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Abstract: In the multi-load wireless power transfer (WPT) system, the output power and transfer
efficiency will drop significantly with the change of distance between transmitter and receiver.
Power distribution among multiple loads is also a major challenge. In order to solve these problems,
a novel multi-load WPT system based on parity–time symmetry (PT-WPT) is proposed in this paper.
Firstly, the multi-load PT-WPT system is modeled based on the circuit model. Then, the transmission
characteristics of the multi-load PT-WPT system are analyzed. It is found that constant output power
with constant transfer efficiency can be maintained against the variation of coupling coefficient,
and the power distribution relationship among loads is only related to the coupling coefficient.
Further, power distribution under different coupling situations is analyzed in detail to meet different
power demands. Finally, taking a dual-load PT-WPT system as an example, the system parameters
are designed and the circuit simulation is carried out. The simulation results are consistent with the
theoretical analysis, which shows that PT symmetry can be applied to the multi-load WPT system to
achieve constant output power, constant transfer efficiency, and power distribution simultaneously.

Keywords: wireless power transfer; multiple loads; parity–time symmetry; circuit model

1. Introduction

Wireless power transfer (WPT) is a kind of technology that does not need wires or other
physical connection and transmits electricity through the air. It has the advantages of flexible power
supply and no cable constraints. In recent years, WPT technology has been widely used in portable
electronic equipment, smart homes, electric vehicles, rail transit, implantable medical power supplies,
or other fields. In the future, WPT technology will have broad application prospects in energy anomaly
consumption detection [1,2], simultaneous wireless information and power transfer (SWIPT) [3,4],
and so forth. However, the common wireless charging products on the market are mostly based on
a single load at present. With the increasing number of electronic products with wireless power
receiving function, the single-load WPT system cannot meet the demand of wireless power supply for
multiple devices at the same time.

Therefore, the multi-load WPT system has become one of the research hotspots of wireless
power transfer technology. Generally, most of the existing multi-load WPT systems are inductively
coupling systems, magnetic resonant coupling systems, or microwave transmission systems,
whose output power as well as the transfer efficiency is sensitive to the change of the coupling coefficient.
So, there are some key technologies in the design of the multi-load WPT system.

One of the most important technologies is the stable output power and stable transfer efficiency.
In practical applications, the distance between transmitter and receivers always varies with the
operation status, which makes the output power and transfer efficiency unsteady and very sensitive
to the load position. A large transmitting coil plane is a simple method to improve the output
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stability of the system, including single coil [5,6], coil array [7,8], and the repeater coils [9],
by increasing the magnetic field area. But the steady output can only be achieved within the
range of the transmitting plane, so the spatial freedom is very low. In order to improve the
spatial freedom, omnidirectional multi-load WPT systems have been put forward; 2D and 3D
WPT systems were proposed to realize omnidirectional wireless charging with two or three orthogonal
coils by Lin et al. [10,11], Su et al. [12], and Han et al. [13]. These systems can maintain a constant
output if the loads rotate around the transmitter at a constant radius. However, due to the uneven
magnetic field, the output is unstable if the rotating radius changes. Liu et al. [14] proposed a multi-load
WPT system based on a rotary transmitting coil which was driven by an electric motor. This method
is simple to control, but the use of a motor increases the cost and volume of the system, resulting in
low practicality. Moreover, a wireless charging box based on a square Helmholtz coil was developed
by Zhang et al. [15], which could provide continuous wireless power to multiple mobile phones
simultaneously even when they were moving. However, the efficiency changes significantly when the
angle between the receiving coil and the magnetic field changes. A cavity resonator (CR) or quasistatic
cavity resonance (QSCR) WPT system using the electromagnetic resonant modes of a hollow metallic
structure has been proposed by Chabalko et al. [16,17]. This technique successfully transfers power
wirelessly to multiple receivers contained anywhere within the chamber. However, the magnetic field
distribution in the metal cavity is not uniform enough, so the output power and efficiency will change
with the load position.

Another important technology is the power distribution among multiple loads, because different
loads have different power demands. The current commonly used power distribution methods include:
impedance matching method [18,19], time-sharing control method [20], frequency-division control
method [21], hierarchical power control algorithm [22], adding DC/DC converter on the receiver [23],
and so forth. In the above methods, either additional control circuits need to be added, or the control
algorithm is too complicated. Therefore, it is urgent to propose a multi-load WPT system which can
not only achieve constant output power and constant transfer efficiency of the system, but also realize
power distribution simply and efficiently.

Parity–time (PT) symmetry is a kind of physical theory which is widely used in quantum
mechanics and optics [24,25]. Further, it has been gradually applied to electricity by Schindler et al. [26]
and Lin et al. [27]. Assawaworrarit et al. [28] first applied PT symmetry to the WPT system.
The PT-symmetric WPT (PT-WPT) system achieves constant output power and constant efficiency within
a distance of 1 m between transmitter and receiver. However, due to the use of an operational amplifier,
the output power is very low (only milliwatts), and the overall system is also very inefficient
(less than 10%). So, Zhou et al. [29] proposed an improved nonlinear saturated gain PT-WPT system
constructed by a self-oscillating controlled inverter, which makes the output power reach hundreds
of watts. Despite its many advantages, the PT symmetry has not been applied to the multi-load
WPT system. So, it is valuable to expand the PT symmetry in multi-load WPT systems.

The main contribution of this paper is to model and analyze the multi-load WPT system based
on the parity–time symmetry, which expands the single-load PT-WPT system to a multi-load system.
Furthermore, this paper analyzes the PT symmetry conditions, transmission characteristics, and power
distribution relationship between loads of the multi-load PT-WPT system using the circuit theory.

The remainder of this paper is organized as follows. Section 2 establishes the circuit model of the
multi-load PT-WPT system using the circuit model theory. Then, Section 3 analyzes the transmission
characteristics of the multi-load PT-WPT system. Section 4 introduces the power distribution between
loads under different coupling situations. Section 5 designs the parameters of a dual-load PT-WPT
system and presents the circuit simulation results. Finally, some conclusions are given in Section 6.
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2. Modeling of Multi-Load PT-WPT System

2.1. PT Principle in WPT System with Operational Amplifier

The so-called PT-symmetric systems are invariant under the joint parity and time reversal
operation [28,30]. The nonlinear PT-symmetric model is realized by a parallel–parallel topology of the
WPT system [28]. Indeed, both the series–series topology and the parallel–parallel topology of the WPT
system can be used to realize the nonlinear PT-symmetric model [29]. The structure of the single-load
PT-WPT system is shown in Figure 1a, including the gain unit and the loss unit, in which the gain unit
is composed of an operational amplifier, R1, Rf1, and Rf2. LT and CT are coil inductance and resonant
capacitor on the transmitter, respectively; LR and CR are coil inductance and resonant capacitor on the
receiver, respectively; iT and iR are currents flowing through the transmitter and receiver, respectively;
RL is the load resistance; and M is the mutual inductance.
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Figure 1. Schematic of single-load PT-WPT system using series-series topology with nonlinear 
negative resistance represented in operational amplifier form: (a) the circuit topology; (b) the 
equivalent circuit diagram. 
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Due to the operational amplifier’s saturation voltage, both ends of ab can be equivalent to a
nonlinear negative resistance −RN with a resistance value of −R1/(A−1), wherein A = 1 + Rf1/Rf2 [28].
Therefore, the equivalent circuit is shown in Figure 1b. The negative resistance −RN will input power
into the LC series resonant circuit at the transmitter, and then transmit the energy to the load through
the magnetic coupling between the transmitting coil and the receiving coil.

Based on Kirchhoff’s voltage law, the circuit model of the single-load PT-WPT system as shown in
Figure 1b can be fully described as follows:
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The PT-symmetric WPT system requires that ωT = ωR = ω0 [28]. Further, the determinant must
be zero, then Equation (1) has a nonzero solution. Hence, taking ω to be real, separate the real and
imaginary parts to obtain Equation (2) as follows.

(−RN+rT)(RL+rR)
LTLR

− (ω−
ω2

0
ω )

2
+ω2k2 = 0

(ω−
ω2

0
ω )(−RN+rT

LT
+ RL+rR

LR
) = 0

(2)

According to Equation (2), it can be seen that (−RN + rT)/LT + (RL + rR)/LR = 0 must be satisfied,
which is consistent with the requirement that the gain rate of the transmitter needs to be equal to the
loss rate of the receiver [28]. So, the PT-symmetric conditions can be expressed as: ωT = ωR = ω0

−
−RN+rT

LT
=

(RL+rR)
LR

(3)

There are two regions containing solutions of Equation (2), depending on the coupling

coefficient k, as shown in Figure 2a, wherein kc =

√
1− 1

4 × [2− (
RL+rR
ω0LR

)
2
]
2

is defined as the critical
coupling coefficient. In the strong coupling region (kc ≤ k < 1), the system supports two modes
with angular frequencies, as shown in Equation (4). These two modes have the same saturated gain,
exactly balancing out the loss. That means the energy stored in the transmitting and receiving resonators
will remain equal. In addition, the operating angular frequency ω will be automatically adjusted with
the change of k. In the weak coupling region (0 < k < kc), only one mode is located at ω = ω0, with the
corresponding saturated gain less than the loss.
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Further, in the matched PT-symmetric conditions, the system output power and transfer efficiency
can be obtained as follows:
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0LR

+LT(RL+rR)
, 0 < k < kc (6)

where Vo, Vin, IR, and IT are the effective value of vo, vin, iR, and iT, respectively. The system transmission
characteristics are as shown in Figure 2b. In the strong coupling region, the output power and transfer
efficiency are independent of k and only related to the inherent parameters. Hence the output power
and transfer efficiency will remain constant against the variation of the coupling coefficient. However,
in the weak coupling region, the output power and transfer efficiency fluctuate drastically due to the
change of coupling coefficient k.
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2.2. Circuit Model of Multi-Load PT-WPT System with Self-Oscillating Full-Bridge Inverter

According to Section 2.1, the PT-WPT system has obvious advantages in improving the system
stability and spatial freedom, compared with the traditional resonant or inductive WPT system. But the
existing research is only for single-load PT-WPT systems. Therefore, a multi-load PT-WPT system is
proposed in this section, which is more suitable for wireless charging of multiple electrical appliances
in practice.

A full-bridge inverter is used to construct a nonlinear saturation gain system in this paper instead
of the operation amplifier to achieve higher output power. The circuit of PT-WPT system with n loads
is shown in Figure 3a, wherein the full-bridge inverter is a self-oscillating controlled inverter; LT, CT, rT,
and iT are coil inductance, resonant capacitor, internal resistance, and coil currents on the transmitter,
respectively; Li, Ci, rLi, and ii are coil inductance, resonant capacitor, internal resistance, and coil current
on the ith receiver, respectively; RLi is the ith load resistance; Mi is the mutual inductance and Mij is the
cross-coupling mutual inductance between the transmitting coils (i, j = 1, 2, . . . , n).
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Figure 4 shows the waveform of vin, as well as iT and the gate drive signal of S1, S2, S3, and S4

(vg1, vg2, vg3, and vg4). To simplify the analysis, the delay time and dead time are not considered in
the modeling. As shown in Figure 4, the full-bridge inverter is controlled by zero crossing points of the
current waveform in the transmitting resonator. So, vin can be defined as:

vin = sgn(iT) ×VDC (7)
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Assuming the direction of current iT and voltage vin shown in Figure 3 is positive, Figure 4
shows that the phase difference between vin and iT is 0◦, which means generating energy. Therefore,
the full-bridge inverter can also be equivalent to a negative resistance −RN, as shown in Figure 3b.

According to Kirchhoff’s voltage law, the circuit model of the multi-load PT-WPT system can
be obtained, as presented in Equation (8).
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In order to initially explore the feasibility of the multi-load PT-WPT system and simplify
the calculation, the circuit model of the PT-WPT system with two loads will be modeled and analyzed
in detail. The equivalent circuit is shown in Figure 3b. When the receiving coils L1 and L2 are respectively
located on both sides of the transmitting coil and are far away from each other, the cross-coupling
between the two receiving coils has little effect on the system, which can be ignored approximately,
that is, M12 = 0. According to Kirchhoff’s voltage law, the circuit model of the dual-load PT-WPT
system can be obtained, as presented in Equation (9).
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where ω1 = 1/
√

L1C1 and ω2 = 1/
√

L2C2 are the natural resonant angular frequencies of the two
receivers, and the coupling coefficients k1 and k2 are defined as k1 = M1/
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√
LTL2.
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A PT-symmetric system not only requires that the natural resonant frequencies of transmitter and
receivers are the same (ωT = ω1 = ω2), but also requires that the structure and parameters of transmitter
and receivers are symmetrical and equal, so Equation (10) must be satisfied as PT-symmetric conditions.

ωT = ω1 = ω2 = ω0

RL1
L1

= RL2
L2

−
−RN+rT

LT
= RL1+rL1

L1
= RL2+rL2

L2

(10)

Similarly, in order to have a nonzero solution, the determinant of Equation (9) must be zero.
Furthermore, taking ω to be real, substitute Equation (10) into Equation (9) and separate the real and
imaginary parts to obtain:

(k2
1 + k2

2)ω
4
− (ω2

−ω2
0)

2
− (

RL1 + rL1

L1
)

2
ω2 = 0 (11)

and

[(k2
1 + k2

2)ω
4
− (ω2

−ω2
0)

2
− (

RL1 + rL1

L1
)

2
](ω2

−ω2
0) = 0 (12)

3. Analysis of the Transmission Characteristics of Multi-Load PT-WPT System

3.1. Operating Angular Frequency

From Equation (9) to (12), the angular frequency solution of the dual-load PT-WPT system can be
derived as follows:

ω =



ω0√
2[1−(k2

1+k2
2)]
·

√
2− (RL1+rL1

ω0L1
)

2
±

√
[2− (RL1+rL1

ω0L1
)

2
]
2
+ 4(k2

1 + k2
2 − 1) , k′2c ≤ k2

1 + k2
2 < 1

ω0 , 0 < k2
1 + k2

2 < k′2c
(13)

where k′c =

√
1− 1

4 × [2− (
RL1+rL1
ω0L1

)
2
]
2

is defined as the critical coupling coefficient in the multi-load
PT-WPT system.

Based on the above analysis, it can be found that there are also two regions containing solutions
of Equation (13), depending on the coupling coefficients k1 and k2, as shown in Figure 5. In the strong
region (k′2c ≤ k2

1 + k2
2 < 1), which is called the PT-symmetric phase, the system supports two modes

with two solutions of angular frequency; the gain of the system is fully balanced with all the losses. It is
worth noting that the system can only work at one frequency at any time, and the system automatically
adjusts the angular frequency with the change of k1 and k2, due to the nonlinear saturation gain. In the
weak coupling region (0 < k2

1 + k2
2 < k′2c ), which is called the PT broken phase, only one mode is located

at ω = ω0.
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3.2. Output Power and Transfer Efficiency

Substituting Equations (10)–(13) into Equation (9), the effective value of coil currents iT, i1, i2 can
be obtained. Then, the total output power Ptotal and transfer efficiency ηtotal in the strong coupling
region or P’total and η’total in the weak coupling region, the ith load’s output power Poi, and transfer
efficiency ηoi can be expressed as follows (i = 1, 2).

(1) strong coupling region

Po1 =

RL1V2
in

k2
1

k2
1+k2

2

LT(RL1+rL1)
2

L1
+ 2(RL1 + rL1)rT + L1

LT
r2

T

(14)

Po2 =

RL2V2
in

k2
2

k2
1+k2

2

LT(RL2+rL2)
2

L2
+ 2(RL2 + rL2)rT + L2

LT
r2

T

(15)

Ptotal = Po1 + Po2 =
RL1V2

in

LT(RL1+rL1)
2

L1
+ 2(RL1 + rL1)rT + L1

LT
r2

T

(16)

ηo1 =
k2

1

k2
1 + k2

2

·
RL1LT

rTL1 + LT(RL1 + rL1)
(17)

ηo2 =
k2

2

k2
1 + k2

2

·
RL2LT

rTL2 + LT(RL2 + rL2)
(18)

ηtotal = ηo1 + ηo2 =
RL1LT

rTL1 + LT(RL1 + rL1)
(19)

(2) weak coupling region

P′total =
RL1(

RL1+rL1
L1

)
2
V2

in

ω2
0(k

2
1 + k2

2)
(

LT(RL1+rL1)
2

L1
+ 2(RL1 + rL1)rT + L1

LT
r2

T

) (20)

η′total =
RL1L1(k2

1 + k2
2)

rT(RL1+rL1)
2

ω2
0LT

+ L1(RL1 + rL1)(k2
1 + k2

2)
(21)
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Here, Vin is the effective value of input voltage vin. From Equations (14)–(19), it can be seen that
the total output power and transfer efficiency remain constant in the strong coupling region, while the
output power and transfer efficiency of each load vary with k1 and k2. On the contrary, the total output
power and transfer efficiency change drastically in the weak coupling region as shown in Equations
(20) and (21), which is affected by k1 and k2 simultaneously. However, it can be further found that
when k1 and k2 satisfy a certain condition in the strong coupling region, the output power and transfer
efficiency of each load can still remain constant. The specific situation will be analyzed in detail in
Section 4.

3.3. Comparison with Single-Load PT-WPT System

Based on the above modeling and analysis of the single-load PT-WPT system and dual-load
PT-WPT system, the comprehensive comparison between the two systems is shown in Table 1 when
the system works in the strong coupling region. It can be found that the dual-load PT-WPT system
needs to meet stricter PT symmetric conditions and coupling coefficient conditions. When the
system is in PT-symmetric phase, the total output power and total transfer efficiency of the dual-load
PT-WPT system remain constant, and the whole system exhibits exactly the same characteristics as the
single-load PT-WPT system. On the other hand, the output power and transfer efficiency of each load
are distributed unevenly and vary with the coupling coefficient. It is only when a certain coupling
coefficient condition is satisfied that each load can maintain a constant output power and constant
transfer efficiency.

Table 1. Comprehensive comparison of single-load PT-WPT and dual-load PT-WPT system (working
in the strong coupling region and i = 1, 2).

Items Single-Load PT-WPT Dual-Load PT-WPT

PT symmetry conditions
{
ωT = ωR = ω0

−
−RN+rT

LT
= RL+rR

LR


ωT = ω1 = ω2 = ω0

RL1
L1

= RL2
L2

−
−RN+rT

LT
= RL1+rL1

L1
= RL2+rL2

L2

Coupling coefficient condition 1− 1
4 × [2− (

RL+rR
ω0LR

)
2
]
2
≤ k2

≤ 1
1− 1

4 × [2− (
RL1+rL1
ω0L1

)
2
]
2
≤

k2
1 + k2

2 ≤ 1

Total output power
RLV2

in
LT (RL+rR)2

LR
+2(RL+rR)rT+

LR
LT

r2
T

RL1V2
in

LT (RL1+rL1)
2

L1
+2(RL1+rL1)rT+

L1
LT

r2
T

Total transfer efficiency RLLT
rTLR+LT(RL+rR)

RL1LT
rTL1+LT(RL1+rL1)

ith load output power -
RLiV2

ink2
i /(k2

1+k2
2)

LT (RLi+rLi)
2

Li
+2(RLi+rLi)rT+

Li
LT

r2
T

ith load efficiency -
k2

i
k2

1+k2
2

RLiLT
rTLi+LT(RLi+rLi)

4. Power Distribution under Different Coupling Situations

According to the above analysis, the power and efficiency distribution of different loads in the
strong coupling region can be obtained by

Po1

Po2
=

k2
1

k2
2

,
ηo1

ηo2
=

k2
1

k2
2

(22)

Equation (22) shows that, for a dual-load PT-WPT system with known system parameters, the
power and transfer efficiency of different loads only relate to the coupling coefficients k1 and k2.
Therefore, before discussing the power distribution under different coupling situations, the relationship
between the coupling coefficient and the coils’ position should be obtained first. The spatial arbitrary
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position of the two planar coils is shown in Figure 6a, where r′T and r′R are the radius of transmitting
coil and receiving coil, respectively, d is the axial distance, ∆ is the horizontal lateral shift distance
between the centers of the two coils, and β is the offset angle between the normal directions. Further,
the coupling coefficient k between two planar coils is a function of β, d, and ∆ [31].

k(β, d, ∆) =
NTNRµ0r′Tr′R

∮
dφ

∮ sinθ sinφ cos β+cosθ cosφ
rTR

dθ

4π
√

LTLR
(23)

wherein
rTR = [r′2T + r′2R + d2 + ∆2 + 2∆r′R cosφ sin β− 2∆r′T cosθ
− 2r′Rd cosφ sin β− 2r′Tr′R(cosθ cosφ cos β+ sinθ sinφ)]

1
2

(24)

and NT, NR, LT, and LR are the coil turns and inductance of transmitting coil and receiving coil,
respectively, µ0 is the magnetic permeability of vacuum. This paper mainly considers the influence of
the relative position of the two planar coils on the proposed PT-WPT system, that is, ∆ = 0, so the curve
of the coupling coefficient with respect to the offset angle β and the coil center distance d is shown in
Figure 6b.
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and ηo1 = ηo2 = 50% ηtotal can be obtained when k1 = k2. That means, in the strong coupling region, the 
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coupling region, so the output power and transfer efficiency of each load are also constant at any 

Figure 6. Coupling coefficient between two coils at different positions: (a) any position of the two
planar coils; (b) curve of coupling coefficient, offset angle, and axial distance.

Then, considering the variable loads position in practice, the power distribution can be divided
into the following two cases according to the coupling situation.

(1) k1 = k2

In this case, Load 1 and Load 2 are symmetrically distributed on both sides of the transmitter, that
is, β1 = β2 = β0, d1 = d2 = d0, as shown in Figure 7a. According to Equation (22), Po1 = Po2 = 50% Ptotal
and ηo1 = ηo2 = 50% ηtotal can be obtained when k1 = k2. That means, in the strong coupling region,
the total output power of the system is equally distributed to each load. According to the analysis
in Section 3, the Ptotal and ηtotal of the dual-load PT-WPT system is always constant in the strong
coupling region, so the output power and transfer efficiency of each load are also constant at any time
and independent of the coupling coefficient, as long as k1 = k2 is always satisfied, as shown in Figure 7b.
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Figure 7. Schematic diagram of power distribution when k1 = k2: (a) loads position; (b) output power
and transfer efficiency of system and each load. (In the figure, “theo” is the abbreviation of “theory”,
which represents the theoretical value, the same below.)

In practice, using this characteristic, two loads with the same power demand can be wirelessly
charged simultaneously. When the two loads move the same distance and offset angle at the same time
to satisfy k1 = k2, the output power and transfer efficiency of each load remain constant. However,
k1 and k2 shouldn’t be so small (k1 = k2 < k’c) that the system works in the weak coupling region,
otherwise the output power of the system and each load will rise sharply and the transfer efficiency
will drop sharply, as shown in Figure 7b, resulting in the system’s damage.

(2) k1 , k2

In this case, Load 1 and Load 2 are located on both sides of the transmitter arbitrarily. Suppose that
Load 1 is first placed at a certain position (β1, d1) and Load 2 is placed at (β2, d2), as shown in Figure 8a.
So, the coupling coefficients k1 and k2 can be calculated according to Equation (23) or by scanning
Figure 6b. According to Equation (22), the output power of Load 1 and Load 2 can be obtained:

Po1 =
k2

1
k2

1+k2
2
Ptotal

Po2 =
k2

2
k2

1+k2
2
Ptotal

(25)
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It can be found that the output power of each load depends on k1 and k2. Users only need to
adjust the coupling coefficient to achieve power distribution according to the power demands of
different loads. However, in practice, the variation range of the coupling coefficient is not arbitrary.
Once the difference between the two coupling coefficients is too large, the power distribution will be
extremely uneven. The output power with too large coupling coefficient will be too large, which will
easily damage the load. While the output power with a small coupling coefficient is too small, it cannot
meet the load’s power demand. So, it is necessary to set the output power limit of each load. Suppose
that the maximum allowable output power of Load 1 is Po1_max and the minimum output power
is Po1_min. Therefore, the actual output power Po1 of Load 1 should satisfy Po1_max > Po1 > Po1_min.
According to Equation (25), the variation range of k1 and k2 shall meet the following requirement.√

Po1_max

Ptotal − Po1_max
≥

k1

k2
≥

√
Po1_min

Ptotal − Po1_min
(26)

Further, according to the change of load position, there are two different situations in this case
as follows. One situation is that one coupling coefficient changes while the other remains unchanged.
The other situation is that two coupling coefficients k1 and k2 change simultaneously. Assume that the
coupling coefficient k2 is fixed at k2 = 0.1, while k1 varies from 0.091 to 0.6 and k1 , k2 = 0.1. The power
distribution between Load 1 and Load 2 is shown in Figure 8b. It can be seen that Load 1 and Load 2
cannot maintain a constant output power when k1 changes, while the total output power Ptotal of the
system still remains constant. Although the position of Load 2 remains unchanged, its output power is
still affected by k1. The power distribution between loads is uneven. Moreover, the larger the coupling
coefficient is (that is, the receiving coil is closer to the transmitting coil), the larger the output power is.

In summary, the above two kinds of power distribution relationship of dual-load PT-WPT systems
can provide reference for the further formulation of power distribution control strategy in the future.
Combined with the relationship between coupling coefficient and load position shown in Figure 6,
there are two methods to achieve constant output power and transfer efficiency of the system and each
load simultaneously. One is to always satisfy k1 = k2, where the output power is evenly distributed
to each load, that is Po1 = Po2 = 50% Ptotal and ηo1 = ηo2 = 50% ηtotal. The other is to design a control
strategy that only adjusts the coupling coefficients automatically according to the power distribution
relationship of k1 , k2 and the power demands of different loads, which does not need to add any
compensation circuit.

5. System Parameter Design and Circuit Simulation Verification

5.1. System Structure and Parameter Design

To verify the results of the above theoretical analysis, a circuit simulation model is built.
A full-bridge inverter is used to construct a nonlinear saturation gain system instead of half-bridge
inverter as [29,32] to achieve higher output power. The schematic diagram of the simulation circuit of
the dual-load PT-WPT system is shown in Figure 9. In addition, to show the wonderful characteristics
of the actual dual-load PT-WPT system, the two receivers are coaxially located on both sides of the
transmitter, and the two receiving coils are the same size as the transmitting coil, with a radius of 26 cm.
The natural resonant frequency f 0 of the transmitter and two receivers is set as 100 kHz. Moreover,
in order to simulate the actual situation as much as possible, the parameters of the two loads are not
exactly the same. The specific parameters are shown in Table 2.
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Figure 9. Simulation circuit of PT-WPT system with two loads. 

Table 2. Parameters of the dual-load PT-WPT system. 

Parameters Values Parameters Values Parameters Values 
VDC/V 50 L1/μH 183.5 L2/μH 195.6 
LT/μH 181.7 C1/nF 13.8 C2/nF 12.95 
CT/nF 13.94 RL1/Ω 10 RL2/Ω 10.66 
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5.2. Transmission Characteristics Verificaton 
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]
2
, the critical coupling

coefficient k’c = 0.091. The simulation waveform of the output voltage vin of the full-bridge inverter and
the input current iT flowing through the transmitting coil is shown in Figure 10, with a phase difference
of 0◦, and means generating energy. Therefore, it can be equivalent to negative resistance −RN, which is
satisfied with theoretical analysis in Figure 4.
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Furthermore, several different groups of k1 and k2 are randomly selected for simulation.
The comparison between the simulation value and the theoretical value of the system operating
angle frequency, total output power, and transfer efficiency are shown in Figure 11. Within the
error range, the theoretical value is consistent with the simulation result. Figure 11a shows that the
system’s operating angular frequency ω is always equal to the natural resonant angular frequency
ω0 (ω0 = 2πf 0 ≈ 0.628 × 106 rad/s) in the weak coupling region, while in the strong coupling region,
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the system’s operating angular frequency is automatically adjusted as the coupling coefficients k1 and
k2 change. It can be clearly seen from Figure 11b,c that the total output power of the system always
remains at 175 W with constant transmission efficiency 95% when the coupling coefficients k1 and
k2 change in the strong coupling region, which is not affected by the load position. However, once
the system works in the weak coupling region, the total output power of the system will rise sharply,
and the transfer efficiency will drop rapidly, which not only reduces the transmission performance,
but also may produce a lot of heat to burn the circuit. So, in practice, it should be avoided to work in
the weak coupling region.
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5.3. Power Distribution Verificaton

When k1 = k2, the power distribution and efficiency distribution are as shown in Figure 12a,b.
The blue line and dots represent total output power and efficiency of the system, while the red and green
lines and dots represent output power and efficiency of Load 1 and Load 2, respectively. As shown
in Figure 12a,b, when k′2c ≤ k2

1 + k2
2 < 1, that is, strong coupling region, not only the total output

power and transfer efficiency of the system remain constant, but also the output power and transfer
efficiency of each load remain constant. Moreover, the output power and transfer efficiency of each
load are 50% of the total output power and transfer efficiency of the system, respectively. In this case,
the system and each load can achieve constant output power and constant efficiency simultaneously,
which is no longer affected by the load’s position. One of the waveforms of the input current iT and the
output current iL1 and iL2 is shown in Figure 12c. It can be seen that the output currents iL1 and iL2 are
completely coincident, and the effective value is 4.12 A, while the effective value of the input current iT
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is 5.8 A. The output power Po1 = Po2 = 50% Ptotal and the efficiency ηo1 = ηo2 = 50% ηtotal of the two
loads can be obtained.Energies 2020, 13, 3260 15 of 18 
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When k1 , k2 and k′2c ≤ k2
1 + k2

2 < 1, the power distribution and efficiency distribution are as
shown in Figure 13. In order to better demonstrate the power and efficiency distribution in the strong
coupling region, the coupling coefficient k2 = 0.2 of Load 2 is assumed to be fixed, and the coupling
coefficient k1 of Load 1 is changed from 0 to 0.6. In this case, the relationship of the output power and
transfer efficiency of the two loads with the coupling coefficient k1 is shown in Figure 13a,b. It can be
seen that the output power and efficiency of each load vary with the coupling coefficient and cannot
be kept at a constant value, although a load position remains unchanged. Furthermore, the greater
the coupling coefficient is (that is, receiver is closer to transmitter), the greater the output power and
efficiency are. Further, taking any value of k1 and k2, the simulation results are as shown in Figure 13c.
The ratio of output power and efficiency of each load falls on the surface of the square ratio of coupling
coefficients k1 and k2. One of the waveforms of the input current iT and the output current iL1 and iL2

is shown in Figure 13d; the effective values of iT, iL1, and iL2 are 3.20 A, 4.65 A, and 5.74 A, respectively.
It can be calculated that the ratio of the output power of the two loads Po1/Po2 ≈ 0.44 and the efficiency
ratio ηo1/ηo2 ≈ 0.44, which is consistent with theoretical analysis.
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5.4. Comparison with Existing Multi-Load WPT Systems

Table 3 compares the transfer performance of the multi-load WPT systems reported in recent years.
Different from the existing multi-load WPT systems where the operating frequency is fixed and the
output power and transfer efficiency are variable as loads move, the multi-load PT-WPT system
proposed in this paper can automatically adjust the operating frequency according to the change of
load position; at the same time, the output power and transfer efficiency of the system can be kept
constant simultaneously under variable coupling coefficient.

Table 3. Comparison of multi-load WPT systems.

Reference Operating Frequency Transmitting Coil
Structure Coil Size Operating

Condition
Output Power
and Efficiency

[9] 200 kHz Repeater coils 16 × 16 cm Fixed load Unstable

[13] 20 kHz Two orthogonal
square coils 30 × 30 cm Movable load Unstable

[14] 1 MHz Rotating circular coil r = 32 cm Fixed load Unstable
[15] 50 kHz Helmholtz coils 20 × 20 × 14 cm Movable load Unstable
[17] 1.32 MHz Metallic chamber 4.9 × 4.9 × 2.3 m Movable load Unstable

This work Adjust around 100 kHz Single plane coil r = 26 cm Movable load Constant

6. Conclusions

This paper proposes a novel multi-load WPT system based on PT-symmetry, which is progress
compared with the single-load PT-WPT system. Compared with the existing multi-load WPT systems,
the main advantage of the proposed multi-load PT-WPT system in this paper is the ability to
achieve constant output power and constant transfer efficiency of the system against variable
coupling coefficients, and realize power distribution among loads simultaneously under different
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coupling situations. Theoretical results show that the total output power and transfer efficiency of
the system can remain constant at any position in the strong coupling region. However, for a specific
load, the output power and transfer efficiency will vary with the coupling coefficient. Only when all
coupling coefficients are equal, that is, k1 = k2 = . . . = kn at any time, the system and each load achieve
constant output power and constant efficiency simultaneously, and the overall output power is evenly
distributed to each load. Moreover, taking a dual-load PT-WPT system as an example, the circuit
simulation is carried out and the simulation results verify the theoretical analysis. There are still several
challenges and open issues of the proposed multi-load PT-WPT system, such as power distribution
strategy and cross-coupling effect when the load distance is relatively close. Future work will focus
on the power distribution optimization when multiple portable electronic products are wirelessly
charging at the same time, such as mobile phones, Bluetooth headsets, bracelets, and so on.
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