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Abstract: The extensive use of finite element models accurately simulates the temperature distribution
of electrical machines. The simulation model can be quickly modified to reflect changes in design.
However, the long runtime of the simulation prevents any direct application of the optimization
algorithm. In this paper, research focused on improving efficiency with which expensive analysis
(finite element method) is used in generator temperature distribution. A novel surrogate model
based optimization method is presented. First, the Taguchi orthogonal array relates a series of stator
geometric parameters as input and the temperatures of a generator as output by sampling the design
decision space. A number of stator temperature designs were generated and analyzed using 3-D
multi-physical field collaborative finite element model. A suitable shallow neural network was
then selected and fitted to the available data to obtain a continuous optimization objective function.
The accuracy of the function was verified using randomly generated geometric parameters to the
extent that they were feasible. Finally, a multi-objective genetic optimization algorithm was applied
in the function to reduce the average and maximum temperature of the machine simultaneously.
As a result, when the Pareto front was compared with the initial data, these temperatures showed a
significant decrease.

Keywords: multi-physical field collaborative; multi-objective genetic algorithm (MOGA); neural network
(NN); synchronous generator; Taguchi method

1. Introduction

Electrical machine is one of the most promising solution to reduce energy crisis, air pollution
and global warming. Recently, research on temperature field of electrical machine is attracting
more and more attention since it is one of the major obstacles to the performance improvement.
Excessively high temperatures will cause accelerated insulation aging and deterioration within some
essential components, such as winding conductors. In addition, the electrical resistivity of the winding
conductors are proportion to the temperature, which creates a positive feedback that in turn accelerates
the loss and temperature rise that occurs in the winding. Thermal effects on the geometrical dimensions
of the machine’s physical structure, such as a narrowing within the air gap, may alter the machine’s
nominal performance, or even result in faults and failures. To tackle the above thermal challenges in an
electric machine, the optimal design of the heat dissipation mechanism in order to obtain a balanced
heat distribution across different components is required [1–5].

The optimization design process can be divided into three stages: the sampling and calculation
of data, the definition of the optimization objective function, and the application of the optimization
algorithm. In the first stage, the data used to reflect the relationship between the inputs and outputs of
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the specified system are sampled and any computational or experimental means used to generate the
corresponding response. Commonly used data sampling methods include full-factorial sampling, Latin
hypercube sampling, and orthogonal array, with different sampling methods determined depending
on the system being analyzed. For the temperature design of the electrical machine, it is necessary to
have as few sample points as possible and a uniform distribution of sample points in the design space,
as well as to avoid projection overlap. The Taguchi orthogonal array is a desirable choice because of
the orthogonal characteristics between the columns in the array.

The definition of the objective function determines the efficiency of the optimization. The accuracy
of this function largely affects the optimization quality, and the complexity of its computation affects
the time taken to update and iterate the solution during the optimization process. Evaluation of the
temperature performance of electrical machine involves the use of expensive computer simulations
(finite element analysis, computational fluid dynamics), which means that only a limited number of
simulations are usually affordable. Due to the long running times of simulations (often overnight),
almost any optimization algorithm applied directly to the simulation will be slow [6]. The proposed
surrogate model approach provides a solution that avoids investing in a computational budget in
answering questions, and instead invests in developing fast mathematical approximations to long
running computer code. This approach bridges the variables and their response with the form of black
box which is convenient for studying systems with complex internal mechanisms.

In the last stage, a suitable and effective optimization algorithm will be applied to the defined
objective function for finding the optimal results. There are two main types of multi-objective
optimization methods in common use, one based on weighting factors and the other on heuristic
algorithms. The first method assigns different weight values to each objective performance according
to the optimization requirements to establish the weight function as the optimization objective function.
It simplifies the multi-objective function problem into a single objective function for solving. Butat the
same time, the problem of weighting factor also arises how to choose the exact weighting factor to
clearly describe the relationship between the objective performance. It’s a challenge for the designer.
And this approach is not well adapted to non-linear problems. The second approach constructs Pareto
solutions based on population search, such as multi-objective optimization genetic algorithm (MOGA).
In such approach a set of designs is worked on concurrently and evolved towards the final Pareto set
in one process. In doing this, designs are compared to each other and progressed if they are of high
quality and if they are widely spaced apart from other competing designs [6].

Literature Review

Since Dr. Genichi Taguchi [7] developed the Taguchi method, it has been used extensively in
industrial optimization, including electrical machine applications. The existing motor optimization
approaches based on the Taguchi method [8–10] are “point-like”, where the designer chooses a fixed
level for each factor and then selects the “optimal” value among known results. The level values of the
factors are mostly subjective, which makes the optimization results more favorable to the designer’s
expectations. It is more convincing to find the optimal value for each factor with continuous variations
in the range of values taken. The objective function is the basis for continuous optimization within the
feasible interval.

In recent years, surrogate model methods have been increasingly used in electrical machine
optimization research. Ziyan et al. compared Kriging method, response surface method, and radial basis
function, three surrogate model building methods, in optimizing electrical machine electromagnetic
problems [11]. Weile et al. creates the surrogate model between output performance and design
parameters of a coreless axial flux permanent magnet synchronous machine (AFPMSM) using support
vector machine [12]. Neural networks as non-parametric models can also ignore the internal principles
of the system and directly establish the relationship between inputs and outputs. However, the accuracy
of the models usually built is related to the amount of training data, which limits their application to
surrogate models.
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The popularity of multi-objective genetic algorithm (MOGA) has led to its increasing use in
electrical machines, from the accuracy aspect of the optimization model to the adaptation of the
optimization algorithm. Abdelhadi et al. proposed a novel adaptive GA scheme design to accurately
solve nonlinear fitting optimization problem within a reduced computing time [13]. Mallik et al.
designed an efficiency-optimized squirrel cage induction motor, where genetic algorithm was chosen as
the tool for optimization. And the objective function is typical theory formula of electrical machine [14].

From the above discussion, existing optimization methods have the following limitations:

• Most existing designs evaluate performance by means of a limited sample of data without a
continuous objective function, which selects the “optimal solution” among existing combinations of
variables. Such an optimization is undoubtedly inaccurate and subjectively biased by the designers.

• During the optimization process, it takes a lot of simulation time to evaluate the performance of a
large number of sampling points, which increases the difficulty of engineering practical applications.

In this paper, to solve the above problem, a novel optimization method based on a surrogate
model is proposed. The geometric parameters and temperatures of the stator are the optimization
variables and objectives, respectively. Taguchi orthogonal arrays were used for sampling, and the
corresponding responses for each experiment were simulated using a three-dimensional multi-physics
field synergistic finite element model. The data from the orthogonal array and the additional sets of
randomly generated data used for the test are jointly trained as surrogate model of shallow neural
networks, which build direct mathematical relationship between geometric variables and temperature,
greatly reducing the computational burden of optimization. In the last, a multi-objective genetic
algorithm was applied to the function to reduce the maximum and average temperature of stator.
The highlights of the paper can be summarized as:

• The Taguchi orthogonal array was used for the sampling process in the surrogate model building
process, which ensures that sampling is spread throughout the design space while reducing the
number of expensive performance analyses;

• The combination of Taguchi orthogonal array with a shallow artificial neural network was used to
approximate the optimization objective function, ignoring the internal mechanism of the system
and simplifying the industrial optimization process;

• The multi-objective optimization in thermal and fluid field of generator to simultaneously reduce
the maximum and average temperature of the stator.

The rest of this article is organized as follows. Section 2 introduces prototype synchronous generator
and the process of multi-physical field collaborative conjugate heat transfer model. The proposed
Taguchi orthogonal array and neural network based optimization methods are presented in Section 3.
Section 4 summarizes the results. The adaptation of the proposed optimization method to practical
engineering applications is discussed in Section 5.

2. Optimization Objective

In this paper, the optimization objective is a diesel-driven salient synchronous generator. The stator
of this generator consists of armature core, winding and their insulation, slot wedge, and housing,
as shown in Figure 1. The stator is divided into sections by radial ventilation duct to allow a cooling
air medium to cool the inside of the generator. The cooling air driven by the shaft-mounted fan
sequentially passed through the end of the stator, the air gap, the radial vent duct, and the back of
the yoke to the other end of the stator in turn (see Figure 1a, blue arrowed curve). It brings heat out
of the stator to lower the internal temperature. There are 120 slots evenly distributed around the
circumference of the inner diameter of the stator, and double-wound windings with the same number
of strands and cross-section are distributed in the slots. Table 1 shows the design specifications of
the generator.
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Table 1. Design specifications of the generator. 

Parameter Value (Unit) 
Rated output power 8600 (kW) 

Rated operating speed 720 (rpm) 
Rated output voltage 13.8 (kV) 

Rated frequency 60 (Hz) 
Insulation class H 

Poles/Phases/Slots 10/3/120 
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Figure 1. Schematic diagram of the (a) 3-D half-axial one-tenth circumferential stator segment model;
(b) Sectional view of the stator in the circumferential direction.

Table 1. Design specifications of the generator.

Parameter Value (Unit)

Rated output power 8600 (kW)
Rated operating speed 720 (rpm)
Rated output voltage 13.8 (kV)

Rated frequency 60 (Hz)
Insulation class H

Poles/Phases/Slots 10/3/120
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Considering that the focus of this paper is on the process of optimization, the following
simplifications and assumptions were made in the model.

• Since the heat generated by the stator winding losses is much greater than the heat generated by
the rotor winding losses, this paper only optimizes the stator temperature for this generator.

• As the given solving region of 3-D multi-physical field collaborative model, the half of axial length
and one-tenth circumferential stator is determined because of its geometric structure axial and
circumferential symmetrical.

• In terms of heat generation in the winding, the temperature difference within the winding is negligible.
Here it is assumed that the winding generates heat uniformly. Considering that the complex structure
of the end windings can impose a heavy computational burden on the multi-physics field coupled
simulation calculations, the heating and cooling of the winding ends are not considered in this paper.

• Under steady-state motor operating conditions, the heat inflow and outflow at the stator axial
center plane as well as at the stator air gap are equal. It is assumed that there is no heat transfer in
the axial center section and there is no heat exchange between the stator and the rotor.

In the multi-physical field collaborative conjugate heat transfer model, the electromagnetic and
fluid fields were simulated based on the above assumptions. In electromagnetic field, various losses
are intrinsic to the heat generation of the machine. The losses were calculated at constant output
power and output voltage. Based on the loss results, the heat source density is calculated as the initial
condition of the fluid field and the temperature distribution of the stator was then evaluated. In this
paper, the heat of the stator mainly comes from the winding loss and the core loss. The heat source
density of the winding loss qcu is [15],

qcu= kFρ0 j2
235 + T1

235 + T0
× 106 = kF j2ρ0[1 + (T1 − T0)β0 × 106] (1)

where T1, T0 are temperature of the winding and the initial temperature (in ◦C), kF is the additional
loss factor of copper (kF ≈ 1.2), j is the current density (in A/mm2), ρ0 is the coefficient of resistance of
the copper wire, and β0 is the temperature coefficient of resistance of the copper wire relative to initial
temperature. The heat source density of the core loss qFe is [15],

qFe =
pFe

Vl
=

pFe

F · a
(2)

where a is the length of stator lamination (in m), F is the effective area of the lamination (in m2).
In thermal field, this design uses an open cooling circuit to achieve a critical temperature balance

within an electrical machine. Heat from the inner components is conducted to the outer surface of the
machine and then is subjected to the convective cooling [16]. The process can be expressed as followed.

λ∂
2T
∂x2 + λ∂

2T
∂y2 + λ∂

2T
∂z2 = −qv

λ∂T
∂n

∣∣∣∣S1,S2
= 0

λ∂T
∂n = −α(T − T f )

(3)

where T is the temperature of stator (in ◦C); Tf is the ambient temperature (in ◦C); λ is thermal
conductivity (in W/(m·K)); qν is heat source density (in W/m3); α is coefficient of convection (in W/(m2

·K)).
S1 is the adiabatic surface between the rotor yoke and the air gap; S2 is adiabatic surface of the central
cross section of the axial, as shown in Figure 1. Except for those faces, the other outer surfaces of
the stator are set to natural convection. The thermal conductivity is temperature dependent and the
coefficients of convection are related to the fluid velocity. The thermal conductivity λ is,

λ = λ0(1 + bT) (4)
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where λ0 is the thermal conductivity when the temperature is 0 ◦C;T is temperature and b is a constant
depending on material. And, in this paper, the materials are set to isotropic in thermal conductivity.
The coefficient of convection αδ from the armature surface to the air gap is [15],

αδ = 28(1 + Vδ0.5) (5)

and the coefficient of convection αB of insulated copper winding is [14],

αB = 12(1 + VB
0.5) (6)

where Vδ, VB is the fluid velocity (in m/s).

3. Proposed Method

3.1. Structure

In this paper, the design process is composed of three parts, as shown in Figure 2.
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Figure 2. The structure diagram of the design.

Part 1: This part determines the optimization factor and corresponding levels. And the experiment
data is organized in an appropriate Taguchi orthogonal array. For calculating the average and maximum
temperatures of these experiments in the array, a 3-D multi-physical field collaborative conjugate heat
transfer model can be established using the code of ANSYS, Inc. (Pittsburgh, PA, USA)

Part 2: To define the optimization objective function that directly reveals the mathematical
relationship between stator geometric parameters and temperatures, a shallow neural network model
was trained to fit the function. The experiment data were divided into three subsets. Two of them were
used to fit the function and the other was used to evaluate the accuracy of the function.

Part 3: By optimizing the fitted objective function with a multi-objective genetic algorithm as far
as practicable, a Pareto front that provides a series of solutions for project is obtained.

3.2. Background of Taguchi Method

Design of Experiments (DoE) is a statistical technique for planning, conducting, analyzing,
and interpreting controlled tests [17]. It identifies the factors that control the value of a parameter or
group of parameters [18]. The Taguchi method is a DoE that improves quality and reduces loss by
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reducing variation in the design of a product or process. The Taguchi method has a wide range of
applications, such as battery charging [19,20] or the power systems [21,22].

3.2.1. Process of System

The process of the Taguchi method is that the system outputs quality characteristic under the
influence of different kinds of factors. Figure 3 [20] presents in detail the process, which includes the
following parts.
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1. The system is the heart of a process and describes the mechanisms of applications. In this paper,
the engineering system is the generator stator’s temperature field.

2. Signal factors are the input values at the start-up of the system. Only dynamic systems have
input factors.

3. Control factors are the design parameters that significant affect system performance. In this work,
the control factors are the geometric parameters of the stator.

4. Noise factors are uncontrolled factors that cause the characteristics of a product to deviate from
its target values. There is not the focus of this study and so are ignored.

5. Quality characteristic is the output of the system, which is used to indicate the performance of a
system. In this paper, one tends to find the minimum temperatures in the feasible range.

3.2.2. Orthogonal Array

In the Design of Experiments, the most commonly used experimental designs are full factorial
design, Box Behnken design, and Latin Hypercube sampling method. Full factorial design uses all
possible combinations of levels of factors in each complete trial or replication of experiments [18].
Box Behnken design specifies special points in the space. If 3 three-level factors are considered,
the number of full-factorial experiments is 9, and the number of Box Behnken design is 15.
Latin Hypercube Sampling method belongs to the stratified sampling [23], which number depends on
the selection of interval. Therefore, these methods are often costly and prohibitive, especially when
applied industrially.

The Taguchi method constructs a special set of orthogonal arrays for collecting experiment data.
It effectively reduces the number of experiments that must be performed. For example, an orthogonal
array (L423) of three two-level factors requires four experiments, as indicated in Table 2. Three factors
A, B, C are set to levels 1 and 2. In the array, the columns are balanced within themselves such that
they all have an equal number of levels of factor. And the columns are balanced between any two
columns such that together they form an equal number of possible combinations. Two two-level
factors combine in four possible ways, such as (1, 1), (1, 2), (2, 1), and (2, 2). When two columns of an
array form these combinations the same number of times, the columns are said to be orthogonal [24].
Accordingly, the orthogonal array reduces the number of experiments that have to be carried out to
obtain all necessary information.
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Table 2. Taguchi orthogonal array L423 [21].

Experiments Levels of Each Factor

Factor A Factor B Factor C

1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

3.3. Taguchi Training Data

In this paper, the maximum and average temperature of the stator were selected as optimization
objectives, which the maximum temperature determines the life-span of insulation, and the average
temperature reflects the distribution of temperature. In order to optimize the performance of the stator
thermal field, the structure of the stator was altered to decrease the losses of each part or enhance the
cooling effect.

The choice of stator geometry variables takes into account not only the heat generated by the
electromagnetic losses of the individual components, but also the flow of cooling air. In the stator
cooling system, the velocity of cooling air flow and the temperature difference between it and the heat
source determine the efficiency of cooling. For reducing the maximum and average temperature of
the stator, the following factors that significantly affect the performance of the heat generation and
cooling system are selected as the optimization variables: stator core length (Lc), lamination length (Ll),
vent ducts width (Wv), air gap width (Wg), stator slot width (Ws), stator slot height (Hs) and yoke vent
duct height (Hy). The diagram of each factor is shown in Figure 1. The levels of above factors are listed
in Table 3, where level 2 of each factor are their original values. Except for the above seven variables,
the number of ventilation ducts as the eighth variable is added. It’s relevance as follow:

Nvent = Round
(

Lc− Ll
Ll−Wv

) (7)

where Nvent is the number of vent ducts, Lc is the length of the stator core, Ll is the length of lamination,
and Wv is the width of the vent ducts.

Table 3. Levels of each factor.

Parameters Level 1 Level 2 Level 3

Stator core length (mm) A 1000 1150 1300
Lamination length (mm) B 40 50 60
Vent duct width (mm) C 8 10 12
Air gap width (mm) D 8 10 12

Stator slot width (mm) E 22 24 26
Stator slot height (mm) F 113 116 119

Yoke vent duct height (mm) G 80 90 100

Based on the Taguchi orthogonal array, an array of 13 three-level factors (L27313) is used to collect
training data. Owing to the orthogonal characteristic of the array, as mentioned in the Section 3
Background of Taguchi method, any two columns are orthogonal. Thus, in this array, the first seven
columns (A to G) that represent seven control factors are used and the redundant parts thereof are
ignored (see Table A1 for orthogonal array L27313).

After completing the above selection, assignment, and combination of stator geometry variables,
each group of experiments in Taguchi orthogonal array is simulated under the specified conditions.
In this paper, the variables are controlled for comparison and the experiments for each group are
performed with constant output power and output voltage. A three-dimensional multi-physics field
collaborative model conforming to the engineering error after comparison with experiments is used
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for the temperature evaluation of each set of experiments. So far, the Taguchi training data are all
prepared, in which the stator geometry variables are the input of the neural network, and the stator
temperature obtained from the simulation calculation is the output.

3.4. Neural Network

Neural networks are used for processing information. They have a wide range of applications across
almost all areas of science and engineering. Unlike conventional data processing methods, which require
extensive expert knowledge when used in the modelling of electrical machines, neural networks provide
a model-free, adaptive, fault-tolerant, parallel, and distributed processing solution [25].

In this work, a neural network is a black box that directly learns the function that captures the
relationship between geometric parameters and temperatures without guessing the internal relations
of a generator temperatures system.

3.4.1. Structure

In this work, to construct the surrogate model of objective function, a feedforward network is
trained by backpropagation. The most exciting thing when it comes to backpropagation is training
recurrent neural networks (RNNs), which has significant advantages for dealing with problems
with errors or problems containing noisy signals. In this study, to simplify the modeling process,
all experimental data are assumed to be accurate and without noise factors. The feedforward network
arranged in the form of eight inputs, one hidden layer with 20 neurons and the output layer with two
neurons. The process begins with the receipt of inputs by the input layer neurons, which are processed
by each layer sequentially to the output layer. The connections between neurons are unidirectional
and neurons in the same layer are unconnected to each other, as shown in Figure 4 [25].
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In the training process, the objective function is constructed. The weight and bias from the input
layer to the hidden layer are denoted as W1 and b1 respectively, while those from the hidden layer to
the output layer are W2 and b2. The activation functions of the two layers are the hyperbolic tangent
sigmoid function Φ from the input to the hidden, and the linear function Ψ from the hidden to the
output layer the function can be expressed as follows.

T = Φ[W2Ψ(W1X + b1) + b2 ], (8)

T =

[
TAvg
TMax

]
X =


X1

X2

M
X8

, (9)
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where X is an input geometric parameters matrix and T is an output temperatures objective functions
matrix. W1 and W2 are weights matrixes; b1 and b2 are bias vectors.

3.4.2. Training, Testing, and Validation

In the fitting process, experiment data are divided into three subsets. The first subset is the
training data set, which is used to fit to the initial model. The second subset is the testing data set,
which is used to adjust the weights and biases to reduce the difference between the outputs of the
model and the target with monitoring of the error in the training process [26]. It also used to choose
the number of hidden units in the neural network, which can avoid overfitting. The third subset is the
validation data set, which is used to check the accuracy of the fitted model [27]. The validation data set
is not used in the training process.

In the training data set, the input variables are those eighth variables that organized in the Taguchi
orthogonal array. The input variables value of the validation and testing data set are generated by
pseudo-random numbers in the feasible range for each variable.

3.5. Multi-objective Optimization

To minimize simultaneously the maximum temperature and the average temperature of the
generator stator, the fast non-dominated sorting genetic algorithm (NSGA-II) [28,29] was applied to
the neural network fitted function (7). Its features are fast non-dominated sorting, crowding distance
assignment, a crowded comparison operator, and the elitism strategy. Figure 5 presents the optimization
process. Fast non-dominated sorting reduces the high computational complexity and the crowd distance
approach is used to obtain a more uniform spread of solutions on the best-known Pareto front without
using fitness sharing.
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In this study, as mentioned, the optimization variables are the geometric parameters and the
optimization objectives are the maximum and average temperature. The optimization objective
function is the trained shallow neural network model; refer to (7) and (8). And the mathematical
expression of optimization can be expressed as followed

Minimize T(X), X ∈ D ⊂ R8

subject to TAvg(X) ≤ TMax(X)
(10)
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where D is eight dimension feasible design region; R8 is eight dimension space; T(X) is the objective
functions matrix that fitted by neural network; TAvg(X) and TMax(X) are average and maximum
temperatures objective function, respectively; and X = [x1, x2, . . . , x8]T is optimization variables.

4. Results

4.1. Finite Element Simulation Result

Through 3-D multi-physical field collaborative model, the temperatures of three subsets are
simulated and the results of the training subset are shown in Table 4, and other subset results are in
Tables A2 and A3.

In the results, the maximum temperatures are in the range 105.1 ◦C to 137.2 ◦C and the mean
value is 121.8 ◦C; the highest value of the average temperature is 99.8 ◦C and the lowest is 76.9 ◦C with
a mean of 87.5 ◦C. For analysis, five experiments of training subset, including the highest and lowest
maximum temperature, the highest and lowest average temperature, and the original temperature,
are selected and their temperature contours are shown in Figure 6. Compared with the end of the
stator where ventilate well, the temperature of the center part is higher. Meanwhile, since the copper
loss difference of those experiments is little, the volume of the iron segments has a significant effect on
the temperature, which the larger the volume, the lower the temperature.
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Table 4. Simulation results of training data set.

Experiments Average
Temperature

Maximum
Temperature Experiments Average

Temperature
Maximum

Temperature

1 85.5 114.7 15 95.1 137.1
2 91.8 125.9 16 91.3 133.1
3 98.9 134.2 17 83.2 116.1
4 81.6 112.8 18 80.4 113.9
5 86.1 120.5 19 94.8 129.0
6 96.1 137.2 20 90.2 117.1
7 77.8 109.6 21 93.1 121.4
8 82.4 116.4 22 79.7 105.1
9 87.9 125.1 23 76.9 111.1
10 83.3 117.5 24 83.4 122.1
11 87.3 124.7 25 89.9 119.5
12 87.5 126.2 26 80.1 117.7
13 97.4 126.0 27 98.3 134.1
14 92.1 128.7 - - -

4.2. Accuracy Assessment

To validate the accuracy of the fitted model, the validation set was used to check the error between
the results of the fitted function and thee simulation. In Figure 7, the temperatures of the calculated and
simulated, including the average and maximum temperature of the fitted model and that of the finite
element simulation model, are compared (detailed errors in Table A4). All error values were below
5%. And the mean error values of the average and the maximum temperatures were 2.41% and 2.54%
respectively. From the results above, the accuracy of the fitted model sufficed for industrial application.
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4.3. Optimization Result

As the result of multi-objective optimization based on GA, Pareto front is a set of solutions that are
non-dominated with respect to each other. It can be examined for trade-off and the choice of a solution
according the actual needs of engineering. In Figure 8, the Pareto front is shown, wherein the mean
value of the optimized average temperature is 71.7 ◦C and that of the optimized maximum temperature
is 100.6 ◦C. There both lower than the corresponding value of the three-subset data. Compared with
the original values that before the optimization, the optimized maximum temperature reduced by up
to 27.5 ◦C and the average temperature reduced by up to 20.1 ◦C.
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Due to the difficulty of the experiment, the finite element simulation method was used to verify
the calculation results. In this paper, the lowest maximum temperature point was selected and its
finite element simulation result is shown in Figure 9. The simulation result was compared with the
calculated results with the average temperature error of 2.5% and the maximum temperature error of
0.99%, both of which lower than 5%.Energies 2020, 13, x FOR PEER REVIEW 14 of 18 
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5. Discussion

In this study, a multi-objective optimization method for multi-physics fields of a generator based
on surrogate model is proposed. The geometric structure of the generator stator was optimized under
the consideration of electromagnetic field and thermal field to reduce the maximum and average
temperature of the stator. In the optimization process, the use of simulation calculations in the iterative
process is avoided by building surrogate model of the optimization objective function, which greatly
reduces the cost of expensive calculations. The different methods included in the study were Taguchi
orthogonal array, shallow neural network, and multi-objective genetic algorithm.

Taguchi orthogonal array provides the sampling plan for training the initial model of the neural
network. The Taguchi orthogonal array distributes the sampling points uniformly and interconnectedly
across the sampling space due to the orthogonal characteristic of the factors, which is advantageous
for neural networks that learn using only input and output data. In the process of sampling using
the Taguchi orthogonal array, the most critical aspect is the choice of factors and their level values.
The number of factors determines the dimensionality of the target system, while their level values
affect the distribution of sampling points in the design space. The seven factors in this paper are
selected from the factors that affect the heating and cooling effect of the stator, and to be more accurate,
the significance of each candidate factor for the optimization objectives and the correlation between
the factors can be analyzed, which is useful for further optimization, although it also increases the
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expense in the acquisition of experimental data. As for the level values of each factor, there is no doubt
that these values should be reasonable, and the maximum and minimum values determine the upper
and lower bounds of each factor in the optimization process. In this paper, the selection of the upper
and lower bounds for each factor is based on the empirical range of values used in motor design, and
Level 2 is the median value of this interval.

For the calculations of the groups of experiments in the Taguchi orthogonal array, this study uses the
three-dimensional finite element calculation method of magnetic thermal coupling. Many assumptions
and model simplifications were made in the calculations considering the current computational power.
In the electromagnetic calculation process, the power and voltage were set to constant values for the
control variables to calculate the losses of the machine at steady state. The variations in the stator
geometry only have an effect on the current density of each part. Actually, the research of transient
electromagnetic state with time and the machine under different operating conditions will be more
relevant for practical applications. Of course, the study of current density as the main cause of electrical
machine losses is still relevant for practical engineering purposes. In the temperature field of the
motor, the assumption of no heat transfer to the axial center surface of the stator applies only to the
steady-state, where the inflow and outflow of heat to and from that surface are equivalent. For the
heat transfer between the stator and the rotor, the influence of the positional change of the salient pole
rotor over time on the cooling air flow can be accurately calculated in the transient study. During the
simulation calculations, it is feasible to make certain assumptions about the boundary conditions
depending on the purpose of the study.

What is also important to consider in the optimization process based on Taguchi orthogonal array
and neural network is the process of establishing the surrogate model, the selection of its parameters, and
the training method, which largely determines the quality of the subsequent optimization. For example,
overfitting problems due to small amounts of data can be controlled or prevented by selecting an
appropriate number of network layers and number of neurons to limit the fitting ability of the neural
network. The Bayesian method was also used to prevent overfitting during the training of neural networks.

6. Conclusion

This paper proposed a novel method to optimize the structure of the stator of a synchronous
generator based on Taguchi method and neural network. And a multi-objective genetic algorithm was
employed to reduce the maximum and average temperature of stator. The important contributions of
the proposed method are summarized as follows:

• A novel continuous optimization objective function based on a shallow neural network was
constructed, which directly reveals the relationship between the geometric parameters of interest
and the operating temperatures of stator. It can be accurately used as a surrogate model to finite
element model to reduce the computational burden of simulation calculations in the optimization
process to a great extent.

• This paper employed Taguchi orthogonal array to organize data bridging the geometric variables
and temperature objectives, which require few amount of the sampling point. It is beneficial for
time-consuming and expensive experiments in industrial optimization.

• The multi-objective optimization problem of the electrical machines was solved, and the result is
a set of solutions that can be examined for the trade-off and the choice of a solution according the
actual needs of engineering.

In future research, more flexibility in the selection of performance and independent variables of
the electrical machine can be made, not only in steady-state operation conditions, but rather extends
to transient systems to make the calculations more relevant to engineering reality. At the same
time, sampling points more in line with system characteristics can be added to collect design space
information in the form of non-uniform sampling. In terms of the development of surrogate models,
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their fitting accuracy and fit models need to be further developed to evaluate the solution through a
more suitable model.
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Appendix A

Table A1. Taguchi orthogonal array L27313.

Experiments 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2 2 2 2
3 1 1 1 1 3 3 3 3 3 3 3 3 3
4 1 2 2 2 1 1 1 2 2 2 3 3 3
5 1 2 2 2 2 2 2 3 3 3 1 1 1
6 1 2 2 2 3 3 3 1 1 1 2 2 2
7 1 3 3 3 1 1 1 3 3 3 2 2 2
8 1 3 3 3 2 2 2 1 1 1 3 3 3
9 1 3 3 3 3 3 3 2 2 2 1 1 1
10 2 1 2 3 1 2 3 1 2 3 1 2 3
11 2 1 2 3 2 3 1 2 3 1 2 3 1
12 2 1 2 3 3 1 2 3 1 2 3 1 2
13 2 2 3 1 1 2 3 2 3 1 3 1 2
14 2 2 3 1 2 3 1 3 1 2 1 2 3
15 2 2 3 1 3 1 2 1 2 3 2 3 1
16 2 3 1 2 1 2 3 3 1 2 2 3 1
17 2 3 1 2 2 3 1 1 2 3 3 1 2
18 2 3 1 2 3 1 2 2 3 1 1 2 3
19 3 1 3 2 1 3 2 1 3 2 1 3 2
20 3 1 3 2 2 1 3 2 1 3 2 1 3
21 3 1 3 2 3 2 1 3 2 1 3 2 1
22 3 2 1 3 1 3 2 2 1 3 3 2 1
23 3 2 1 3 2 1 3 3 2 1 1 3 2
24 3 2 1 3 3 2 1 1 3 2 2 1 3
25 3 3 2 1 1 3 2 3 2 1 2 1 3
26 3 3 2 1 2 1 3 1 3 2 3 2 1
27 3 3 2 1 3 2 1 2 1 3 1 3 2

Table A2. Simulation results of the data set.

Experiments A B C D E F G Vent Duct
Numbers

Average
Temperature

(◦C)

Maximum
Temperature

(◦C)

1 1202 40 11 8 22 117 93 23 94.6 126.2
2 1129 54 9 9 25 114 92 17 86.8 119.3
3 1209 57 10 12 22 118 83 17 80.3 112.6
4 1077 60 8 9 24 119 81 15 84.4 114.4
5 1002 41 8 9 25 118 85 20 91.3 123.1
6 1160 49 12 8 23 116 98 18 94.3 126.9
7 1084 52 9 9 24 114 99 17 84.2 115.2
8 1284 54 10 9 24 118 94 19 93.6 127.6
9 1272 55 12 8 22 114 95 18 88.1 120.2
10 1118 53 8 10 24 119 84 17 81.1 111.7
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Table A3. Simulation results of validation data set.

Experiments A B C D E F G Vent Duct
Numbers

Average
Temperature

(◦C)

Maximum
Temperature

(◦C)

1 1128 42 10 8 25 114 99 21 92.4 122.6
2 1241 55 11 11 25 118 80 18 88.9 127.3
3 1062 55 8 11 26 116 84 16 92.9 125.8
4 1197 42 9 11 23 115 87 23 86.7 119.1
5 1087 60 12 8 23 115 98 14 89.0 121.3
6 1206 44 12 8 24 114 90 21 88.6 121.5
7 1092 45 10 9 26 118 84 19 99.8 135.3
8 1283 50 10 10 23 113 86 21 85.8 119.0
9 1071 46 12 12 26 115 98 18 83.7 122.4
10 1210 55 12 12 24 113 80 17 89.0 120.4

Table A4. Errors between the neural network model and simulation results.

- 1 2 3 4 5 6 7 8 9 10 Mean Value

Average Temperature Error (%) 4.05 2.02 2.4 0.68 2.56 0.75 4.96 0.41 2.48 3.82 2.41
Maximum Temperature Error (%) 2.19 0.70 4.2 3.66 2.02 0.52 4.45 2.7 0.28 4.71 2.54
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