energies MBPY

Article

Internet of Things (IoT) Platform for
Multi-Topic Messaging

Mahmoud Hussein Y2, Ahmed I. Galal 2, Emad Abd-Elrahman »**#® and
Mohamed Zorkany V4

1 National Telecommunication Institute (NTTI), Cairo 11768, Egypt; mah.hussein@nti.sci.eg (M.H.);

m_zorkany@nti.sci.eg (M.Z.)

Faculty of Engineering, Minia University, Minia 61519, Egypt; galal@mu.edu.eg

* Correspondence: emad.abdelrahman@nti.sci.eg; Tel.: +20-1000-720-268

t Current address: 5 Mahmoud El Miligui Street, 6th district-Nasr City, Cairo 11768, Egypt.
T These authors contributed equally to this work.

check for

Received: 1 May 2020; Accepted: 26 June 2020; Published: 30 June 2020 updates

Abstract: IoT-based applications operate in a client-server architecture, which requires a specific
communication protocol. This protocol is used to establish the client-server communication model,
allowing all clients of the system to perform specific tasks through internet communications. Many
data communication protocols for the Internet of Things are used by IoT platforms, including message
queuing telemetry transport (MQTT), advanced message queuing protocol (AMQP), MQTT for sensor
networks (MQTT-SN), data distribution service (DDS), constrained application protocol (CoAP),
and simple object access protocol (SOAP). These protocols only support single-topic messaging.
Thus, in this work, an IoT message protocol that supports multi-topic messaging is proposed. This
protocol will add a simple “brain” for IoT platforms in order to realize an intelligent IoT architecture.
Moreover, it will enhance the traffic throughput by reducing the overheads of messages and the delay
of multi-topic messaging. Most current IoT applications depend on real-time systems. Therefore,
an RTOS (real-time operating system) as a famous OS (operating system) is used for the embedded
systems to provide the constraints of real-time features, as required by these real-time systems. Using
RTOS for IoT applications adds important features to the system, including reliability. Many of
the undertaken research works into IoT platforms have only focused on specific applications; they
did not deal with the real-time constraints under a real-time system umbrella. In this work, the
design of the multi-topic IoT protocol and platform is implemented for real-time systems and also for
general-purpose applications; this platform depends on the proposed multi-topic communication
protocol, which is implemented here to show its functionality and effectiveness over similar protocols.

Keywords: internet of things (IoT); real-time system (RTS); real-time operating systems (RTOS);
IoT protocols

1. Introduction

The proliferation of wireless connectivity in Internet of Things (IoT) devices is rapidly expanding.
This is leading to the launch and integration of many IoT services and applications. The IoT is a
technology that is widely used for interconnecting devices (“Things”) through the Internet. It is used
in many applications and fields, such as security, E-health, home automation, emergencies, logistics,
smart metering, industrial control and smart cities [1]. Recently, a concept has been applied to IoT
platforms that involves the perception of the conditions of the network, the analysis of the gathered
knowledge, the making of smart decisions and the performance of actions adaptively [2]. This targets
the maximization of the performance of the entire network.

Energies 2020, 13, 3346; doi:10.3390/en13133346 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-8340-9164
https://orcid.org/0000-0003-1077-7799
http://dx.doi.org/10.3390/en13133346
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/13/3346?type=check_update&version=2

Energies 2020, 13, 3346 2 of 27

Moreover, an IoT system can integrate cooperative algorithms and mechanisms that can ameliorate
problems and promote performance by achieving intelligent actions [3]. This system can detect
the network conditions, analyze the gathered knowledge, make intelligent decisions and perform
automatic and adaptive actions that maximize the network performance. In this process, multi-domain
integration can increase network capacity. Despite the limited research into the intelligent IoT field [4],
there are many applications of the technology in different directions such as smart homes and
cities [5], drone applications [6], agriculture and farming. Another IoT domain—called the cognitive
domain—adds computing algorithms and mechanisms to IoT platforms so that the system devices
can make decisions and actions [7]. These devices should have an IoT communication protocol that is
responsible for establishing the connection between clients (devices) and the system’s main broker
server. The server (broker) executes the protocol algorithm with the connected devices, where the
algorithm describes the sequences required for a successful communication process.

The common network architecture for IoT systems is centralized networks, as shown in Figure 1;
the system may have a large number of nodes which require transmissions between multipoints
(clients). In most IoT platforms, to achieve IoT systems requirements, a centralized network between
the server and clients is established. In IoT systems, to connect between two devices (nodes, clients),
devices should establish a connection with the server, and then the node can send and receive various
messages which are described by IoT protocols.

Internet / e

— _7_/'
Figure 1. Architecture of the Internet of Things (IoT) network.

MQTT and CoAP message protocols are the most common IoT data protocols. MQTT messages
have less of a delay than the CoAP protocol and a smaller message size compared with CoAP, and it is
based on a transmission control protocol (TCP) connection, while CoAP uses user datagram protocol
(UDP) connections; thus, MQTT has higher reliability than CoAP. MQTT is more suitable than CoAP
for real-time systems as fewer overhead bytes are added to the messages being transferred [8].

This paper can be considered as an extension of our conference paper [9] which initiated the main
framework. In this research, a new message protocol is proposed for IoT applications. The proposed
protocol is designed to overcome an issue which has appeared with MQTT: multi-topic non-support
messages, which require extra bytes and cause increased delays from the overhead side. On the other
hand, the proposed data protocol handles the multi-topic messages which have become a feature of
the system; this will be discussed and detailed in the following sub-sections.

In this work, the MQTT protocol is selected as the most famous IoT standard protocol for
comparison with our proposed protocol. There are two ways to simulate the proposed protocol
compared with standard MQTT: using ready-made solutions that depend on using open source
programs (e.g., Mosquitto (https:/ /mosquitto.org/)— Eclipse Mosquitto is an open-source message
MQTT broker (Eclipse public license (EPL)/Eclipse distribution License (EDL)) that can be used to
implement the MQTT protocol and support different versions 3.1, 3.1.1, and 5.0. Mosquitto supports
Windows, Mac, Linux, Debian, Ubuntu, and Raspberry Pi that are commonly used, or building a new
IoT platform from scratch. In this research, we decided to design an IoT platform from scratch to
support real-time applications; thus, the simulation and real implementation results are discussed after
implementing the IoT protocol based on the proposed architecture. Then, the proposed protocol is
compared with the standard MQTT protocol in terms of message overheads and transmission delays.

Real-time systems (RTSs) are systems in which the output occurs in real time and must be correct;
thus, most IoT systems should be RTSs. It is important to tailor to critical systems that have deadlines

https://mosquitto.org/

Energies 2020, 13, 3346 3of 27

at a critical time, and these can be classified into two types: soft and hard RTSs. If a delayed time
requirement is accepted, the RTS system is called a soft RTS; if not, then it is called a hard RTS. To meet
the critical deadlines in an RTS, real-time operating systems (RTOSs) will be used [10]. An RTOS is an
operating system (OS) that is used for embedded RTSs. This OS is used as it guarantees capabilities
such as compactness, high performance, predictability, reliability and modularity [11]. RTOS supports
many services such as time, memory and task management, as well as providing multi-tasking. Taking
advantage of all of these features of RTOS, the proposed platform will be implemented based on this
system. Research perspectives regarding RTOS for IoT investigating such themes as adjusting RTOS to
work with IoT systems, the implementations of IoT platforms, IoT frameworks and IoT performance
evaluation were discussed in [1].

IoT platforms make IoT development simpler, as all IoT clients (devices with Internet access)
are connected to the broker (server). Using an IoT platform, we can publish sensor data from clients
to other interested clients (subscribers) through the IoT and take further actions through actuator
nodes. Much research has been undertaken into implementing IoT platforms [12-14], but most of them
support neither the nature of RTSs, where time is critical, nor specific applications. Furthermore, most
research has used ready-made protocols such as MQTT [15]. Thus, in our research, an IoT platform
based on RTOS will be implemented using the proposed multi-topic communication protocol.

In the rest of this work is structured as follows: Section 2 presents an overview of the relevant
IoT protocols. Section 3 introduces the proposed multi-topic IoT protocol. The proposed IoT platform
based on RTOS is detailed in Section 4. The experimentation setup phases are highlighted in Section 5;
then, experimental and simulation results are shown in Section 6. In Section 7, the main characteristics
of the multi-topic protocol are discussed. Finally, the work is concluded with some prospective research
directions in Section 8.

2. State of the Art

2.1. IoT Protocols

IoT systems are characterized by remote monitoring and control aspects. These aspects allow
IoT components to communicate together through a remote service that is powered by Internet
communications. System nodes are connected through a predefined communication protocol. The data
protocol of IoT systems provides different numbers of message frames which enable remote messaging
between IoT system nodes. There are many loT protocols for IoT systems, including MQTT, MQTT-SN,
AMQP, DDS, CoAP and SOAP, but MQTT and CoAP are the most common protocols [16].

MQTT is the most dominant IoT communication protocol; it is a pub/sub message system for
limited-resources device and unreliable networks and was developed by IBM [17] and standardized
by the Organization for the advancement of structured information standards (OASIS).

Another common IoT data protocol is CoAP; this is a recently developed protocol which must
be used for communication by constrained devices [18]. It depends on the “representational state
transfer” (REST) mechanism, which supports “request-response” models such as HyperText Transfer
Protocol (HTTP).

Many IoT protocols support single-topic messaging. This type of messaging implies that one topic
only per message can be sent through the network (a single topic such as publishing the temperature,
pressure, humidity, etc.). The message topic is important information that is required to be published
to subscribers. A subscriber node is a node that explicitly requests any published messages for a
specific topic, as shown in Figure 2.

For example, if an MQTT client (publisher) has three sensors (such as temperature, pressure
and humidity) and we need to send each sensor reading to a specific application instance client,
(for example, sensor_1 sends to application instance_1, sensor_2 sends to application instance_2 and
sensor_3 sends to application instance_3), we must send three different messages from the publisher,
and each message has a unique topic.

Energies 2020, 13, 3346 4 of 27

Subscribers

Application instance 1

Subscriber

(

Publisher

Application instance 2

MQTT Client —m . Subscriber

MQTT Broker
Sensor 1 Application instance 3

Sensor 2

Figure 2. Publish/subscribe architecture based on single-topic messaging.

An IoT device should be able to send multiple messages for different topics. Therefore, the IoT
protocols enable nodes to send many messages, but every message contains one topic only (i.e.,
the status of one sensor only). In our research, we propose the multi-topic feature in which a message
can contain many topics for different subscribers without any waiting delays such as incurred by the
message batching technique.

In recent years, the technique of batching multiple messages has been introduced in some Cloud
system applications such as the Google Cloud Pub/Sub system which supports multiple message
batching (https:/ /cloud.google.com/pubsub/docs/publisher). However, batching multiple messages
does not mean multi-topic messaging; batching messages puts messages into a queue until completion,
which implies latency, and so batching is not suitable for real-time system applications. On the other
hand, the proposed multi-topic messaging technique automatically sends any ready number of topics
without waiting or latency making, it more suitable for supporting real-time system applications.

IoT systems could be adapted with promising technologies such as edge computing. This type of
computing does not replace the MQTT protocol. Companies such as Cisco benefit from edge computing
in the IoT field by adopting MQTT; this was highlighted by a senior manager at Cisco (https://blogs.
cisco.com/internet-of-things/setting-a-simple-standard-using-mqtt-at-the-edge#comments).

Although MQTT is suitable for embedded real-time systems, the feature of multi-topic messaging
is not supported by the protocol. Thus, in this work, a modified multi-topic messaging protocol that
supports the multi-topic feature is implemented, as discussed in the next sections. This feature reduces
network traffic and reduces the delay required to publish multi-topic messages.

2.2. Multi-Message versus Multi-Topic Techniques

In this part, we differentiate between two concepts: the multi-messages technique and our
proposed multi-topics messaging technique.

2.2.1. Multi-Messages Technique (Batching)

The multi-messages techniques (i.e., batching), as shown in Figure 3, involves batching and
buffering on senders to group multiple messages and send them as one batch to increase the throughput
and cut down simple queue service (SQS) costs; however, this method has an impact on latency. In this
method used, for example, in (https://codeahoy.com/2017/08/03/message-batching-to-increase-
throughput-and-reduce-costs/), the customization of the batching algorithm can depend either on
a specific number of messages (for example, 15 messages) or wait until threshold time value (for
example, 50 ms). Thus, the batch will be formed either for a certain number or value and then
sent out. This could cause applications to crash due to the queuing and processing sequence of

https://cloud.google.com/pubsub/docs/publisher
https://blogs.cisco.com/internet-of-things/setting-a-simple-standard-using-mqtt-at-the-edge#comments
https://blogs.cisco.com/internet-of-things/setting-a-simple-standard-using-mqtt-at-the-edge#comments
https://codeahoy.com/2017/08/03/message-batching-to-increase-throughput-and-reduce-costs/
https://codeahoy.com/2017/08/03/message-batching-to-increase-throughput-and-reduce-costs/

Energies 2020, 13, 3346 5o0f 27

messages. Therefore, we can lose some or all messages, and this method is thus not suitable for
critical and real-time applications. Examples of these methods include message-batching, cloud.google
(https:/ /cloud.google.com/pubsub/docs/publisher), pulsar.apache (https:/ /pulsar.apache.org/docs/
ja/concepts-messaging/) and cloudkarafka (https://www.cloudkarafka.com/blog/2019-09-11-a-
dive-into-multi-topic-subscriptions-with-apache-kafka.html).

Shared
Consumer C-1
-

Producer | —p I:DPi:"Lllllzfti;Linn —e=={ Subscription C §. | Consumer C-2

i Fl313]|=2 3

w 2] = o N
g L ™~} consumer C-3

5 different messages

Figure 3. Multi-messages technique using batching; for example, pulsar.apache.
2.2.2. Multi-Topic Messaging Technique

The approach shown in Figure 3 is the multi-messages technique; however, in our proposal, we
consider multi-topic messaging rather than multi-messaging. In our proposed multi-topic messaging
protocol, we can send a single message with many topics; for example, as shown in Figure 4, three
topics (i.e., temperature, humidity and pressure) are all sent in one message by the publisher to the
broker. Then, the broker (proposed server) can detect and split this message into the number of new
messages (three messages according to the three inherent topics in the received one) and resend each
topic in a message to its specific client (each subscriber) without delay and loss in the data. The
system acts intelligently as if it had received three separate messages from the publisher although it
received one.

Proposed Server

,D,1,1,temp,42,1,# -
T oE—

‘ | Topic: temp

@,D,1,1,humidity,36,1,#

Publisher > M[l;lti.—'l'lopic Subscriber B
ecision >
Maker Topic: hum|d|ty

@,D,1,3,temp,42, humidity, 36, pressure, 30,1, # ‘

Subscriber C

Topic: pressure
@,D,1,1,pressure,30,1,#

Figure 4. Proposed message with the three-topics technique.

One message with 3 topics

Table 1 summarizes the main differences between the proposed protocol and four of the
most common approaches in the IoT field; MQTT, Google Pub/Sub, Pulsar, and Karafka.
This summary shows three different aspects: multi-topic subscriptions, multi-topic publications and
multiple-messages queuing. The multi-topic subscription message means that a client can send one
message that subscribes to many different topics. The clients at the beginning of the communication
send this message only once to tell the broker that this client is interested in these topics. One publishing
message contains many topics, but multiple-messages queuing is a batching-based technique that
aggregates multiple different messages into a queue.

https://cloud.google.com/pubsub/docs/publisher
https://pulsar.apache.org/docs/ja/concepts-messaging/
https://pulsar.apache.org/docs/ja/concepts-messaging/
https://www.cloudkarafka.com/blog/2019-09-11-a-dive-into-multi-topic-subscriptions-with-apache-kafka.html
https://www.cloudkarafka.com/blog/2019-09-11-a-dive-into-multi-topic-subscriptions-with-apache-kafka.html

Energies 2020, 13, 3346 6 of 27

Table 1. Comparison against relevant protocols.

MQTT [17] Google Pub/Sub Pulsar Karafka Proposed

Multi-topic subscriptions Yes No Yes Yes Yes
Multi-topic publications No No No No Yes
Multiple-messages queuing (batching) No Yes Yes Yes No

2.2.3. Studied Use-Case Scenario

Let the IoT client (a patient with medical sensors: an electroencephalogram (EEG) signal and
electrocardiography (ECG) signal and temperature, pressure and glucose level monitors) have five
sensors and our aim be to send each sensor’s status to a specific doctor (physician). The current solution
in MQTT and batching or multi-messages methods, such as in the famous apache “pulsar.apache.org”
method, is to send five different messages, with each message having frame headers; quality of service
(QoS); for example, a QoS equal to 2 requires four acknowledgment messages between the client and
server for one message) means more delays and more overhead bytes. The second solution is to let the
client (a patient with five medical sensors) concatenate these five messages into one message (with a
single topic), but in this case, the server will send this message to all destinations (five physicians).
In this case, it would not be possible to separate the message to send each topic to a specific physician,
as shown in Figure 3. On the other hand, in our proposal, we can send a single message with five
topics (five patient sensor statuses) in a single message to the broker. Then, the broker can make
the decision whether to separate this message into five new messages and resend each message to a
specific physician, as shown in Figure 4 for the three-topic example.

3. Proposed IoT Multi-Topic Messaging Protocol

The proposed multi-topic data protocol is simply highlighted in this section. It is introduced either
to establish the connection or to start the communication between IoT nodes. Moreover, it is designed
to solve the single-topic messaging problem by supporting multi-topic messaging. This multi-topic
feature acts as a brain for the messaging IoT broker. Acting as an intelligent IoT system, it converts
normal IoT nodes to smart nodes that obtain the published messages and analyze the obtained
messages to select the message destination. The resulting system can make the forwarding decisions
implemented by the broker. While a client can send many types of data with different content in the
same message without sending the data using many messages, the multi-topic feature provided by the
proposed protocol can reduce the required traffic for the nodes, meaning that the protocol could be
used in low-bandwidth networks and with limited hardware requirements.

Moreover, the IoT broker is modified from simply acting as a connecting point between clients to
processing the received messages as it can separate one multi-topic message into many messages and
display each message as a new message from a new client. Thus, it appears that the IoT broker has a
“brain” and can make a simple decision when decomposing a multi-topic message.

We therefore propose new software (i.e., the broker IoT server) that can mimic human brain
function (as it reads/inspects messages to check the number of topics and re-create a new number of
messages according to the number of topics in the received message). Moreover, it makes decisions
by sending each message from these newly generated messages to different destination clients.
Thus, the single incoming message to the proposed broker will be split into many messages and
each message re-transmitted to different destinations. Furthermore, for the content aspect of intelligent
IoT platforms, our proposal adjusts the content of the message and re-creates new messages for a
particular type of audience, as shown in the studied use case in Section 2.2.3.

3.1. Protocol Architecture

As shown in Figure 5, the proposed protocol architecture is similar to MQTT except for the
added value of the multi-topic messaging feature in our proposal. The proposed data protocol

Energies 2020, 13, 3346

7 of 27

depends on TCP/IP and consists of a centralized server (broker), IoT nodes (clients) and a multi-topics

communication protocol:

Protocol Application Range: All applications that the IoT supports can use the proposed
protocol as a communication IoT protocol. The application range includes enterprise, utilities,
mobiles and home applications.

Communication Nodes: The server (broker), which is topic-based, is responsible for
connecting nodes (client/devices). The different IoT nodes communicate with others through
the server to accomplish the functionality of the system. A sequence diagram that describes
each node type is shown in the next sections.

P

E 4

loT Node

Applications

Server N

N

Client

Registeration <Parameter

Proposed
Protocol Client

TCP/IP

TCP/IP)

TCP/IP
Network

Figure 5. Architecture of the proposed multi-topic IoT protocol.

Nodes can be classified into four categories; sensor nodes, actuator nodes, normal or hybrid
Nodes and finally, monitor nodes.

3.1.1. Sensor Nodes

The sensor node opens a TCP connection by sending a “connect” message to the broker server,
as shown in Figure 6. This node must also send an identification number (ID) to the broker server
to identify this node on the system. Then, it waits for an acknowledgment message (ACK) from the
server; after that, it will be ready to publish the sensing data (either periodic or at interrupt times) or
the information to the broker.

An IoT node can publish a message periodically or when an event occurs. Events may be
generated from hardware interruptions (e.g., a push-button is pressed) or software triggers (e.g.,
a temperature exceeds a specific value).

Energies 2020, 13, 3346 8 of 27

Sensor
Node

| |
i Open TCP Connection i
| &5
[Identify Node [
i =
I ACK I
*::\j &
I I
| Sensor Data |
& =k
} ACK j
#) ¥
I I
I I
I . I
i) i
| Sensor Data |
% =
I ACK I
:Ji:::j L
* *

Figure 6. Sequence diagram for a sensor node. ACK: acknowledgement message.

3.1.2. Actuator Nodes

The actuator node and the main server first open a TCP connection. Then, the identification
process is performed. Afterwards, this node will receive commands or messages which are transmitted
by the monitor nodes (i.e., monitor clients) through the main server, as shown in Figure 7.

Actuator
Node

[[
i Open TCP Connection _i
| =
[Identify Node [
Jr !
| ACK |
%} *
| |
[Command [
< :
| ACK |
¥ [
| |
| |
| . |
i) i
| Command |
1 i
[ACK [
k =
| |
Il [

Figure 7. Sequence diagram for an actuator node.

3.1.3. Normal Nodes

A normal node performs the functionality of actuator and sensor nodes: it opens the TCP
connection, then it identifies itself to the server with an identification number. Afterwards, it sends the

Energies 2020, 13, 3346 9 of 27

sensed data to the server, and any actions or commands received from the server by the monitoring
notes will be also executed through this node, as indicated in Figure 8.

Normal
Node

Open TCP Connection

Identify Node

ACK

Sensor Data

ACK

S
3

Command

<}

ACK

|) O, e, S, S O

Figure 8. Sequence diagram of a normal node.

3.1.4. Monitor Nodes

The monitor node opens a TCP connection with the server after the identification process is
performed; it registers to receive data from certain sensor nodes and then sends its messages to a
specific actuator via the broker server, as shown in Figure 9.

Monitor
Node

Open TCP Connection

Identify Node

ACK

Register Sensor Node
ACK

Sensor Data

ACK

Command
ACK

| SRS P 1SS W | P N, SR

B[& &1 & [1

Figure 9. Sequence diagram of a monitor node.
3.2. Node to Node Communication

All node to node (client to client) communications must be done through the broker.
Each client/node will try to establish a TCP connection and identify itself with the server. Then,
it waits for an ACK message back from the server. After receiving the ACK message, successful

Energies 2020, 13, 3346 10 of 27

communications between clients or nodes through the broker server can be done by sending and
receiving different communication packets, as shown in Figure 10.

Open TCP Connection
Open TCP Connection
Identify Node

Identify Node

ACK
ACK

Send Packets
Receive Packets

Send Packets
Receive Packets

Figure 10. Sequence diagram for node to node communication.
3.3. Protocol Frame Format

Any kind of Internet connection, such as Wi-Fi, Ethernet, General packet radio services (GPRS),
and 3G or 4G data connections, can be used to communicate between IoT nodes. Wi-Fi technology is
selected in our simulation to communicate nodes with the server. The Wi-Fi hardware implementation
module has a built-in TCP/IP stack as the proposed protocol depends on a TCP/IP protocol such as
the MQTT protocol. The proposed multi-topics protocol has four type frames: identification, ACK,
registration and finally, data frames. Table 2 indicates the common fields used in the proposed frame
structure; all frames must have the same start (@) and end (#) of frame indicator. The frame types are
shown in Table 3.

Table 2. Description of common frame fields.

Frame Field Field Description

@ Start of Frame

ft Frame Type
nid Node ID

End of Frame

, Frame delimiter
sn Sequence Number
pc Parameter Count
as ACK State
pid Parameter ID
pv Parameter Value

Table 3. Frame Types.

Frame Field Field Description
I Identification frame
R Registration frame
A Acknowledgment frame
D Data frame

3.3.1. Identification Frame

The identification frame is first transmitted by a node to declare and identify itself to the server.
This phase is done by using a specific identification number (ID), and the system should wait until
receiving the ACK message from the broker server. After that, each node can transmit (publish) or

Energies 2020, 13, 3346 11 of 27

receive (by re-publishing from the server) frames. The frame structure needed for the identification
node is shown in Figure 11. This frame is used in sensor nodes, actuator nodes, monitor nodes
and hybrid or normal nodes. The function of this frame is similar to the “connect” message in the
MQTT protocol.

@ ’ ft ’ sh ’ #

Figure 11. Identification frame structure.

3.3.2. Acknowledgment Frame

The acknowledgment (ACK) frame message is sent back from the broker server to the sender
client to acknowledge the transmission process. This frame is transmitted from the server “broker”
to the client “node”. If the requested acknowledgement field is set, then an ID of the frame must be
followed in the ACK frame. Figure 12 shows an ACK frame. This frame is used by the server as an
acknowledgment to the sender node for all frame types. The function of this frame is similar to the
“Connect ACK” message in the MQTT protocol.

@ ’ ft ’ sn ’ nid ’ #

Figure 12. Acknowledgment frame structure.

3.3.3. Registration Frame

When the node listens to (receives a message) a specific parameter (topic), it must first send the
registration frame with PIDs (parameter IDs) and PCs (parameter counts) as indicated in Figure 13.
After the registration process, any message sent from other nodes with those parameters (topics), will
be published to the node through the server; the ID frame should be sent first. This frame is used in
actuator nodes, monitor nodes and normal or hybrid nodes. The function of this frame is equal to the
“subscribe” message in the MQTT protocol.

Repeated for each parameter

—

@ ’ ft ’ sh ’ pc |’ pid ’ as |’ #

Figure 13. Registration frame structure.

3.3.4. Data Frame

With the data frame, the node can share and publish its data to other clients (nodes), as shown in
Figure 14. The data frame has multiple parameters, such as a count field (PC), an ID (PID) and a value
(PV). These parameters must be registered to use PID. Furthermore, the ID should be transmitted at
the beginning of the process. This frame is used in sensor nodes, monitor nodes and normal or hybrid
nodes. The function of this frame is equivalent to the “publish” message in the MQTT protocol, but it
supports multi-topic messages.

Repeated for each parameter

AN
/4 A\

@ |’ ft ’ sn |’ pc ’ pid ’ pv ’ as ’ #

Figure 14. Data frame structure.

Energies 2020, 13, 3346 12 of 27

4. Proposed IoT Platform Based on RTOS

In this section, the design and implementation of the proposed IoT platform will be highlighted
for critical and general applications and also for normal and real-time systems. The system uses
FreeRTOS [19] as an RTOS to meet critical deadlines on time. Our platform depends on the proposed
multi-topic protocol to support the “multi-topic” messaging feature. This will enhance the traffic
throughput and decrease the delay required for multi-topic messages. The platform consists of
subsystems such as IoT nodes and a broker server which communicates between nodes. Moreover,
the proposed multi-topics protocol manages messages between IoT nodes and the broker server.
This platform implementation uses the frame structure, which indicates how to exchange the data.
The proposed platform can be easily used in a wide range of applications as it provides IoT connectivity
and reliability and it uses the Wi-Fi module (we can use any type of Internet access) for the TCP /1P stack
to decrease the hardware cost. The advanced RISC machine (ARM) Cortex-M4 is used to implement the
proposed platform, which is powerful and has good power consumption. Furthermore, the IoT node
can be a smartphone (i.e., a smartphone with the proposed IoT client application). The communication
between system nodes through the Internet is based on the use of the broker as a backbone. This is
proposed to be a topic-based broker, as per the MQTT message protocol, and it is designed based
on RTOS.

4.1. Design of Real-Time System (RTS)

An RTS is a system that has a correct output that must be executed at the right time. Moreover,
any RTS has many time requirements and critical deadlines that must be satisfied. These requirements
must be handled by the RTOS used in system development. Therefore, the RTOS must have specific
features that consider IoT challenges simultaneously, including scalability, connectivity, modularity,
safety and security.

e Scalability refers to the IoT system’s ability for future extension (i.e., system expandability).

o Connectivity refers to whether the RTOS is compatible with and supports many communication
protocol standards.

o Modularity refers to the support of the implementation of the modules of the system. This will
simplify the addition and integration of new features to smart devices.

e Safety refers to the prevention of any malfunction behavior that can lead to undesirable action.

e Security refers to the importance of countermeasures against either threats or malicious attacks.

Figure 15 shows the RTOS architecture in the proposed system. The RTOS has a great significance
for the proposed IoT systems. This is because the use of the RTOS in development will add new
advantages to the system, such as increased reliability, efficiency and predictability. Besides, it can
simplify the management of the system [20]. As the platform design is done using RTOS, the system
design could be listed in four system tasks, as shown in Figure 16.

Task “T_Connect” is the responsible task for connecting with the broker through the Wi-Fi
communication module. Task “T_Comm” is responsible for receiving and transmitting the data from
and to the remote main IoT server. Task “T_Sensor” gathers the information from the sensors in
a special form and then sends the data to the main server. Finally, task “T_Actuator” executes the
received commands by the “T_Comm” which are sent from the remote monitor node.

Energies 2020, 13, 3346 13 of 27

Embedded Applications

Services Layer

RTOS

HAL Layer

Embedded Hardware

Figure 15. Real-time operating system (RTOS) architecture.

Figure 16. System tasks.

The system implementation scenario is as follows: the system peripheral initialization is done
first, and then the operating system services used in the real-time design are created and initialized
with the default state parameters. The system tasks should be created to allocate the required memory
to become ready to operate. Finally, the operating system should be started to enable the scheduling of
system tasks by the operating system scheduler.

The proposed IoT platform is implemented based on FreeRTOS (V10.3.1, Real Time Engineers
Ltd., MIT License). It is possible for any task to block on a specific synchronization event with a specific
time; it will exit from the blocked state even if the waiting event does not occur due to a time-out. The
ready state tasks are able and ready to run but not in the running state currently as they have a lower
priority than the already running task; all system tasks and the transitions between them are shown in
Figure 17.

Energies 2020, 13, 3346 14 of 27

e R
Not Running '
(super state)
Suspended ¢
_"“\\\
vTaskSuspend|) vTaskSuspend()
called called
vTaskResume()
called
\ Event Blocking API
ﬂastiﬂ:qgend” function called
\ Blocked 4|
\‘__ - ¥ -/.

Figure 17. Task state diagram.

4.2. Proposed IoT Nodes

The proposed platform is an embedded system that could be implemented and designed for
any type of micro-controller to meet system requirements. The proposed IoT node was designed and
implemented in our laboratory at the National Telecommunication Institute (NTI) (http:/ /www.nti.sci.
eg/pcblab/) (as a printed circuit board (PCB) prototype) and passed all tests (PCB, unit, simulation
and field tests) successfully. The proposed prototype of the IoT node was designed and implemented
based on STMicroelectronics (STM) Nucleo Board. This board uses the ARM Cortex M4 processor.
The ARM processor in the IoT node is developed for high-performance and to decrease the cost of
devices as well as decreasing the power consumption.

Each node consists of different units, such as a micro-controller to manage node tasks and a Wi-Fi
hardware stack to connect the client to the wireless network as an Internet access method. Furthermore,
the proposed node has different sensor interfaces to sense a process or an environment and output
interfaces (actuators) to control the environmental effects automatically.

All system nodes are connected together through the main broker server for specific designed
tasks. For example, the proposed generic node that contains three sensors (i.e., a patient IoT unit with
three medical sensors: an ECG signal and temperature and glucose level sensors), and we need to
send each individual sensor status to the relevant physician. In addition, the proposed client has two
actuators (i.e., turn-on alarm sound and automatic insulin dose) as shown in Figure 18.

In detail, we designed the IoT client unit to monitor the status of the patient and publish a message
periodically (i.e., every 30 min) if the sensor readings correspond to normal conditions. However, if the
status of any sensor is changed to an abnormal state (i.e., a patient temperature exceeds a threshold
value, or the glucose level or ECG signal exceeds or drops below a certain value), the proposed IoT
client understands the changes and makes the following automatic decisions;

e Publish this sensor status immediately to the physician.

e Increase the sending rate so that it is more suitable for the new changing rate (i.e., every 30 s).

e Run actuators, such as turning on the alarm sound or automatically injecting an insulin dose to
save a patient’s life.

http://www.nti.sci.eg/pcblab/
http://www.nti.sci.eg/pcblab/

Energies 2020, 13, 3346 15 of 27

Power supply
Sensor 1 Wifi module
ARM Cortex M4
Micro-controller Actuator 1
Sensor 2
Seasor 3 Actuator 2

Figure 18. Block diagram of the proposed embedded IoT client.

This process is performed in an adaptive way for one sensor or many sensors, as clarified in our
proposal for the IoT client.

e Understand the sensor status.

e Take an automatic decision to publish a message periodically (in normal status) or when an event
occurs (patient abnormal).

e Send all sensor statuses in one message with multi-topics to the IoT server (to minimize delay),
then send each sensor reading to its related subscriber (physician).

e Make the decision to run a specific actuator if required.

Based on the IoT node tasks, we can categorize nodes into four main types: sensor nodes, actuator
nodes, normal nodes and monitor nodes.

The sensor nodes sense the environment and send the sensed data to the server periodically with
a certain configuration period. These nodes include one sensor or more and do not include output
interfaces (actuators). Figure 19 shows the sensor node flowchart.

Actuator nodes can affect or control the environment through messages (commands) from other
monitor nodes via the broker server. These nodes include one or more actuators and do not include
sensors. Figure 20 shows the actuator node flowchart.

Normal nodes have the functionality of the sensor and the actuator nodes; these nodes include
actuators and sensors, as shown in Figure 21. A node’s behavior is to communicate first with the IoT
server and then send its sensor data to the server. It receives and executes the commands that come
from monitor nodes through the broker server.

Monitor nodes could be proposed as hardware nodes or smartphones which monitor and control
system nodes; they are the nodes which do not include sensors or actuators. These nodes can monitor
sensors or control the actuators through publishing commands (sending messages), also receiving and
processing the sensor data. The node communicates with the IoT broker server, and if the connection is
established correctly, then it identifies itself to the server. It will register for topics and the parameters
required from other nodes in the IoT system. Whenever it has new commands for the other nodes in
the system, it will send them to the server directly for the command-specific topics or parameters.

Energies 2020, 13, 3346

Open TCP Connection -—l

Connection
Established

Identify Node 0—\

Node |dentified

yes

Data Available

yes

Send Data
il

-

Figure 19. Sensor node flowchart.

Open TCP Connection T

Connection
Established

yes
*

Identify Node '—l

Nao

Node Identified

yes
+

Register Topics -—l

Topics Registerad

Command
Recaived

yes

Execute Command

|

Figure 20. Actuator node flowchart.

16 of 27

Energies 2020, 13, 3346 17 of 27

Communicate with
the leT Server

Mo

yes
L

Identify Mode 1—|
Mo

Yis

Register Topics

Yies

Command
Received

Mo
r_'54b{ Send Data
™
A

Figure 21. Normal node flowchart.

yesH Execute Command

4.3. Android Device as a Client Node

As the monitor node could be an Android device; the Android application layouts are designed.
The main layout is responsible for the communication with the IoT server, and the communication
layout is responsible for the data exchange with the other nodes. This node application is implemented
based on Java programming for Android development by the Eclipse IDE (release: 4.15, Eclipse
Foundation Inc.); the main activity is responsible for handling the main application layout components,
which are used to connect the broker with the IP address and the port number of the server.

4.4. IoT Server (Broker)

The IoT server is designed and implemented from scratch, independent of any ready-made server
solutions; it is implemented based on the Java programming language. The basic block in the system
is the IoT broker application, which communicates and connects all IoT Nodes. Thus, an IoT server is
implemented for the proposed system, and the server is able to communicate with all types of nodes
and is responsible for enabling monitor nodes to visualize the data of different sensors. The server’s
behavior, as shown in Figure 22, is to communicate the IoT Nodes.

Energies 2020, 13, 3346 18 of 27

If the sensor node is connected to the server, it forwards messages to the monitor node
(registered node); if the connected node is an actuator node, the server will send the monitor
message commands to it; if it is a normal node, the server will do the same thing for the actuator and
sensor nodes; and if it is a monitoring node, it sends commands (messages) to the server and then
forwards them to the actuator node.

The proposed broker server thread is implemented based on Java programming. It starts by
listening to a specific server port to become ready for any node connection. If a new node tries
to connect, then a new thread is created; the created thread is called the IoT device thread and is
responsible for handling the IoT client node connection for the data exchange between this node and
the other nodes in the system.

Start

Accept Nodes
Communication Request

Receive Node Data and
Sensor Node Yes Forward the data toits
maonitors

’

Send the monitors

Actuator Node Yes—
commands

’5

Receive Node Data and

Forward the data to its

monitors and Send the
monitors commands

Normal Node Yeas—H

Receive monitor commands
and Forward the commands
Moni Nod ¥ —
i e b to its Nodes, Sends the

nodes data

4

Mo
MO

Figure 22. Server (broker) flowchart.
5. Experiment Setup

To study the performance of our proposed protocol, we carried out experiments.
Additionally, the proposed protocol was compared with the standard MQTT protocol. This was
done by setting different parameters of the network which affect the protocol’s performance.
The experimentation phase was executed inside our NTI premises on the real network infrastructure
of the institute. We chose two performance metrics in the experiments: the delay time and the total
transmitted bytes. The first metric concerns the delay of the transmitted message, defined by the
interval time between sending frames (i.e., the publishing of a message) and the returned ACK message
answered by the server, while the second metric concerns the total transmitted bytes per successfully
sent message.

5.1. Hardware Setup

The hardware setup phase, as shown in Figure 1, consisted of three PCs/Laptops. The first
one is used for the WANem (version 3.0) software (http://wanem.sourceforge.net/) to simulate the
effects of channel losses to simulate transmission losses. Additionally, using the WANem server,

http://wanem.sourceforge.net/

Energies 2020, 13, 3346 19 of 27

we can simulate communication delays. The server (the computer which acts as a broker) for node
communication and another laptop (client node) act as a node that publishes the message and waits
for it to be acknowledged. Wireshark Software (https://www.wireshark.org/) is installed on the node
(client) to monitor the traffic that is used later on for the analysis phase. The proposed multi-topic
protocol and the MQTT protocol run on the same server. Each message is published from the IoT node
to the broker server, going through the WANem node (the machine that simulates the network delay
and packet drops). Finally, the server’s ACK message will be returned to the transmitted node through
the WANem server machine.

5.2. Software Setup

The Mosquitto (MQTT broker) as an open source MQTT broker is implemented based on the
last updated version of the MQTT standard, which is v3.1, and the proposed multi-topic protocol
broker-sides are implemented using Java coding. The proposed software of the broker is designed,
implemented and tested with the same scenarios of the MQTT protocol. The software tools used in
the practical experiment are the Wireshark software for packet analysis and the WANem software for
network emulation.

The Wireshark tool can be used to measure and calculate metrics such as packet length and delay
time; the software can monitor the network packets, the time elapsed for each packet and also the total
traffic over a network. It can also generate reports after the monitoring of the network at a certain time;
these reports are helpful for accurately studying the network traffic.

The WANem software is used for network delay and packet loss insertions. Network conditions
do not have a fixed behavior, and so a network-related protocol evaluation and comparison cannot be
fair because of the variant network conditions. For fixed network conditions, the WANem software is
used; it can insert different network conditions for each test, including packet delays and packet loss
percentage. These insertions help us to test under specific network conditions for a practical network
test rather than simulation tests.

6. Simulation and Experimental Results

To test the proposed platform, we built an IoT platform consisting of one broker server, the
WANem machine (PC), and a client, which were connected as a simple setup for the experiment. Both
protocols (the proposed IoT communication protocol & the MQTT protocol) can achieve message
delivery without applying a packet loss rate percentage. Successfully achieving this scenario would
indicate that the two protocols have good communication and message delivery rates under different
packet loss ratios. Thus, we can study the performance either in terms of the message delay or the
successful amount of transmitted data, as indicated in the next sub-sections.

6.1. Message Delay

The message delay can be defined as the time interval between sending a message (i.e., publishing
one) from the IoT node and receiving the ACK (returned message reply) from the broker node/server.
This is calculated as shown in Equation (1). The message delay metric is a significant parameter for
real-time systems where time is critical or sensitive. Different packet loss rates are applied to have
ameliorate the message delay as a result of message re-transmission. Moreover, the MQTT protocol,
which has a quality of service (QoS) equal to 1, is compared against our proposed multi-topic protocol
with An ACK data state (QoS) equal to 1 for the same messages.

_ 1
D= ;Z(Tri*Tsi) 1)

where D is the average message delay at a certain loss percentage, 1 is the number of messages, T}; is
the reception time of the message ACK and Tg; is the sending time of the message.

https://www.wireshark.org/

Energies 2020, 13, 3346 20 of 27

MQTT has a small frame size compared to the multi-topic proposed frame, and so the protocol
message delay in the case of a single-topic is less than our proposed one, as shown in Table 4.

In Figure 23, when the network losses are less than or equal to 15%, the average message delay of
MQTT and the proposed protocol can be seen to be approximately the same. After 15% of network
losses, the introduced message delay by the proposed protocol is greater than MQTT. The difference
between the protocols increases with increasing network losses. Here, one single-topic message has
a lower frame overhead than one multi-topic message. This is a normal case due to the new frame
headers added to achieve the multi-topic functionality. However, the difference is not significant.

Table 4. MQTT versus proposed protocol average end-to-end delay in seconds for different rates of

losses (%).

0% Loss 10% Loss 20% Loss 30% Loss

MQTT 0.001081 0.065235 0.695212 2.357077
Proposed 0.001095 0.071645 0.721798 2.505362

2500 T T T
-~ Proposed /
—\— QT /

2000+

1500

Delay (m. sec)

1000

500+

| 1
0 5 10 15 20 25 30
Loss %

Figure 23. The average message delay (in seconds).

6.2. Message Data Transfer

We found that the message data transferred per message should be considered as an important
metric; thus, the traffic generated by the network should be as small as possible. The message data
transferred can be calculated as the ratio of the total generated bytes to the number of successful
messages delivered, as shown in Equations (2) and (3). We depend on the Wireshark tool output to
calculate this metric at different percentages of packet loss rates.

f:

S|

(L;) @)

™=

1

where L is the number of bytes on average per successfully transmitted message, L; is the number of
bytes on average per successfully transmitted message for each trial and # is the number of trials.

L= 3)

where L; is the number of bytes on average per successfully transmitted message for each trial, Li is
the total traffic or number of bytes per trial and M is the number of successful messages that replied
with an ACK.

Energies 2020, 13, 3346 21 of 27

In Figure 24, the average message bytes of MQTT and the proposed protocol are close when the
network losses are less than or equal to 10%. After that, the message bytes of the proposed protocol are
greater than MQTT. When the network losses increase, the difference between the protocols increases.
Here, a lower protocol overhead is introduced by a single-topic message, but a small increase is
found for the multi-topic message. The new frame headers that are added to achieve the multi-topic
functionality are the reason for this behavior.

550 .
--l- Proposed ,'.
’
5001 —H— mart 7
/l,'

» 4501 | _§ 1

(=] ,’

o o+~

$,I

% 400 / i

= s

2 380f o .

a o

3 300r o _

o

2 |

30

Loss %

Figure 24. Average traffic per message (bytes).

6.3. Multi-Topic Messages

In many cases, we need to publish multi-topics to many clients or nodes at the same time. For this
use case, the MQTT protocol cannot support these features. Thus, in MQTT, we need to publish each
topic in a separate message; however, in our multi-topic protocol, which supports multi-topic features,
we can publish these different topics in a single message. In this case, the proposed protocol delay is
smaller than for MQTT, as shown in Figure 25, and the overhead bytes for each multi-topic message
are shown in Figure 26 for no losses.

10 T T T T T T
-~ Proposed
Ir —— vart

delay in m sec

MNo. of messages

Figure 25. The multi-topic measured message delay (in milliseconds).

In Figures 25 and 26, when the number of the transmitted messages is equal to one, MQTT and
the proposed protocol have approximately the same message delay and message size. However, when
the number of transmitted messages is equal to two, the introduced message delay and message

Energies 2020, 13, 3346 22 of 27

size from the MQTT are larger than the proposed approach. This difference increases as the number
of transmitted messages increases. These observations and results arise because sending multiple
single-topic messages adds more overhead than sending one multi-topic message, as MQTT requires
a number of messages to be sent that equal the number of topics (one message per topic). On the
other hand, the proposed protocol sends only one multi-topic message that has a lower overhead and
achieves more throughput than the single-topic messages.

To conclude, our proposed multi-topic protocol has a lower delay and traffic compared to the
standard MQTT protocol. This fact resulted from the addition of the multi-topic feature to the proposed
protocol, adding some bytes for more topics as opposed to the approach in the MQTT protocol.

1500

--l- Proposed
—— maTT

1000 -

No. of Bytes

500+

1 2 3 4] 6 Fi 8 9 10
Mo. of messages

Figure 26. The total traffic measured per multi-topic message in bytes.

6.4. Worst-Case Scenario

Many current IoT applications depend on real-time systems. Real-time implies the enhancement
of two parts of IoT communication systems: the first part describes the communication between the
IoT node and the connected sensors or actuators (the proposed IoT client based on ARM Cortex-M4),
and the second part involves the communication between the IoT client and the IoT broker. In our
research, we addressed the two parts as follows.

o The proposed embedded IoT client is handled by using FreeRTOS (a common real-time operating
system on the market). It provides multi-tasking to guarantee that many tasks work correctly in a
semi-concurrent way and handle deadlines. Thus, the proposed IoT client is a real-time embedded
system. Moreover, using RTOS in the proposed IoT embedded unit can decrease the processing
time and minimize the delay.

e The second part (which involves the communication between the client and the server) is handled
in our research by using the multi-topic feature to enhance the delay required for publishing many
messages. Overall, the proposed system has a lower delay than similar systems due to the use of
FreeRTOS and the multi-topic feature, as shown in Table 5.

Table 5 shows that the multi-topic messaging in the proposed protocol is better than MQTT for
more than one topic (two topics or more), and the single-topic messaging in MQTT is near to the
proposed protocol.

Energies 2020, 13, 3346 23 of 27

Table 5. Comparison for the worst-case scenario.

Worst-Case Scenario / Network Losses 0% 5% 10% 15% 20% 25% 30%
One message vs single-topic (MQTT) 1.14 16 85 375 1253 3153 5894
One message vs single-topic (Proposed) 121 22 108 627 1342 3245 6361

Two messages vs two-topic message (MQTT) 224 31 165 725 2452 6253 10,194
Two messages vs two-topic message (Proposed) 128 25 118 687 1388 3275 6450

Five messages vs five-topic message (MQTT) 54 75 405 1850 6253 12,153 21,894
Five messages vs five-topic message (Proposed) 131 26 122 714 1391 3315 6550

From this result, and according to the condition of meeting a 5 second deadline, we can state

the following:

In the case of a single topic, the proposed protocol, as well as standard MQTT, can transmit the
data even if the loss percentage in the communication network reaches 25%; however, if loss
reaches 30%, neither method can transmit the data within 5 s.

In the case of two messages vs a single message with two topics, the proposed protocol can
transmit the data even if the loss percentage in the communication network reaches 25%, while
standard MQTT can only tolerate 20%.

In the case of five messages vs a single message with five-topics, the proposed protocol still can
transmit the data even if the loss percentage in the communication network reaches 25%, while
standard MQTT can only tolerate 15%.

Thus, the proposed protocol is better and more able to work in worst-case conditions than

standard MQTT.

7. Protocol Characteristics

This section will highlight the main implementation characteristics of our proposed protocol

compared to the MQTT standard.

7.1. Main Characteristics

The proposed protocol implementation characteristics can be summarized as follows;

Simplicity: This is an important feature for any protocol or system and can be summarized as
follows: it must be easy to learn—and easy to use—the protocol or the system.

Low protocol overhead: The protocol overhead is the number of bytes required for each designed
frame. The frame structure shows that our protocol has a small overhead: i.e., the start of the frame
byte and the frame type byte, where the frame elements are just comma-separated elements. The
protocol has four main types of frames which have low overheads (few bytes): the identification
frame has 6 bytes, the acknowledgement frame has 5 bytes, the registration frame has 8 bytes
and the data frame has 9 bytes.

Constrained network capability: The network challenges increase in the IoT systems, as billions of
nodes require a network connection that maintains its data from corruption or being lost. In such
networks, the network bandwidth should be limited for each node, as the network capacity might
be extended; our protocol requires a small frame size for all the frame types.

Constrained devices availability: The huge number of devices is a reason for minimizing the total
cost for each device; choosing controllers with limited resources reduces the total cost of the IoT
device. This has limited the use of such systems to date, although more powerful processors have
been developed. The proposed protocol consists of four simple frames with a small number of
bytes for each frame. The design simplicity and the low protocol overhead make the protocol able
to work with the constrained devices which have controllers with an 8-bit processor architecture
and limited resources.

Energies 2020, 13, 3346 24 of 27

Asynchronous communication model: An IoT node receives its required data once the data are
available; this system is called an event-oriented system, which is not polled in a periodic way
to detect the data. The protocol enables the IoT nodes to use this feature, meaning that they are
always up-to-date with data from the source.

TCP-Oriented protocol: The TCP is the industry standard; it is considered to be the language
of the Internet. TCP is a reliable protocol because the protocol itself checks everything that was
transmitted if it was delivered at the receiving end correctly or not; if not it will re-transmit the
data. Our protocol depends on a TCP connection.

Publish/Subscribe model: The pub/sub messaging protocols allow messaging with a topic name,
which is an array of characters; the node which sends the message is called a publisher and the
node which receives the message is called a subscriber. This model or architecture has many
features such as message decoupling and one-to-many messaging, which is discussed below.
The model of the proposed protocol is similar to this model.

Data decoupling and one-to-many messaging: The data decoupling feature is one of the features
of pub/sub systems shared by the proposed protocol. This means that more than one node can
publish or send messages on the same topic or parameter name. The senders will send data to the
broker server with a certain topic or parameter name; the server will send these messages to the
nodes which register the same parameter name, as in Figure 27.

One-to-many messaging is the second feature of the pub/sub systems shared by the proposed
protocol, which means that a node can send the same message to many nodes at once. The sender
node will send a message with a specific parameter name to the main server, and the server will
send the same message to all the registered nodes with the same parameter name, as shown in
Figure 28.

/ Server \
()

Parameter @ @

L)
Figure 27. Data decoupling.

/ Server

» Receiver

» Receiver

il

\ / » Receiver

Figure 28. One-to-many messaging.

N
™
O
&

i

Multi-functional communication: Any IoT node can perform both message decoupling and
one-to-many messaging. It can send a message with any parameter to the server, and the server

Energies 2020, 13, 3346 25 of 27

will automatically flood the message to all the registered nodes to that parameter. A node is
capable of registering to any different parameters, and when the server receives any messages
for these parameters, it will forward them to the node directly; both operations are shown in
Figure 29.

/ Server \
()

C)/

Sender »{ Parameter Receiver

) () ()
» Parameter Receiver

)
@

Figure 29. Multi-functional communication.

ol

Sender Receiver

e Reliability: The proposed protocol is based on the TCP protocol, which adds a sort of physical
layer of reliability. One of the protocol frames is called the acknowledgment frame; this frame is
required by the receiving node to acknowledge the reception if it succeeded—the server also sends
this frame to acknowledge the message received from any IoT node. Moreover, the identification
frame should be replied with an ACK; the registration and data frames have the choice of enabling
the ACK to be expected from the receiver or not.

e Scalability: The simplicity of the proposed multi-topic communication protocol tends to lead to a
simpler server algorithm. The server main thread starts the main server algorithm and listens for
the new IoT node connection when a new node tries to connect to the server. Thus, the scalability
is not limited by the protocol itself as it consumes a few bytes and a small number of frames.

7.2. Comparison between Standard MQTT and Our Proposed Protocol

Our protocol has many features supported by MQTT protocol, such as a TCP-oriented protocol,
message delivery mechanism and a publish/subscribe architecture. The protocols are different in some
features, such as the multi-topic feature, which is supported only by the proposed protocol and not the
MQTT, and the frame field-determining mechanism. A brief comparison between the standard MQTT
and the proposed IoT multi-topics protocol is shown in Table 6.

Table 6. The proposed protocol and MQTT comparison. QoS: quality of service.

The Proposed Protocol MQTT Protocol
Transport layer TCP-oriented TCP-oriented
Message delivery mechanism Simple ACK mechanism QoS mechanism
Architecture Publish-subscribe architecture ~ Publish-subscribe architecture
Multi-topic support Yes No
Frame field-determining mechanism Field-delimiters mechanism Field-size mechanism

In our evaluation, the average case was calculated for the end-to-end messaging for a fair
comparison between the two messaging protocols (the MQTT protocol and the proposed one) with
different network losses. It is worthy of note that an embedded system is not simply a real-time system
that must take care of the worst-case deadlines within the device itself, but the end-to-end messaging
is a network evaluation test that must be tested with many message transmissions. This evaluation is
done for many trials that must be calculated on average for a successful comparison between the two
messaging protocols.

Energies 2020, 13, 3346 26 of 27

8. Conclusions

In this research, the definition and architecture of the proposed IoT multi-topic protocol are
presented. Additionally, the main protocol feature, which is called the multi-topic feature, and the
application range that could be applicable for that protocol are discussed. The multi-topic IoT
communication sequence diagrams are shown, and the protocol frame formats are designed in this
research. The characteristics of the proposed protocol are also listed. Furthermore, the general
IoT architecture based on RTOS is presented, and a new multi-topic IoT platform is proposed to
implement the IoT nodes. The node—server communication is introduced and the experiment setup
is shown,; finally, the experimental results are discussed. Experiments were carried out to study and
compare the performance of our IoT multi-topic protocol versus the standard MQTT using different
parameters of the real network which affect the performance of protocols. Practical experiments
were executed in a real environment based on our NTI network infrastructure. The obtained results
showed that our protocol had less delay and lower traffic for multi-topics compared to the MQTT.
Therefore, the proposed protocol outperformed the MQTT protocol in the case of multi-topic messaging.
Moreover, our protocol was better than the batching of multiple messages for real-time system
applications.

Author Contributions: All authors have equally participated in contributions to this research article, either in
terms of the concept, methodology or validation phases of the proposed protocol. All authors have read and
agreed to the submitted version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hussein, M.; Zorkany, M.; Abdelkader, N. Real Time Operating Systems for the Internet of Things, Vision,
Architecture and Research Directions. In Proceedings of the IEEE Conference Publications, WSCAR, Cairo,
Egypt, 12-14 March 2016; pp. 72-77.

2. Zhang, M.; Zhao, H.; Zheng, R.; Wu, Q.; Wei, W. Cognitive internet of things: Concepts and application
example. Int.]. Comput. Sci. Issues (IJCSI) 2012, 9, 151.

3. Zhang, Y,; Ma, X,; Zhang,].; Hossain, M.; Muhammad, G.; Amin, S. Edge Intelligence in the Cognitive
Internet of Things: Improving Sensitivity and Interactivity. IEEE Netw. 2019, 33, 58-64. [CrossRef]

4. Abdurahman, M. A Survey on the Concepts, Trends, Enabling Technologies, Architectures, Challenges and
Open Issues in Cognitive IoT Based Smart Environments. Int.]. Sci. Res. Sci. Eng. Technol. (I]SRSET) 2018,
4,512-522. [CrossRef]

5. Park,];Salim, M.; Jo, J.; Sicato, J.; Rathore, S.; Park, J. CIoT-Net: A scalable cognitive IoT based smart city
network architecture. Hum. Cent. Comput. Inf. Sci. 2019, 9, 1-20. [CrossRef]

6. Ding, G.; Wu, Q.; Zhang, L.; Lin, Y.; Tsiftsis, T.; Yao, Y. An Amateur Drone Surveillance System Based on
Cognitive Internet of Things. IEEE Commun. Mag. 2018, 56, 29-35. [CrossRef]

7. Gad, R.; Talha, M.; Abd El-Latif, A.; Zorkany, M.; El-Sayed, A.; EL-Fishawy, N.; Muhammad, G. Iris
Recognition Using Multi-Algorithmic Approaches for Cognitive Internet of things (CIoT) Framework.
Future Gener. Comput. Syst. (FGCS) 2018, 89, 178-191. [CrossRef]

8. Thangavel, D.; Ma, X.; Valera, A.; Tan, H.; Tan, C. Performance Evaluation of MQTT and CoAP via a Common
Middleware. In Proceedings of the 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), Singapore, 21-24 April 2014; pp. 1-6.

9. Hussein, M.; Zorkany, M.; Abdel Kader, N. Design and Implementation of IoT Platform for Real Time
Systems. In International Conference on Advanced Machine Learning Technologies and Applications; Springer:
Cham, Switzerland, 2018; pp. 171-180.

10. Hahm, O.; Baccelli, E.; Petersen, H.; Tsiftes, N. Operating Systems for Low-End Devices in the Internet of
Things: A Survey. IEEE Internet Things J. 2016, 3, 720734 [CrossRef]

11. Labrosse, J. MicoC/OS-II:The Real-Time Kernel, 2nd ed.; pp. 1-648. Available online: https://www.amazon.
com/MicroC-OS-II-Real-Time-Kernel-ebook /dp /B07CSRL7WY (accessed on 10 February 2020).

http://dx.doi.org/10.1109/MNET.2019.1800344
http://dx.doi.org/10.32628/IJSRSET1841111
http://dx.doi.org/10.1186/s13673-019-0190-9
http://dx.doi.org/10.1109/MCOM.2017.1700452
http://dx.doi.org/10.1016/j.future.2018.06.020
http://dx.doi.org/10.1109/JIOT.2015.2505901
https://www.amazon.com/MicroC-OS-II-Real-Time-Kernel-ebook/dp/B07CSRL7WY
https://www.amazon.com/MicroC-OS-II-Real-Time-Kernel-ebook/dp/B07CSRL7WY

Energies 2020, 13, 3346 27 of 27

12.

13.

14.

15.

16.

17.

18.

19.
20.

Zamfi, M.; Florian, V.; Stanciu, A. Towards a Platform for Prototyping IoT Health Monitoring Services.
In International Conference on Exploring Services Science; Springer International Publishing: Cham, Switzerland,
2016; pp. 522-533.

Bellagente, P.; Ferrari, P.; Flammini, A.; Rinaldi, S. Adopting IoT Framework for Energy Management of
Smart Building: A Real Test-Case. In Proceedings of the 2015 IEEE 1st International Forum on Research and
Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), Turin, Italy, 16-18 September
2015; pp. 138-143.

Haghi, A.; Burney, K.; Kidd, F; Valiente, L.; Peng, Y. Fast-paced development of a smart campus IoT platform.
In Proceedings of the Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6-9 June 2017; pp. 1-6.
Happ, D.; Karowski, N.; Menzel, T.; Handziski, V.; Wolisz, A. Meeting IoT Platform Requirements with
Open Pub/Sub Solutions. Ann. Telecommun. 2017, 72, 41-52. [CrossRef]

Karagiannis, V.; Chatzimisios, P.; Vazquez, F; Alonso,]. A Survey on Application Layer Protocols for the
Internet of Things. Trans. IoT Cloud Comput. 2015, 3, 11-17.

IBM. MQTT V3.1 Protocol Specification, Protocol Standard. pp. 1-81. Available online: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.1.1-0s.pdf (accessed on 21 June 2020).

Shelby, Z.; Hartke, K.; Bormann, C. REC 7252: The Constrained Application Protocol (CoAP), Internet
Engineering Task Force, (IETF) PROPOSED STANDARD. 2014. pp. 1-112. Available online: https://tools.
ietf.org/html/rfc7252 (accessed on 21 June 2020).

FreeRTOS. Available online: https:/ /www.freertos.org/ (accessed on 21 June 2020).

Gaur, P; Tahiliani, M. Operating Systems for IoT Devices: A Critical Survey. In Proceedings of the 2015 IEEE
Region 10 Symposium, Ahmedabad, India, 13-15 May 2015; pp. 33-36.

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12243-016-0537-4
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os /mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os /mqtt-v3.1.1-os.pdf
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://www.freertos.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art
	IoT Protocols
	Multi-Message versus Multi-Topic Techniques
	Multi-Messages Technique (Batching)
	Multi-Topic Messaging Technique
	Studied Use-Case Scenario

	Proposed IoT Multi-Topic Messaging Protocol
	Protocol Architecture
	Sensor Nodes
	Actuator Nodes
	Normal Nodes
	Monitor Nodes

	Node to Node Communication
	Protocol Frame Format
	Identification Frame
	Acknowledgment Frame
	Registration Frame
	Data Frame

	Proposed IoT Platform Based on RTOS
	Design of Real-Time System (RTS)
	Proposed IoT Nodes
	Android Device as a Client Node
	IoT Server (Broker)

	Experiment Setup
	Hardware Setup
	Software Setup

	Simulation and Experimental Results
	Message Delay
	Message Data Transfer
	Multi-Topic Messages
	Worst-Case Scenario

	Protocol Characteristics
	Main Characteristics
	Comparison between Standard MQTT and Our Proposed Protocol

	Conclusions
	References

