
energies

Article

Fuzzy First-Order Transition-Rules-Trained Hybrid
Forecasting System for Short-Term Wind
Speed Forecasts

Yulong Bai * , Lihong Tang, Manhong Fan, Xiaoyan Ma and Yang Yang

College of Physics and Electrical Engineering, Northwest Normal University, Lanzhou 730070, China;
tlh953886@sina.com (L.T.); manhongfan@nwnu.edu.cn (M.F.); maxiaoyan_2020@sina.com (X.M.);
yangyangshine668@sina.com (Y.Y.)
* Correspondence: baiyulong@nwnu.edu.cn

Received: 11 May 2020; Accepted: 29 June 2020; Published: 30 June 2020
����������
�������

Abstract: Due to the ever-increasing environmental pollution becoming progressively more serious,
wind power has been widely used around the world in recent years. However, because of their
randomness and intermittence, the accurate prediction of wind speeds is difficult. To address this
problem, this article proposes a hybrid system for short-wind-speed prediction. The system combines
the autoregressive differential moving average (ARIMA) model with a three-layer feedforward neural
network. An ARIMA model was employed to predict linear patterns in series, while a feedforward
neural network was used to predict the nonlinear patterns in series. To improve accuracy of the
predictions, the neural network models were trained by using two methods: first-order transition
rules and fuzzy first-order transition rules. The Levenberg–Marquardt (LM) algorithm was applied
to update the weight and deviation of each layer of neural network. The dominance matrix method
was employed to calculate the weight of the hybrid system, which was used to establish the linear
hybrid system. To evaluate the performance, three statistical indices were used: the mean square error
(MSE), the root mean square error (RMSE) and the mean absolute percentage error (MAPE). A set of
Lorenz-63 simulated values and two datasets collected from different wind fields in Qilian County,
Qinghai Province, China, were utilized as to perform a comparative study. The results show the
following: (a) compared with the neural network trained by first-order transition rules, the prediction
accuracy of the neural network trained by the fuzzy first-order transition rules was higher; (b) the
proposed hybrid system attains superior performance compared with a single model; and (c) the
proposed hybrid system balances the forecast accuracy and convergence speed simultaneously during
forecasting. Therefore, it was feasible to apply the hybrid model to the prediction of real time-series.

Keywords: wind speed forecasting; auto regressive integrated moving averaged (ARIMA); first-order
transition rules (FOTR); fuzzy first-order transition rules (FFOTR); hybrid system

1. Introduction

Wind speed forecasting is an extremely relevant metric for wind resource assessment (WRA) for
wind parks in renewable sector. With environmental pollution becoming increasingly more serious,
the development of green and environmentally safe renewable energy has become a research hotspot.
As one form of green renewable energy, wind energy has been widely used around the world in recent
years. The accurate prediction of wind speeds is an important component of effectively utilizing wind
energy to generate electricity. However, due to the stochasticity and intermittence of wind speed [1–4],
it is difficult to accurately predict the wind speed estimation errors and meet the actual requirements
of wind power generation. Therefore, the accurate prediction of wind speed is of great significance.
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Wind speed predictions can be divided into short, medium and long term predictions according
to the sample time interval [5]. There are also various prediction models: physical models, statistical
models and artificial intelligence models and hybrid methods [6]. Each model has its specialty:
for example, physical models are suitable for long-term predictions, and statistical methods are
applicable to short-term predictions [5]. With the development of artificial intelligence methods
in recent years, machine learning methods have also been applied to wind speed prediction. The
feedforward neural network is the most commonly used neural network, which due to its fast learning
speed and good generalization performance. Various feedforward neural networks have been used in
various scientific fields. Authors in [6] proposed training the support vector machine (SVR) and artificial
neural network (ANN) models with different training sets for short-term wind speed prediction and
compared their prediction results. Authors in [7] proposed the use of feedforward neural networks to
predict stock index and sunspot movements. The results show that the method is effective at predicting
stock and sunspot activity by improving the training set of the neural network. However, whether this
method is suitable for short-term wind speed prediction is a topic for further research. In addition,
the main problem with these models was that utilizing a single neural network to model and predict
wind-speed data did not provide sufficient results [8–12].

As for hybrid methods, Authors in [13] the idea of combining predictions, which combines different
prediction methods in an appropriate way. In recent decades, different models such as linear/nonlinear,
supervised/unsupervised and statistical/intelligent have been combined to form various hybrid models,
including the following: ARIMA–ANN [8,9] ARIMA–LSSVM [10], EMD–ANN [11], ARIAM–BP [12],
ARIMA-Kalman [14], ARIMA–MLP and ARIMA–SVR [15]. Aasim [16] proposed an RWT–ARIMA
model based on the continuous wavelet transform, which improved the accuracy of very-short-term
wind speed predictions. Wang et.al [5] proposed a nonlinear combination model based on data feature
extraction and multi-objective optimization for short-term wind speed predictions. The results show
that the model has higher prediction accuracy and stability than the comparison model. The hybrid
models proposed in the above literature [17–24] combine the single models through different methods,
and the results verify that the combined prediction effect is better than that of the single model.

In recent years, the idea of a fuzzy set has been introduced into time-series prediction
algorithms. Through the fuzzy preprocessing of original time-series, fuzzy relation are established
and defuzzification is applied to improve the prediction accuracy. A large number of definitions and
applications of fuzzy-time series are proposed in [25–31]. Jiang et.al [32] developed a mixed prediction
system consisting of a data pretreatment module, an optimization module and a prediction module.
The multi-objective differential evolutionary algorithm is used to optimize the fuzzy-time series to
balance the prediction accuracy and stability. Although the fuzzy-time-series (FTS) methods has
been widely used in other scientific fields, to the best of our knowledge, it is rarely used to predict
wind speed. Therefore, we apply the fuzzy set idea to wind-speed data prediction, which is a great
contribution to the application of fuzzy-time series to meteorology.

Therefore, in order to solve the above problems to improve the accuracy of time-series prediction,
we propose a new hybrid model in this study, which is indicated to enhance the forecast accuracy.
It combines the ARIMA model, the three-layer feedforward neural network and fuzzy sets. This hybrid
system uses the ARIMA and feedforward neural network to predict the original series and utilizes
the dominance matrix to optimize the weight of the single model to maximize the accuracy of the
hybrid model prediction. Additionally, we evaluate it with a set of Lorenz-63 and two sets of actual
wind-speed data and analyze the results by using three evaluation indices. All of these approaches
confirm that the novel hybrid model can be used to predict time series. The innovations of our study
are as following:

First, the overwhelming majority of existing studies used ARIMA methods to preprocess the
original time-series, and they then used other intelligent models to model and predict the residuals
of the original time-series. In this study, the ARIMA is employed to model and predict the original
time-series, and then the neural network is employed to process the original time-series, forming a
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parallel linear-nonlinear hybrid model. Additionally, the neural network model in this study can be
used as a preprocessing method for the original time-series and can also be used as a postprocessing
method to deal with the errors.

Second, to validate the effectiveness of the framework of the proposed ARIMA–NN–FFOTR model,
another hybrid model is proposed based on the framework: the ARIMA–NN–FOTR. Furthermore,
this study reports the results of a comparative study on single models and the proposed model,
including the following: the ARIMA, the NN–FOTR and the NN–FFOTR. Additionally, the three-layer
feedforward neural network is employed, which has many advantages over other neural networks,
the most important of which are its extremely short training time and fast convergence speed.

Third, in existing studies, most fuzzy-time series are mainly used for enrollment rate or stock
index predictions. In this article, the fuzzy-time-series method is applied to wind speed predictions,
which is a great contribution to the application of fuzzy-time series to meteorology. Structure of our
proposed hybrid forecasting system is described in Figure 1.

The rest of this study is organized as follows: Section 2 describes the methods of the proposed
hybrid system. Section 3 shows the experimental set up and the results of the proposed system.
Section 4 presents relevant aspects of the proposed system. Finally, Section 5 contains the concluding
remarks and the future work.
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Figure 1. Structure of our proposed hybrid forecasting system. 

The rest of this study is organized as follows: Section 2 describes the methods of the proposed 
hybrid system. Section 3 shows the experimental set up and the results of the proposed system. 
Section 4 presents relevant aspects of the proposed system. Finally, section 5 contains the concluding 
remarks and the future work. 

2. Background Theories 

Figure 1. Structure of our proposed hybrid forecasting system.

2. Background Theories

In this section, we summarize some background theories which are relative to our hybrid method
in detail.
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2.1. Fuzzy Sets

A fuzzy set is different from a regular set, in that the elements of the fuzzy set belong to a certain
membership value in the range of the closed interval [0, 1]. The definition of the fuzzy set is defined as
follows Section 2.1.1.

2.1.1. Definition

Given a set U that is the “universe of discourse”, a fuzzy set in the universe U is defined as a set
of 2-tuples [7], as show below

A =
{
(x,µA(x))x ∈ U

}
(1)

where x is an element of universe U and µA(x) ∈ [0, 1] denotes the membership value of element x in
fuzzy set A. If the universe of discourse U is continuous and infinite, it is not possible to define a set of
discrete 2-tuples as given in Equation (1) for fuzzy set A. In such cases, a fuzzy membership function
µA : U→ [0, 1] is defined to map each element in the universe of discourse to its corresponding
membership value in fuzzy set A.

2.2. Time-Series of Partition

2.2.1. Definition

Given a time series C, let cmax and cmin represent the maximum and minimum values of the
time-series, respectively. We define partitioning as the act of dividing the range into h non-overlapping
contiguous Intervals such that the following two conditions jointly hold [7]:

Pi ∩ PJ = O,∀i , j, i, j ∈ {1, 2, . . . , h} (2)

h
∪

i=1
Pi = R for integer i (3)

Let a partition Pi =
[
P−i , P+

i

]
be defined as a bounded set, where P−i and P+

i represent the lower
and upper bounds of the partition, respectively. Clearly, a time-series data point c(t) belongs to the
partition Pi if and only if P−i ≤ c(t) ≤ P+

i .

2.2.2. Definition

Let c(t) and c(t + 1) denote two consecutive data points in a time-series C and let Pi and Pj be the
partitions to which these data points belong. Then, we denote Pi → Pj as a first-order [7].

2.3. Basis Function (RBF) Networks

The radial basis function (RBF) network is a three-layer (input, hidden layer and output)
feedforward neural network, and its input consists of a source node that connects the network to the
outside world. Its hidden layer uses a nonlinear radial basis function as the activation function. The
output of the network is typically a linear combination of hidden layer functional values. Let the

network output be a vector
→

Y =
(
y1, y2, . . . yk

)
. There are n hidden layer neurons in the network, and

the output of the RBF network is as follows:

φ
(
Y
)
=

n∑
j=1

αjρ
(
‖Y−Cj‖

)
j = 1, 2, . . .q (4)

→

Cj represents the center vector of the jth hidden layer neuron, ‖‖ is the Euclidean norm, φ is the
activation function, and q is the number of hidden layer unit activation functions. There are a variety
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of hidden layer activation functions and the most commonly used radial basis function is the Gaussian
function [33]. It is defined as follows:

ρ
(
‖Y−Cj‖

)
= exp

(
−β

(
‖Y−Cj‖

)2
)

(5)

where β is a positive integer. Since the activation function depends on the distance between the input
vector and the center vector of the hidden-layer neuron, the function is radially symmetric with the
central vector of the neuron. RBF neurons are used as pre-selectors to determine when the neural
network triggers based on the pre-trained neural network transition rules. The linear weighted sum is
used to convert the weighted sum of the output layers to the output of the neural network and the
activity of the ith unit in the output layer can be calculated according to the following formula:

Z = w0 +

q∑
p=1

wprφq

(
→

Y
)

r = 1, 2, . . .N (6)

where w0 is the bias term, w pr is the connecting weight between the pth hidden unit and the rth output
unit, w pr is calculated by using the Levenberg–Marquardt (LM) back-propagation algorithm [34], Y is
the response of the qth hidden unit resulting from all input data and N is the number of output units.

2.4. First-Order Transition Rules Based on the Neural Network Model

In this section, the neural networks are trained by using first-order transition rules [7] for a given
time series. Si is a set of all first-order transition rules and p

(
Pj/Pi

)
indicates the probability that the

next partition is Pj when the current partition is Pi. Then the formula for p
(
Pj/Pi

)
F is as follows:

p
(
Pj/Pi

)
=

count
(
Pi → Pj

)∑
∀k

count(Pi → Pk)
(7)

where count
(
Pi → Pj

)
is the sum of the number of occurrences of the transition rule

(
Pi → Pj

)
. The set

Si can be expressed as follows:
Si = {Pi → Pk

∣∣∣p (Pk/Pi) > 0} (8)

Given the current partition, in order to predict the next partition, consider the weighted
contributions of all transition rules with Pi as an antecedent, which can be achieved by designing
a neural network model. This model allows all rules in the set Si to be triggered at the same time.
To implement the model, a set of neural networks is used that satisfy the following conditions.

Condition 1: Given the current input partition Pi, each neural network in the ensemble Pi can
trigger at most one transition rule with Pi in the antecedent.

Condition 2: All transition rules with partitions Pi in the antecedent must be triggered by the
ensemble. In other words, all rules contained in ensemble Si must be triggered.

Condition 3: There are no two neural networks in ensemble that can trigger the same transition
rules, such as: Pi → Pa and Pi → Pb simultaneously triggering Pa → Pb .

The above conditions can be satisfied by constraining the training set of the neural network. See
the relevant theorems from these conditions [7].

The steps of grouping the set transition rules into training sets are as follows:
Step 1: Partition. Divide set S into a subset or group of transition rules. All rules in a group have

the same partition in the antecedent, and the antecedent contains partition Pi. The number of these
subsets is equal to the total number of different partitions that occurred before the transition rules. The
choice of the number of partitions will affect prediction accuracy [25], and the number of partitions of
the model is set to 20 (multiple trials). The partition diagram of Lorenz-63 is shown in Figure 2.
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Step 2: Construct a training set. The transition rules in each subset are ordered. By collecting
the transition rules of the position in each subset, the training set of the ith neural network in the set
is constructed. By repeating this process, multiple training sets are constructed. These training sets
contain transition rules, and the antecedent and consequence of each rule represent a partition label.
The regression neural network model is used to obtain the time-series data points that are input as the
current time-series data points and output as the future time-series data points. Therefore, the label of
each partition is replaced by the corresponding partition median value to get the modified training

set T =
{{(

m1q, m2q, . . .miq
)

, miq

}∣∣∣∣q ∈ {1, 2, ...20} . The Levenberg–Marquardt (LM) back propagation
algorithm is used to train the neural network.

Step 3: Neural network training. The first-order transition rules training set constructed in step
2 is used to train the neural network.

Step 4: Predicting the next data point. In the prediction phase, assuming that the partition
containing the current time-series data points (system inputs) is Pi, it may happen that the neural
network in the ensemble has not been trained according to the rules containing Pi in the antecedent,
which will lead to an approximation error. Therefore, the RBF is used as the pre-selector to trigger the
appropriate neural network in the given input set. The output ρi of the ith hidden layer neuron is as
follows:

ρi = exp
(
−β

(∣∣∣x2
−m2

i

∣∣∣)) (9)

where x is the input to the RBF neuron, mi is the median of the ith partition and β = 1. If the current
partition Pi exists in the antecedent of any training set rules of neural network NNj, neural network NNj

is enabled. The enable signal of NNj is obtained by the logical OR operation of the RBF neuron output.
Given the current data point c(t), the final prediction c′(t+1) is calculated using the weighted sum

of the single output of the neural network triggered by the pre-selector RBF neurons. Suppose there
are υ elected neurons whose outputs o1, o2, . . . oυ are located in partitions po1

, po2
, . . .poυ , respectively,

and the final output is as follows:

c′(t+1) =
υ∑

i=1

(
oi × ρ

(
poi

/pc

))
(10)

2.5. Fuzzy First-Order Transition Rules Based on the Neural Network Model

In this section, the first-order transition rules are fuzzified to get the fuzzy first- order transition
rules to build the training set and then train the neural network [7]. It should be noted that the best way
to represent a time-series partition is by using the center of the partition, but the data points of time
series cannot be completely represented by the partition. Therefore, by approximating the data points
in the partition and their corresponding midpoints, some approximate errors that increase with the
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width of the partition itself can be deliberately studied [10]. One way to avoid this error is to treat each
partition as a fuzzy set. Obviously, each partition is associated with a fuzzy membership function, and
each time-series data point will have some membership values in the set [0, 1]. The classical Gaussian
function is chosen as the membership function, and its peak corresponds to the center of the partition.
Near the boundary of the partition, both sides of the peak have values that gradually decrease and
approach 0. The membership value at the partition boundary is not necessarily 0. These membership
values can be used to train the neural network in the model. The advantage of this approach is that it
takes advantage of the inherent fuzziness involved in assigning partitions to time-series data points
and uses partitions to obtain better results. The membership function corresponding to the ith partition
is as calculated as follows:

ui(x) = exp

 (x−mi)
2

2σ2
i

 (11)

Then, we train the neural network using the improved fuzzy-first-order-transition rules, as follows.
Step 1: Partition. Set the number of partitions to 40 (multiple trials) to get the best

prediction results.
Step 2: Construct the first-order transition rules and training set. The training set T constructed

by the fuzzified first-order transition rules is T =
{(
µ1

(
miq

)
,µ2

(
miq

)
, . . . µk

(
miq

))
, mjq

∣∣∣∣q ∈ {1, 2, ...40}
where miq and mjq are the median values corresponding to the partitions Piq and Pjq, respectively and
µi(x) is the membership value of x in the fuzzy set.

Step 3: Neural network training. The fuzzy-first-order-transition-rules training set constructed in
step 2 is used to train the neural network.

Step 4: Predicting the next data point. This is the same as the first-order-transition-rules-based
model discussed in Section 2.4.

2.6. Proposed Model

2.6.1. Determination of the Weights of the Proposed Model

The general form of a hybrid model uses the weighted sum of each single prediction model.
Therefore, the key point of the hybrid model is to determine the weight coefficients. If the weight
coefficients of each single prediction model are properly assigned, the prediction accuracy of the
whole hybrid model will be improved accordingly. However, when using the hybrid model, how to
determine the weight coefficients of the single models is a big problem. In this regard, many scholars
have proposed their own methods for determining the weights. The current commonly used methods
are the arithmetic average method, the optimal weight method, the variance reciprocal method, etc.
In this study, we use the dominance matrix method to determine the prediction weights of two single
models. Let the ARIMA model be model 1 and the neural network model be model 2. By calculating
the relative errors of two single-model predictions, we determine the size of the relative error of two
single models. For example, when the relative error of the predicted value at a certain point in model 1
is less than the relative error of the predicted value at the same point in model 2. It shows that the
prediction effect of model 1 is better than model 2. We judge the relative error of 200 predicted values
of two single models by analogy, it can be obtained that the prediction effect of model 1 is better than
model 2 m1 times, the prediction effect of model 2 is better than model 1 m2 times, and the total number
of predicted steps is n. Then, the weights are w1 = m1

n and w2 = m2
n respectively.

2.6.2. Proposed Model Prediction

After determining the weights, the predicted value of the hybrid model can be obtained by the
formula y = w1x1 + w2x2. w1 is the weight of the ARIMA model, w2 is the weight of the neural
network model, x1 is the predicted value of the ARIMA model and x2 is the predicted value of the
neural network model. The weights of the new proposed model for the three time-series data sets are
shown in Table 1 below.
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Table 1. Single-model weights.

Time Series Lorenz-63 Yakou (Wind Speed) Arou (Wind Speed)

w1(ARIMA) 0.6500 0.4950 0.6900
w2(NN− FOTR) 0.3400 0.5000 0.3500
w2(NN− FFOTR) 0.4300 0.6000 0.6900

3. Experiments Design and Results

3.1. Experimental Data

In this study, the experimental data were the simulated values generated by the Lorenz-63 model
and the wind-speed data of two sites: Yakou station and Arou station that were located in the Qilian
County, Qinghai Province, The height of the wind speed measurement was 10 m and the sampling
interval was 30 min. The time range of wind-speed data collection of Yakou station was: 00:00 1 October
2013 to 15:00 11 November 2013; and the time range of wind-speed data collection of Arou station
was: 00:00 1 January 2013 to 15:00 11 February 2013. All three samples have 2000 data points. The first
1800 values were used as the training sample. The training time of three sets of training data under
two models was as follows: NN–FOTR (9.41 s) and NN–FFOTR (7.89 s); NN–FOTR (13.14 s) and
NN–FFOTR (11.37 s); NN–FOTR (18.60 s) and NN–FFOTR (14.32 s) and the remaining 200 values
were used as testing sample. The three sample data sets were used to verify the validity of the new
proposed model’s prediction. The site details and the statistical information were shown in Figure 3.Energies 2020, 13, x FOR PEER REVIEW 10 of 21 
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3.2. Evaluation Indices

To evaluate the prediction accuracy, we use three well-known error metrics, which are the mean
square error (MSE), the root mean square error (RMSE) and the mean absolute percentage error (MAPE).
Let be the time-series value of the test cycle at time t, and c′(t) is the predicted time-series value at the
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same time. The calculation formulas of the error metrics mentioned above are defined as Equations
(12), (13) and (14), respectively, and the results of neural network are shown in Table 2

MSE =

N∑
t=1

(ctest(t) − c,(t))2

N
(12)

RMSE =

√√√√√ N∑
t=1

(ctest(t) − c,(t))2

N
(13)

MAPE =
100%

N

N∑
t=1

∣∣∣∣∣∣c,(t) − ctest(t)
ctest(t)

∣∣∣∣∣∣ (14)

where N is the total number of test phase time-series data points and c(t) is the average of N data points.

Table 2. Performance indexes evaluation of the neural network prediction model under different
training rule.

Train Sets Lorenz-63 Yakou Arou

Indexes RMSE
(m/s)

MSE
(m/s)

MAPE
(%)

RMSE
(m/s)

MSE
(m/s)

MAPE
(%)

RMSE
(m/s)

MSE
(m/s)

MAPE
(%)

NN-FOTR 0.1847 0.0621 9.1243 0.1537 0.0161 18.7885 0.0419 0.0033 13.8783

NN-FFOTR 0.1816 0.5020 8.4147 0.1528 0.0058 17.3454 0.0404 0.0033 13.4124

3.3. Experiment I: Compare the Prediction Results of the Neural Networks Trained by Two Training Sets

The main purpose of Experiment I was to compare the prediction results of the first-order-transition-
rules-trained neural network model with those of the fuzzy-first-order-transition-rules-trained neural
network model. The neural network models used in this study were all three-layer-feedforward neural
networks. For the neural network, the relevant parameters were set as follows Table 3 below. From
Figures 4–6, it could be seen that the prediction effect of the neural network model trained by the
fuzzy-first-order transition rules was better than that trained by the first-order transition rules. The
first-order transition rules replaces the complete data band with the median value of the partition,
which resulted in an approximation error. The first-order transition rules were fuzzified and replaced
the antecedent of the partition by using the fuzzy membership value. The neural network with the
large weight value was triggered according to the size of the membership value, which avoided
triggering an unnecessary neural network and improved the speed and prediction accuracy of the
network convergence.

Table 3. Experimental parameters setting in the neural network model.

Training Rules Experimental Parameters Value

FOTR

Maximum number of iterations 1000
Number of node-points in the input layer 20

Number of node-points in the hidden layer 30
Number of node-points in the output layer 1

FFOTR

Maximum number of iterations 1000
Number of node-points in the input layer 40

Number of node-points in the hidden layer 50
Number of node-points in the output layer 1
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The Lorenz system is a set of three dimensional first-order ordinary differential equations set up
by the American meteorologist Lorenz to simulate the atmospheric circulation model. The expression
is as follows: 

dx
dt = a(−x + y)
dy
dt = bx− y− xz
dz
dt = xy− cz

(15)

where x, y and z are state variables of Lorenz-63 system. We use a step size of 0.01 and use the
Runge–Kutta method to generate 2000 sample points. Then, the neural networks trained using the
first-order transition rules and the fuzzy first-order transition rules are, respectively constructed.
Moreover, their prediction performances are compared.

3.4. Experiment II: Compare the Prediction Results of Hybrid Models and Single Models

The main purpose of Experiment II was to compare the prediction effects of single models and
hybrid models. Three sets of time-series data were modeled by the ARIMA model. As seen from
Figure 7, the first 1800 series of the two sets of wind-speed data satisfied the AR or ARMA model.
Further, the ACF had a trailing character, and the PACF had a decreasing and oscillating phenomenon.
The same was true for the ACF and PACF with the theoretical value series of Lorenz-63. Table 4 showed
the determined model order. Figure 8 shows the ACF and PACF of the residual series after two sets
of original wind-speed data after modeling. It can be seen that the ACF and PACF of the residual
series were both within the 95% confidence interval. Similarly, the ACF and PACF of residual series
of Lorenz-63 were the same. Thus, the residual series was white noise, and the ARIMA model was
reasonable and could be predicted. According to Figure 9 when modeling and predicting theoretical
time-series, the single model ARIMA (RMSE = 0.1893), NN–FOTR (RMSE = 0.1847) and NN–FFOTR
(RMSE = 0.1816) had similar prediction accuracies, but the prediction curve of the NN–FFOTR was
closer to the true curve than the NN–FOTR. This result showed that the ARIMA model fits the linear
patterns of the series well, and the neural network model fits the nonlinear patterns of the series
well. Compared with the first-order training set constructed by partition median, the neural network
prediction accuracy of the fuzzy first-order training set was higher. However, there were still errors at
individual points. This result showed that the fuzzy membership value could describe the weight
distribution of each data point in the partition well. Compared with the single model, the prediction
curve of the hybrid model was closer to the real curve. The hybrid ARIMA–NN–FFOTR model
(RMSE = 0.1370) had the best prediction effect, and the ARIMA–NN–FOTR (RMSE = 0.1101) had the
second best. Thus, the hybrid model could better capture the data characteristics of the time series.
According to Figure 10, in the actual time-series prediction, such as in the wind-speed data prediction
of the Yakou station, the prediction curves of the ARIMA (RMSE = 0.1505) and NN–FOTR (RMSE
= 0.1537) fit the real curves well. The prediction curves of the NN–FFOTR (RMSE = 0.1528) were
better than both of the other evaluated models, The prediction curves of the ARIMA–NN–FOTR
(RMSE = 0.0515) and ARIMA–NN–FFOTR (RMSE = 0.0454) were better than those of the single
models in general, and the prediction accuracy of the ARIMA–NN–FFOTR was better than that of
the ARIMA–NN–FOTR. Figure 11 show that the prediction effect of the Arou site was the same. The
prediction and evaluation indices of the three groups of data were shown in Table 5.
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Table 5. Forecasting results of time-series under different models.

Title Methods MSE (m/s) RMSE (m/s) MAPE (%)

Lorenz-63

ARIMA 0.0524 0.1893 9.0435

NN–FOTR 0.0621 0.1847 9.1243

NN–FFOTR 0.5020 0.1816 8.4147

ARIMA–NN–FOTR 0.0271 0.1370 8.1312

ARIMA–NN–FFOTR 0.0168 0.1101 7.4512

Yakou

ARIMA 0.0147 0.1505 16.0866

NN–FOTR 0.0161 0.1537 18.8775

NN–FFOTR 0.0058 0.1528 17.3454

ARIMA–NN–FOTR 0.0048 0.0515 16.0866

ARIMA–NN–FFOTR 0.0034 0.0454 14.0995

Arou

ARIMA 0.0038 0.0385 13.5569

NN–FOTR 0.0033 0.0419 13.8783

NN–FFOTR 0.0033 0.0404 13.4124

ARIMA–NN–FOTR 0.0032 0.0426 12.6489

ARIMA–NN–FFOTR 0.0018 0.0253 10.5307

4. Discussion

Aiming at the problems and shortcomings of the existing time-series prediction models, this
study proposes a comparative study of two hybrid prediction models based on the ARIMA and a
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neural network. Each model obtains a better prediction with respect to the Lorenz theoretical value
and wind-speed data. Based on the existing work, we can conduct in-depth discussions from the
following aspects.

(1) Effectiveness of the new algorithm
This study proposes a new linear-nonlinear parallel combination model. For the theoretical and

actual wind-speed data, the combined ARIMA–NN–FFOTR model proposed in this study has higher
prediction accuracy than any single model. This study uses a three-layer feedforward neural network
with a single input and a single output. The resulting training time is short, and the convergence
rate of the whole prediction system is effectively improved. The effectiveness of the new algorithm is
verified by comparative experiments. The results show that the hybrid model effectively combines the
advantages of a single model to make up for the shortcomings of a single model prediction, and it
improves the prediction accuracy and convergence speed of the hybrid model.

(2) Robustness of the fuzzy-time series
This study applies fuzzy-time series to wind-speed data. The original wind-speed data are

partitioned and then fuzzified, which will describe the distribution of the membership values of the
data points in the partition, and the comparison experiment verifies the robustness of the neural
network prediction by using fuzzy set training. Based on the existing research work, the robustness of
the fuzzy-time series in real-time-series predictions is further proved.

(3) Applicability in real-time series
In this study, the proposed model is verified by using the Lorenz-63 theoretical value and

actual wind-speed data, which shows the validity of this model. The model can be applied to any
real-time-series prediction.

5. Conclusions

This work proposes a hybrid system that performs time-series forecasting in three steps: The linear
component of time-series modeling using ARIMA model; the nonlinear component of time-series
forecasting with feedforward neural network model; and linear combination of the forecasts of ARIMA
and feedforward neural network using the dominant matrix theory. To maximize the accuracy, the
feedforward neural network is trained by first-order transition rules and fuzzy first-order transition
rules. Generating two hybrid systems: ARIMA–NN–FOTR and ARIMA–NN–FFOTR.

Using three evaluation metrics to evaluate experiments, the results show that the ARIMA–NN–
FFOTR attains a better performance than single models and ARIMA–NN–FOTR model. The ARIMA–
NN–FFOTR reaches a higher accuracy because it is able to forecast separately the linear and nonlinear
patterns of the series through ARIMA and NN–FFOTR model; compare with the ARIMA–NN–FOTR
model, after the input partition Gaussian of the feedforward neural network is fuzzified, the contribution
of the weighted data points in the partition is effectively improved.

In future work, we aim to develop a method to calculate the optimal weight. Additionally, this
study considers only short-term wind-speed predictions. Therefore, future studies should evaluate the
performance of the developed method for mid-term and long-term wind speed predictions.
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Nomenclature

NN neural network
RBF radial basis functions
FOTR first-order transition rules
FFOTR fuzzy first-order transition rules
BP back propagation
MLP multi-layer perception
SVR supporting vector machine
MAE mean absolute error
RMSE root mean square error
MAPE mean absolute percentage error
PACF partial auto correlation function
ACF auto correlation function
RWT repeated wavelet transform
ANN artificial neural network
ARIMA autoregressive integrated moving averaged
SARIMA seasonal autoregressive integrated moving averaged
LSSVM least squares support vector machines
EMD–ANN [11] empirical mode decomposition-artificial neural network
ARIAM-BP [12] autoregressive integrated moving averaged-artificial neural network
ARIMA–ANN [8,9] autoregressive integrated moving averaged-artificial neural network
ARIMA–MLP [15] autoregressive integrated moving averaged-multi layer perception
ARIMA–SVR [15] autoregressive integrated moving averaged-supporting vector machine
RWT–ARIMA [16] repeated wavelet transform-autoregressive integrated moving averaged

ICEEMDAN–ARIMA [5]
improved complementary ensemble empirical mode decomposition
with adaptive noise-autoregressive integrated moving averaged

SRIMA–LSSVM [20]
seasonal autoregressive integrated moving averaged-least squares
support vector machines

ICEEMDAN
improved complementary ensemble empirical mode decomposition
with adaptive noise

ARIMA–NN–FOTR
autoregressive integrated moving averaged-neural network-first-order
transition rules

ARIMA–NN–FFTOR
autoregressive integrated moving averaged-neural network fuzzy
first-order transition rules.
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