line components detector returns a confidence score ∈ [0, 1]
(indicated with brackets in Figure 3) along with the bounding box coordinates of the detected
components. Detection results with a low confidence score are rejected by applying a
detection threshold.

2.2. Power Line Detection

Detection of a power line (rope wire) from aerial images is also a challenging task because of
the cluttered background. The fields, trees, bushes, and mountains causes enormous noise in the
edge maps (shown in Figures 3 and 4a). Moreover, because of the natural sag in the power line, the
edge equivalent of the power line is not a straight line (Figure 4b). Consequently, the power line
detection methods that use Hough lines [34] end with large false positive detections. However, it can
be observed from the inspection videos that these power lines appear as the connected components
that are horizontal to the camera (due to drone’s flying position). Hence, a custom-shaped kernel to
compute the edge map (Figure 4c) is proposed in this paper. The algorithm to detect power line is
given in Algorithm 1.
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Figure 4. (a) Aerial view of the transmission tower with power line. (b) The edge equivalent is very
noisy due to the presence of trees and cluttered objects in the background. (c) The use of custom shaped
Sobel kernel helps in removing the noise. (d) Imaginary straight blue line connecting the endpoints
of the power line (red) having a sag. Green curve shows the root mean square error (RMSE) values
computed between the straight line and the power line.

As given in Algorithm 1, the input image is first converted to grayscale, and a customized kernel
is convolved with the grayscale image to get the edge map. The edge map is thresholded so that the
weak and noisy edges are eliminated. Next, connected component analysis is applied, and edges
having a length smaller than a specified threshold (thedge_length), and edges that appear vertically in the
edge map, are removed, because these edges have a very small probability of being part of a power
line. The endpoints of the remaining edges are found, and the equation of a straight line is computed
using the two endpoints of the edge. Next, the root mean square error (RMSE) between the straight
line and all the points on the edge is computed. Finally, the algorithm selects the edges as a valid
power line if the value of RMSE is smaller than the specified threshold (thrmse).
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Algorithm 1 Power Line Detection.

Input: Iinput = input image, Ikernel = 2D edge filter, thedge = For thresholding edge image, thedge_length =

threshold for selecting only longer edges, thrmse = threshold for goodness of fit of the line and points on the line
Output: listend_points_o f _contour_ f inal = list of end points of line
Preprocessing: Igray ← convert Iinput to grayscale

Iedge ← convolve Igray with Ikernel
Ithresholded ← Iedge > thedge

listcontours ← apply connected component analysis on Ithresholded
Main algorithm:
for idx = 1 → number o f contours in listcontours do

Brect ← get bounding rectangle around contour in (listcontour[idx])
Lencont ← get length of contour in pixels from (listcontour[idx])
If

(
Lencont > thedge_length

)
AND (width o f Brect > height o f Brect)

Append listbig_contours ← listcontours[idx]
Append listend_points_o f _contour ← f ind end points o f contours f rom
Find end points of contours from listbigcontours

append listlines ← aidxx + bidxy + cidx = 0 ← get line using listend_points_o f _contour
End of if

End of for
for m = 1 → number o f contours in listbigcontours do

for n = 1 → point on contour in listbigcontours [m] do
x ← X − coordinate f rom listbigcontour [m][n]
y ← Y − coordinate f rom listbigcontour [m][n]

square o f the distance f rom point to line+ =
(am(x)+bm(y)+cm)

2

√
a2

m+b2
m

End of for

rmse =
√

square o f the distance f rom point to line
length o f contour listbig_contour[m]in pixels

Append listend_points_o f _contour_ f inal ← if (rmse > thrmse AND is curve up)
End of for
Return listend_points_o f _contour_ f inal

The natural sag in the power line causes the value of RMSE to increase, resulting in the low recall
of power line, hence another parameter called the curvature of the edge is introduced. The sag in power
line is always produced in a downward direction, resulting in a curved edge with an upward curvature
(Figure 4d). Accordingly, the proposed power line detection algorithm computes the curvature of the
final edges and verifies that the curvature of the edge is in an upward direction.

The proposed power line detection algorithm shows good detection results even with the cluttered
background, harsh lighting conditions, and sag in the power line, as shown in Figure 5.
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Figure 5. Power line detection results. The proposed power line detection algorithm shows robustness
against cluttered background and different lighting conditions. Detected power lines are marked in red
and labelled with ID numbers.

2.3. Defect Analyzer

Previous sections presented the methods to detect transmission line components from the live
videos taken using a drone. Once, the components are detected, their cropped images are passed to the
defect analyzer. Defects in HV transmission line components can occur due to inferior design, improper
manufacturing or use of substandard quality materials during manufacturing, misemployment of
the insulator, or extreme mechanical forces linked to weather (rain, storms, snow, hails, moisture,
extreme cold or hot temperature, and UV rays), vandalism, wildlife, extreme electrical activity,
or mishandling. These defects alter the appearance of the electrical components, like changing its color
(due to flashovers and extreme heat, etc.), shape (splits, punctures, completely broken cap, etc.) and/or
texture (shattering, chipping, cracks, etc.) [43]. The proposed defect analyzer provides a qualitative
measure that reflects to what degree the particular type of transmission line component is close to faulty.
The proposed defect analyzer can detect deformation defects of seven different types of transmission
line components. Following subsections present the proposed defect detection algorithms.

2.3.1. Broken Shed or Disk in PorSTI-W and PorSTI-R

In every type of insulator shown in Figure 1b–d, the repeating circular-shaped part is called the
“shed” or “cap”. Broken shed defect in PorSTI-W and PorSTI-R starts with small cracks on the ceramic
disk surface, caused by thermal stress or uneven heating [44]. These cracks grow over time due to
strong winds and mechanical tension, resulting in completely breaking away of individual disks, as
shown in Figure 6a.
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Figure 6. Steps of the broken shed detection. (a) Detected insulator image from CNN-based detector,
(b) output of color clustering based segmentation, (c–e) segmentation masks of the three clusters,
(f) candidate template after connected component analysis and max voting for finding most repeating
pattern, (g) activation map of the template matching, (h) results of template matching, (i) fitting the
centers of the template matching result to a straight line, and (j) final detected defect.

In order to detect the broken or missing ceramic disk in cropped insulators images, the appearance
symmetry property of the insulators’ shape and the spatial context information is used. As the sheds of
the insulator appear as equally spaced repeating patterns, the proposed algorithm iteratively searches
for the missing shed using sample templates of the ceramic shed, obtained from the input insulator
image. The missing shed/disk detection algorithm is elaborated in Figure 6.

The proposals for sample templates are first generated by color clustering (Figure 6b) the input
image and then apply morphological operations to find the blobs of the potential templates, and then
further refined using context priors (Figure 6c–e shows the three refined clusters). The connected
component analysis is applied to the three refined clusters to get the shape statistics of the blobs inside
the cluster. The algorithm selects the cluster that has the most equal-sized and equal-spaced blobs
(in this case Figure 6e). Template proposals are then drawn (Figure 6f) from the selected cluster and
each of the template proposals is convolved with the input insulator image in a sliding window fashion,
and the maximum response regions (Figure 6g) are grouped (Figure 6h). Next, the algorithm fits the
maximum response regions to a straight line and computes the fitting error (Figure 6i). If the fitting
error is greater than the specified threshold value (determined on validation dataset) then the algorithm
rejects the proposal as well as the maximum responses as false positives, while if the fitting error is
smaller than the specified threshold value, then the algorithm considers the maximum responses as
the detected sheds/disks of the insulator. The algorithm then calculates the pairwise distance between
the centers of the sheds/disks and clusters them into two groups. The smaller group is considered as
the outlier and space between the outlier pairs is marked as missing or broken shed/disk (Figure 6j).

2.3.2. Balisor Color Fading Defect

A balisor, also known as a balisor beacon, is a colorful ball-shaped transmission line component
that is attached to transmission power line. The purpose of balisor is to give a visual warning to the
low-flying objects so that they don’t run into them [45]. Their long term usage, dust, strong winds,
and rain can cause their shiny coating to fall-off, which decreases their visibility, creating a potential
threat to low-flying objects.

To identify the fading color defect in balisor, first, the spherical balisor body is tightly cropped
from the detection result. In order to mask out the noisy background, the balisor image is eroded
so that the range of the color variation in the foreground (balisor body) and background is reduced
(Figure 7b). It is assumed that the balisor image is mainly comprised of three color clusters, i.e.,
background, the upper part of the balisor (brighter than the lower part of the balisor), and the lower
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part of the balisor. Based on this assumption, the image is clustered into three color clusters (Figure 7c)
and the two clusters are selected as a foreground that shows a high probability value of recall in the
center part of the image (Figure 7d). The foreground is masked, as shown in Figure 7e, and then a
LoG (Laplacian of Gaussian) filter is applied to detect the areas of rapid intensity change. The filter is
applied to the red-color and saturation-color space, as these color spaces are the most discriminant
color spaces for detecting the balisor defects, as shown in Figure 7f–h. After removing noise and the
boundary regions, the areas with the defect are highlighted, as shown in Figure 7l.
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2.3.3. Corrosion Defect in Sag Adjusters 

As their name suggests, sag adjusters are used to adjust the sagginess in the transmission power 
line. The utilization of substandard coating material coupled with the extreme weather conditions 
may cause corrosion in sag adjusters. Corrosion weakens the material strength of the sag adjuster 
that endures the weight and stress of power line, leading to cracks, rupture, and permanent break-
away of the sag adjuster.  

Figure 7. Steps to detect defects in balisor. (a) Input image after detection using CNN, (b) after eroding,
(c) color clustering, (d) foreground mask after cluster selection and region filling, (e) masked foreground,
(f) balisor image in red and saturation color space, (g) after filtering (f), (h) after removing noise from
(g), (i) combination of red and saturation space outputs in (h), (j) mask for boundary regions, (k)
removing boundary regions, (l) marking the defect regions.

2.3.3. Corrosion Defect in Sag Adjusters

As their name suggests, sag adjusters are used to adjust the sagginess in the transmission power
line. The utilization of substandard coating material coupled with the extreme weather conditions
may cause corrosion in sag adjusters. Corrosion weakens the material strength of the sag adjuster that
endures the weight and stress of power line, leading to cracks, rupture, and permanent break-away of
the sag adjuster.

In order to detect corroded regions in the sag adjuster, the proposed algorithm first segments
the sag adjuster from the background using k-mean clustering. As the sag adjuster color is very
discriminant with respect to the background (which is mostly fields, and trees), hence the algorithm
clusters the RGB image into two clusters, where the larger cluster constitutes the background. The
Gaussian Mixture Models (GMM) are trained using the means and covariance from the RGB and HSV
space of the corroded regions of train images (random rusty images downloaded from the internet).
The algorithm trains two GMM models using each color space and it fuses the regions with a high
probability of corrosion using a weighted sum approach. Figure 8 illustrates the corrosion detection
algorithm.
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Figure 8. Schematic of the corrosion detection algorithm.

2.3.4. Broken Power Line/Wire-Rope Detection

The power lines are made up of thin wires, tied together as a wire-rope [46]. The weight of the
power line, as well as the extreme weather conditions, can cause the thin wires in the power line
to break-up gradually, leading to sparks, fire, and sometimes completely breaking the power line.
An immediate repair or substitution is usually done to avoid catastrophic results.

Due to the unavailability of a large dataset of broken power line images, the proposed scheme
currently works with a simple background. The algorithm relies upon the basic assumption that the
power lines are parallel to each other. In an ideal condition, if a line segment detection algorithm is
applied, the angles of the detected line segments (power line) with respect to the horizontal axis will
be the same. On the other hand, a broken power line detected as a line segment can take any arbitrary
angle values. Hence, the power line detection algorithm (proposed in Section 2.2) is applied to detect
power lines as line segments. During power line detection, the value of the line length threshold is
kept to be small, so that the small broken wires can easily be detected. This also causes the power
line to be detected as a set of small line segments, rather than one big straight line. According to our
assumption, the angle with the most votes (angle which is most repeated) is the angle of the true power
line, while all other arbitrary angles are caused by the broken wires, as shown in Figure 9.
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Figure 9. Schematic of the broken power line detection algorithm.

2.3.5. Broken Vibration Damper

The purpose of a vibration damper is to protect power line from wind-induced vibrations that
can cause mechanical fatigue to the power line. As the vibration damper consists of moving parts,
they are at the danger of break-away after their aging and mechanical fatigue. Again, because of the
unavailability of a large number of defected vibration damper images, we proposed a handcrafted
algorithm to detect the broken vibration damper.

As can be observed from Figure 1h, the left and right sides of the vibration damper are symmetric,
hence the proposed algorithm utilizes the shape symmetry property to detect the broken vibration
damper. First, the algorithm normalizes the orientation of the vibration damper by detecting the power
line with which the vibration damper is attached, using Algorithm 1. Next, a foreground mask is
created to extract only vibration damper from the background by applying a similar segmentation
algorithm as described in Section 2.3.3. Then, the image is split from its center and one of the splits is
vertically flipped and the two regions are convolved to find the dissimilar regions in the image, as
shown with different steps in Figure 10.
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2.3.6. Splits and Puncture Detection in Polymer Insulator

Splits can appear in polymer insulators because of several reasons, including low-quality
manufacturing material or process, miss-handling during transportation or installation process,
vandalism, birds, etc. In any of these cases, the splits grow towards the core of the insulator (radially),
causing the metal rod to expose and hence posing potential electrical hazards to the surrounding
environment [43].

Due to the elliptical appearance of the caps of the insulators, it is proposed to segregate the caps
of the insulator using ellipse detection algorithm, and then apply the splits detection algorithm on
individual caps. The ellipse detection algorithm [5] assumes that the input image of the insulator
is rotation normalized, and hence rotation normalization of the insulator images is the first step in
the proposed splits detection algorithm, which is presented in [5]. Some of the caps detection results
(after rotation normalization) using the author’s ellipse detector are shown in Figure 11.
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confidence are numbered in ascending order, represented with red color.

With the help of detected ellipse, the algorithm masks the caps of the insulator and applies the
splits detection algorithm on individual caps. The splits detection algorithm starts by computing the
edge map of the cap and then removing the boundaries of the caps in its edge map. Next, the algorithm
iterates through all the edges inside the cap, and if the edges are found near boundaries of the cap,
it closes the contour and computes the area of the closed contour otherwise it considers the edge as
noise. The steps of the splits detection algorithm are depicted in Figure 12.
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3. Experimental Results and Discussion

This section presents the experimental results of the transmission line components
inspection system.

3.1. Database Acquisition

There is no publicly available transmission line image dataset and only a few studies
presented quantitative evaluation results of the system performance using a self-acquired database.
For experiments in this paper, a large, unconstrained dataset of transmission line inspection videos
captured using a drone is gathered. The drone is flown alongside the power line and transmission
towers to include as many types of transmission line components, such as balisor, spacer, damping
weights, LA, sag adjustor, and insulators on transmission towers. Moreover, this paper also proposes
to detect the power line and transmission towers, in order to navigate the drone autonomously (in the
future). In total, 43 videos containing 700 frames on average are captured. A training set of 30 videos,
a test set of 10 videos, and a validation set of three videos is annotated. The videos were captured
during the daytime, between 11 a.m. to 3 p.m., and under two lighting conditions, i.e., sunny and
cloudy. The authors believe that the dataset is unbiased, unconstrained, and sufficiently large enough
to validate the reliability and effectiveness of the proposed system.

3.2. Components Detection

Unavailability of publicly available datasets restricts the comparison of the presented results with
those of the state-of-the-art methods. Among the published studies, only [27,28,33,47–50] presented
their detection performance on power line insulators using the same standard metric as used in this
paper, i.e., Pascal score [51].

The well-known Pascal score [51] is used to evaluate the performance of the proposed transmission
line components detector. The Pascal score is calculated by taking the Intersection-over-Union (IoU) of
the detected bounding box BBdetected and the ground-truth bounding box BBgt as:

IoU = P
(
BBdetected, BBgt

)
=

Area(BBdetected ∩ BBgt)

Area(BBdetected ∪ BBgt)
(1)

According to the criteria in [51], an object is considered correctly detected if P
(
BBdetected, BBgt

)
≥

thIoU where thIoU is typically set as 0.5. Based on this criterion, the results of CNN-based transmission
line components detector are presented in Table 1, under two settings: (1) when YOLO V3 is used and
(2) when multi-scaling is removed from YOLO V3 (proposed).
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Table 1. Summary of performances of the real-time CNN-based detector embedded on Jetson TX2.

Components
Type

YOLO V3 YOLO V3 (Multi-Scaling
Removed)

#Train
Samples

#Test
Samples

Total
#Samples

Precision
(%)

Recall
(%) Precision (%) Recall (%)

Transmission-
tower 4002 1458 5460 80.86 84.03 81.81 85.46

Spacer 2692 464 3156 78.87 86.93 81.9 92.96

Balisor 316 82 398 100.00 100.00 100.00 100.00

Lightning-
arrester 2982 454 3436 83.91 89.42 84.93 90.75

PorSTI-W+
PorSTI-R 7404 990 8394 91.87 97.07 93.42 97.47

Insulator
(polymer) 800 48 848 92.23 95.36 93.35 96.21

Damper-
weight 4088 352 4440 77.19 75.00 79.83 81.45

Sag adjuster 1830 334 2164 71.85 86.64 75.45 87.2

Avg. 24,114 4182 28,296 84.60 89.31 86.34 91.44

Table 1 also tabulates the statistics of the train and test dataset used to train the CNN-based
transmission line components detector. It is also evident from Table 1 that the CNN-based transmission
line components detector is robust against extreme scale and shape variations. Transmission-tower is
the most difficult object in our dataset, as it appears in many different scales and orientations. However,
the CNN-based detector shows reasonable detection performance for the transmission-tower class.
Moreover, the CNN-based detector shows perfect detection results for balisor class, even with a very
small number of training samples.

The performance comparison in Table 1 also shows that removing the multi-scaling from YOLO
V3 improved the overall detection performance. The precisions and recalls are highly improved in the
case of components of smaller sizes because the system is able to reject more false positive cluttered
objects and its training is more focused on detecting these objects at a single scale.

Table 2 presents the comparison of the proposed transmission line components detection method
with the published studies. In each of these studies listed in Table 2, the evaluation dataset is different
in terms of number of test samples, resolution of images, evaluation metric, and hence they cannot
be compared directly. However, the comparison shows that the proposed CNN-based embedded
detector performs best among the similar studies. The term average precision in Table 2 refers to
average of the precision at different values of recall, and can also be referred as the area under the
Precision-Recall curve.
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Table 2. Comparison of proposed CNN-based detector with the state-of-the-art insulator detectors.

Method Evaluation
Dataset Size Recall (%) Precision (%) Avg. Precision (%)

Wu and An [52] 50 86.47 85.59 86.03

Liao and An [22] 100 91.00 87.00 89.00

Oberweger et al.
[28] 375 98.00 33.00 65.50

Jabid [27] 500 94.24 89.54 91.89

Zhao et al. [33] 380 75.00 85.00 80.00

Liu et al. [47] 500 87.53 94.40 90.96

Miao et al. [48] 200 90.00 93.75 91.87

Tao et al. [49] 385 96.60 90.40 93.50

Han et al. [50] 1356 87.36 89.96 88.66

Proposed 990 97.47 93.42 95.45

3.3. Power Line Detection

The proposed power line detection method is compared with the related work by computing the
detection time and accuracy on the acquired dataset. The implementation of LSD in [53] and EDLines
implementation in [54] is used for the comparison. For the purpose of evaluation, three videos of
the power line inspection are annotated. For each power line, a two-pixel wide line connecting the
endpoints of the power line is drawn in a given frame, and then a binary mask of the annotated image
is saved as ground truth. The evaluation metric involves finding the intersection-over-union between
the ground-truth line and the detected line, and if the overlap is above 50%, the line is considered as
a true positive. Unlike the pascal score, where the IoU is computed using the area of the bounding
boxes, here the area of the line is computed by its pixel count. The overlap is computed by counting
the pixels on detected lines that are collinear to the ground truth line. The performance comparison of
the proposed power line detection algorithm and two of the related state-of-the-art schemes is given in
Table 3. It is evident that the proposed power line detector outperforms the state-of-the-art methods,
in terms of accuracy and detection speed.

Table 3. Performance comparison between proposed power line detection algorithm and
state-of-the-art schemes.

Method Precision @ 80% Recall Speed (ms)

EDLines [7] 52.33 78.25

LSD [35] 35.12 415.00

Proposed 90.56 30.21

One of the reasons why EDLines and LSD show poor power line detection results on this dataset is
that the power lines do not appear as straight lines, rather they appear a little curved due to the natural
sag of the power lines, and hence the EDLines and LSD end up detecting them as multiple straight lines,
resulting in the high recall at very low precision (precision–recall curve in Figure 13). The proposed
scheme takes into account the natural sag of the power lines, and hence shows superior performance
over the state-of-the-art schemes. For evaluating the detection speed, the EDLines, the LSD, and
the proposed method is performed on image with a size of 1920 × 1080. The proposed algorithm
is also fastest among the three methods because the proposed algorithm uses custom Sobel filters,
which results in a relatively cleaner edge map than EDLines and LSD. Furthermore, the noise removal
stage further reduces the search space for the proposed algorithm. Figure 14 shows the power line
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detection performance of the three schemes. LSD (first row: Figure 14) yields more false positives, and
hence is the slowest of all. EDLines (second row: Figure 14) performs better than LSD, owing to better
noisy-edge removal capability than that of LSD. However, EDLines also yields many false positives on
transmission tower (second row, second column, Figure 14) as compared to the proposed scheme.

owing to better noisy-edge removal capability than that of LSD. However, EDLines also yields
many false positives on transmission tower (second row, second column, Figure 14) as compared to the
proposed scheme.
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3.4. Defect Analysis

One of the reasons that a CNN-based solution for defect detection in transmission line components
is not feasible is the difficulty in collecting a large number of faulty component images. Table 4 presents
the defect detection results of balisor fading, rust in sag adjustors, splits detection in polymer insulators,
and broken shed defects. The results of the proposed broken shed detection method are also compared
with the state-of-the-art.
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Table 4. Summary of the performance of the defect detection schemes.

Method # of Test
Samples

Precision
(%) Recall (%) Processing

Time (s)

Training
Time and

GPU

Broken shed

ResNet [49]
60

91.00 95.80 0.149 16 h on
GTX-1080VGG-16 [49] 41.50 62.90 0.080

[50] 90 91.70 95.00 0.127 28 h on Titan
X

[55] 90 67.20 43.57 0.525 Not required

[56] 90 77.77 52.10 0.667 Not required

[57] 67 92.54 92.87 0.580 Not required

proposed 75 87.50 93.33 0.065 Not required

Balisor
fading Proposed 75 76.19 100.00 0.102 Not required

Rust in sag
adjusters proposed 76 70.27 92.31 0.073 Not required

Splits in
PolSTI proposed 547 38.84 93.75 0.153 Not required

Broken shed defect detection is proposed in [49,50,55–57], out of which [49,50] presented
CNN-based defect detection methods while [55–57] proposed handcrafted feature-based approaches.
As shown in Table 4, the proposed method outperforms all the previous methods [49,50,55–57] in
terms of detection speed, while it shows superior precision and recall over handcrafted feature-based
approaches [50,56], and comparable precision and recall with CNN-based methods [49,50]. As compared
to the proposed method, the CNN-based methods in [49,50] are very slow and also require 16 and 28
hours of training and a GPU, respectively. With no training required, the proposed method effectively
closes the performance gap between handcrafted feature-based approaches and CNN-based methods.
It can also be observed from Table 4, that the faster method in [49] which uses VGG-16 as base network
not only shows poor performance but also is slower than the proposed approach.

As far as the overall performance of these defect analyzers is concerned, other than the splits defect
analyzer, the three defect detection schemes show that there is good hope in the future development
of these algorithms. The splits detection algorithm shows very low precision because the algorithm
heavily depends upon the quality of edge detection. Noisy edges due to shadows, occluding objects,
polymer surface deformations, diverse illumination conditions, and improper cap detections yield
more false positives.

For better results, it is suggested that the inspection videos are captured at the time of the day
when the illumination conditions are mild, such as between 8 a.m. to 11 a.m. and 1 p.m. to 5 p.m.
(on a sunny day). At these times, the lighting conditions are neither harsh nor dark. On a cloudy day,
the videos can be taken at any time of the day when the visibility is good. Although, the inspection
drones are designed to fly in extreme weather conditions (e.g., heavy rain, snow, winds), the authors
do not recommend the inspection videos are taken in such weather due to the chance for accidents.

4. Conclusions and Future Directions

In this paper, an automatic transmission line component detection and defect analysis system
is proposed. The proposed system can detect nine different types of transmission line components
from videos taken by a drone using an embedded CNN-based components detector. The detection
performance of the modified YOLO V3 approach is shown to outperform the performance of the
baseline model. The system can also detect electrical power line using the proposed power line
detection algorithm. The proposed power line detection algorithm shows superior performance on the
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given dataset as compared with the LSD and EDlines methods, both in terms of speed and accuracy.
Once the power line components are detected, a defect analysis system checks for potential defects.
The performance of the proposed defect analyzers suggests that handcrafted, feature-based approaches
can be used to detect some of the types of defects in situations where the availability of a large number
of defect samples is not viable.

In order to support real-time operations, the proposed drone-based system is accelerated by an
NVIDIA’s Jetson TX2 GPU and uses OpenCV, CUDA, and cudNN libraries along with Darknet’s CNN
framework. The proposed system is tested on a large, unbiased, unconstrained evaluation dataset of
transmission line components images.

The proposed automatic inspection system provides practical solutions to meet the major
requirements of the modern electric transmission system. The feasibility of using a drone along with a
robust real-time CNN-based object detector can eliminate the danger associated with the duties of
electric workers physically climbing transmission towers on regular basis or use of expensive patrolling
helicopters to inspect the conditions of transmission line components. The proposed defect analysis
system can also help in reducing the time to identify the faulty components. The proposed balisor fading
defect detector has a 100% recall rate which means it does not miss any faulty components, while the
76% precision rate means that only 24% of the detection can be a false alarm. Hence, even if the second
round of inspection is required, the proposed inspection system can save up to 76% of the manual
inspection work. Overall, the proposed inspection system not only offers ease of implementation and
scalability but also gives an economical advantage over the manual inspection counterpart.

The system pipeline presented in this work provides a natural guide to future research,
which includes pushing existing CNN models to learn different types of transmission line components
at deeper levels and formalizing for the detection of additional types of defects. Future research
will consider combining the detection module and the defect analysis module under a unified CNN
architecture for improved overall performance. At present, the drone is operated by a human operator.
Future modifications will also be made towards autonomous drone by developing a mechanism that
efficiently establish a collaboration between the power line detection algorithm, transmission tower
detection algorithm, collision avoidance sensors, and the directional actuators (rotter).
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