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Abstract: Ventilation, heating and air conditioning systems are the main energy consumers in building
sector. Improving the energy consumption of these systems, while satisfying the occupants’ comfort,
is the major concern of control and automation designers and researchers. Model predictive control
(MPC) methods have been widely studied in order to reduce the energy usage while enhancing
the occupants’ comfort. In this paper, a generalized predictive control (GPC) algorithm based on
controlled auto-regressive integrated moving average is investigated for standalone ventilation
systems’ control. A building’s ventilation system is first modeled together with the GPC and MPC
controllers. Simulations have been conducted for validation purposes and are structured into two
main parts. In the first part, we compare the MPC with two traditional controllers, while the second
part is dedicated to the comparison of the MPC against the GPC controller. Simulation results show
the effectiveness of the GPC in reducing the energy consumption by about 4.34% while providing
significant indoor air quality improvement.

Keywords: energy efficiency in buildings; indoor air quality comfort; CO2 regulation; ventilation
systems control; model and generalized predictive control

1. Introduction

Heating, ventilation and air-conditioning (HVAC) systems represent approximately 50% of the
global energy consumption in buildings and 36% of all energy-related CO2 emissions worldwide [1,2].
Therefore, building’s systems, especially HVAC, have to be efficiently controlled in order to balance the
tradeoff between the occupants’ comfort and energy efficiency in buildings [3–5]. Four main metrics
need to be considered, however, which are (i) the thermal comfort, (ii) visual comfort, (iii) acoustics
comfort and (iv) the indoor air quality. According to a recent standard, integrating those metric
parameters into the design of HVAC systems could provide a significant improvement of energy usage
of these systems while ensuring comfortable indoor environmental conditions [6]. In brief, comfort
metrics are required to assess the energy efficiency in buildings. In particular, indoor air quality which
has been recognized as one of the most important factors influencing the indoor environmental quality
of the occupants as well as one of the main sources of energy consumption in buildings [4,6], which
depends mainly on the ventilation management service. On the other hand, ventilation systems in
buildings are necessary to maintain a proper and healthy indoor air quality (IAQ) aiming to control
the indoor environmental requirements, such as CO2 level, humidity and air velocity, by providing the
required level of fresh air from outside to inside the building. The main aim is to reduce the excess of
CO2 concentration with the respect of humidity by using an efficient ventilation rate in order to enhance
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the energy conservation while creating a more comfortable healthy environment. Therefore, developing
advanced control strategies requires taking into consideration these environmental requirements,
which are mostly based on international standards. For instance, Ashrae standard 62 is one of the
important references that defines the performance requirements for ventilation to provide acceptable
IAQ in buildings [3].

Indoor CO2 is considered among the most important parameters for developing intelligent control
approaches of ventilation systems in order to minimize the overall energy usage while ensuring good
indoor air quality. Basically, conventional building’s ventilation systems have constant or prefixed
ventilation rates based on the demand of that building’s space. Typically, the fan acts automatically
on the behalf of the occupants even when the demand for ventilation decreases. This could affect the
thermal and indoor air quality comfort due to uncontrollable ventilation rate operations, leading to
energy wastage. In addition, IAQ is considered among the main parameters for occupants’ well-being
and occupants’ comfort in schools, libraries and other building sectors. In fact, inadequate ventilation
systems, which do not supply enough fresh air, can cause poor IAQ leading to discomfort, symptoms
and health issues. This might also affect the occupants’ productivity [7]. In fact, our recent experimental
study has shown a strong correlation between the CO2 concentration and the SPO2, the O2 level inside
the occupants’ blood [8]. The study showed also how the increase in CO2 concentration can affect the
heart rate and SPO2 of the occupants leading to discomfort.

IAQ depends on many building context-awareness parameters, such as the envelope, operation
sittings of the ventilation systems and the occupants’ number [9]. Actually, most proposed methods
for controlling IAQ is through the use of standalone ventilation systems by supplying the required
outdoor air level using appropriate ventilation rates. These approaches will allow maintaining good
indoor air quality while reducing the energy consumption [10–13]. Most of the deployed approaches
are based on a fixed ventilation rate in order to minimize the power consumption while keeping a
comfortable indoor air quality [14,15]. However, these approaches could operate efficiently in a static
environment with priory known occupancy schedules. Recently, sophisticated control approaches have
been proposed for environments with dynamic occupancy changes [16–18]. Namely, the well known
proportional, integral and derivative (PID) control, which seems sufficient to cover the dynamic control
requirements of these dynamic systems, however, the energy consumption remains an important
issue [19]. Therefore, most recent studies focused on the parameter design of PID controllers in
order to improve their performances, mainly in terms of precision, robustness and stability [20,21].
In fact, inappropriate setting of P, I and D could affect the precision as well as the internal stability and
robustness of the system [22]. Moreover, the PID controller is unsuitable for managing systems with
multiple inputs/outputs with time-varying disturbances, such as in HVAC systems.

Advanced algorithms were recently developed in recent years for HVAC control systems, such as
the fuzzy logic control, genetic algorithm and model predictive control (MPC) [23,24]. Among these
control algorithms, predictive control strategies have been introduced as one of the most advanced
control techniques used in building system control in order to regulate very complex related processes,
such as in HVAC systems [25,26]—especially for energy and cost savings [27,28], robustness to
disturbances and changes in operating conditions [29,30], indoor air quality and thermal comfort
improvement [31,32]. In fact, model-based predictive control has an optimization mechanism that
allows integrating the process’s constraints and disturbances in its control action. The aim is to predict
the dynamic behavior of the system, within a prediction horizon. Moreover, the MPC mechanism
could handle uncertainties and nonlinear processes and their dynamics [33].

In our previous work, we have investigated the PID and ON/OFF controllers and validated their
performance [15,18]. We then proposed a CO2-based strategy using a state feedback for controlling
ventilation systems, and the results showed that the proposed state-feedback technique outperformed
the Proportional Integral (PI) and ON/OFF controllers in terms of energy consumption while maintaining
good indoor air quality. The three controllers have been deployed in our University testbed (EEBLab,
for Energy Efficient Buildings Laboratory), which is located in Rabat, Morocco. The experiments were



Energies 2020, 13, 3246 3 of 16

conducted in real sitting scenarios and the results showed that the CO2-based state feedback (SF)
control was able to maintain the CO2 concentration in the comfortable zone, while minimizing energy
consumption. It is worth noting that the EEBLab consists mainly of: (i) RES-Renewable Energy Sources
(e.g., wind and solar), (ii) battery devices to store the excessive power, and (iii) active/passive systems
(e.g., air conditioner, ventilation systems, geothermal, pad cooling system).

The work presented in this paper was conducted under two ongoing R&D projects [34]. The aim
was to develop predictive approaches and techniques for active/passive system (e.g., ventilation,
HVAC, pad cooling, geothermal) control, including the integration of renewable energy and storage
systems [35–37]. A platform that combined IoT and Big data processing technologies for real-time
control of the building’s systems was also deployed in our EEBLab for real testing [38]. In fact, in order
to enable predictive control, a holistic platform, which integrates recent IoT sensing/actuating and
Big data technologies, was developed for data monitoring and processing together with real-time
machine-learning techniques. Mainly, the data streams we were collecting from a variety of sensors,
such as CO2, temperature, humidity and motion sensors, will be used for predicting occupancy.
Occupancy information will be then used to develop context-driven services and predictive control,
such as controlling window opening and shading, smart HVAC, ventilation, and lighting services.
Mainly, the aim was to carry out the MAPCAST closed loop (measure, analyze and predict the inputs
control parameters for forecasting required actions), which enables the predictive control of active and
passive systems including the control of our micro-grid systems [36,38].

The aim of the work presented in this paper was towards developing and designing advanced
controllers of standalone ventilation systems by carrying out the MAPCAST principles. In fact,
a real-time predictive management approach was then developed, which aimed to autonomously
measure, analyze actual data, predict future values and forecast ventilation actions. The first part of
this work was dedicated to ventilation’s system modeling including the design of both generalized
predictive control (GPC) and MPC controllers. Simulation results are then presented to compare first
the MPC against the PI and SF control we have developed and compared in our previous work [39].
Mainly, in this work, a performance comparison between two predictive controllers, MPC and GPC,
were performed and analyzed for a building’s ventilation system. The PI and SF controllers were only
used as baseline references to validate and assess the performance of MPC and GPC. The obtained
results were analyzed and compared based on three main metrics, the regulation of indoor CO2

concentration, the ventilation rate, and the power consumption, both aggregated and disaggregated.
The outline of this article is organized as follows. Section 2 presents the proposed methodology

followed throughout the article, which mainly describes the ventilation’s control model using the
MPC and GPC. Simulation parameters and evaluation metrics together with the obtained results are
reported in Section 3. Section 4 provides the conclusions and perspectives.

2. System Model and Methods

This section introduces the model of the ventilation system for the air indoor regulation. The design
and the models of the MPC and GPC controllers are then presented and discussed.

2.1. Ventilation System Modeling

The ventilation system was constituted of two standalone controlled fans, which were respectively
responsible for supplying the fresh outdoor air into the inside of the building and draining the CO2

out of the building. In other words, these two fans were operating instantaneously under the same
control actions in order to keep a good indoor air quality inside the building. The model describing
this system was inspired from the CO2 mass balance method, which combines the indoor/outdoor CO2

concentration, the controlled air flow rate and the occupancy behavior [40]. This model was given
by the following equation, where Q is the ventilation rate operation in (m3/s), N is the number of
occupants and t is the time in (s), V represents the space’s volume (m3), q means the rate of the generated
CO2 concentration per person (L/s), while Cext(resp. Ci) represents the external CO2 concentration
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(resp. internal), measured in ppm. The recommended internal CO2 concentration must be lower than
1000 ppm [41]:

V
dCi(t)

dt
= Q(t)(Ci(t) −Cext(t)) + qN(t) (1)

This equation has a nonlinear behavior due to the inter-relationship between the CO2 concentration
and the ventilations rates. It could be linearized as follows, where Q0 is a constant initial rate as well as
the minimum ventilation rate, ∆Q(t) is the change necessary to achieve the desired indoor CO2 level,
C0 represents the initial indoor concentration of Ci(t), and ∆Ci(t) is the concentration increment by
applying ∆Q(t):

Q(t) = Q0 + ∆Q(t)Ci(t) = C0 + ∆Ci(t)

Equation (1) can therefore be described by Equation (2):

•
x(t) =

Q0

V
∆Ci(t) +

(C0 −Cext)

V
∆Q(t) +

qN(t)
V

(2)

Let us consider:

Ac =
Q0

V
; Bc =

(C0 −Cext)

V
; x = ∆Ci(t); u(t) = ∆Q(t);

where qN(t)=F(t) is supposed as human disturbance, which must be integrated as an input parameter
to the proposed system. Finally, the state-space model is the following:

•
x(t) = Acx(t) + Bcu(t) +

F(t)
V

(3)

2.2. Predictive Controllers Design

In this sub-section, we introduce the MPC and GPC models. The aim is to show how these
controllers could maintain the system model based on input/output ventilation rates and carbon
dioxide concentrations in the building (Equation (3)).

2.2.1. MPC Controller Design

In order to design the MPC, a discrete model form of our system (Equation (3)) is required. In fact,
the obtained Euler approximation has the following discrete state space equation:{

x(k + 1) = Ax(k) + Bu(k)
y(k + 1) = Cx(k + 1)

(4)

The representation of n-step-ahead of Equation (4) is given by the following matrix-based forms
(i.e., the system’s state, output, and input control increment):


x(k + 1)

...
x(k + n)

︸                ︷︷                ︸
x

=


A
...

An

︸        ︷︷        ︸
A

x(k) +


B 0 · · · 0

AB
...

. . . . . .

. . . B

...
0

An−1B . . . AB B

︸                                 ︷︷                                 ︸
B


u(k)

...
u(k + n + 1)

︸                      ︷︷                      ︸
u

(5)
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y(k + 1)

...
y(k + n)

︸                ︷︷                ︸
y

=


CA

...
CAn

︸           ︷︷           ︸
C

x(k) +


CB 0 · · · 0

CAB
...

. . . . . .

. . . CB

...
0

CAn−1B . . . CAB CB

︸                                     ︷︷                                     ︸
D


u(k + 1)

...
u(k + n + 1)

︸                      ︷︷                      ︸
u

(6)


u(k)

...
u(k + n)

︸                ︷︷                ︸
u

=


1
...

1n

︸       ︷︷       ︸
I1

u(k− 1) +


1 0 · · · 0

1
...

. . . . . .

. . . . . .

...
0

. . . 1 1

︸                             ︷︷                             ︸
I2


∆u(k)

∆u(k + 1)

u(k + n + 1)

︸                      ︷︷                      ︸
∆u(k)

(7)

Replacing Equation (7) in (5), we obtain the predictive model: x = Ax(k)+BI1u(k− 1)+BI2∆u(k).
Replacing Equation (7) in (6), we get the predictive observation model: y = Cx(k) +DI1u(k− 1) +

DI2∆u(k).
The control objective is to find the future incremental action ∆u(k), which is able to reach the

desired predicted reference trajectory presented by the following equation:

yref =
[
yref(k + 1), yref(k + 2), . . . , yref(k + n)

]
In fact, the error between the set point references and the predicted system’s outputs is: E = y−yref.

Thus, the predicted control action ∆u that minimizes this error is computed by minimizing the
following criterion:

J =
1
2

(
EQET + ∆uR∆uT

)
(8)

2.2.2. GPC Controller Design

The basic theory of the GPC method, as described in [42], is to compute a sequence of future
control actions in order to minimize a multistage cost function defined over a prediction horizon.
The criterion index to be optimized is the expectation of a quadratic function, measuring the distance
between the predicted system’s outputs and some predicted reference sequence over a prediction
horizon and a quadratic function measuring the control effort. Due to its correctness and effectiveness,
the GPC has become the most popular MPC method used in various applications both in academia
and industrial processes [43,44].

The most transferred function model used by the GPC algorithm is called CARIMA (controlled
auto-regressive integrated moving average) model. This form of plant model is that the uncertainty is
added into a good representation, so that the slow variation of disturbances could have a non-zero
steady-state. Moreover, this model is compact and easy to handle:

A
(
z−1

)
y(k) = B

(
z−1

)
u(k) +

T
(
z−1

)
∆

d(k) (9)

where u and y are the control inputs and the system output sequences of the plant, respectively, A,
B and T are the polynomial Z-function, ∆ is the variation operator ∆uk = u(k) − u(k− 1), and d(k)
represents the disturbance (white noise). Therefore, the main objective is to convert our state-space
model into CARIMA form as follows:{

x(k + 1) = Ax(k) + Bu(k) + d(k)
y(k + 1) = Cx(k + 1)
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By applying the Z-transform representations, we obtain: x
(
z−1

)
= Az−1x

(
z−1

)
+ Bz−1u

(
z−1

)
+ z−1d

(
z−1

)
y
(
z−1

)
= Cx

(
z−1

) =>

 x
(
z−1

)
= Bz−1

1−Az−1 u
(
z−1

)
+ z−1

1−Az−1 d
(
z−1

)
y
(
z−1

)
= Cx

(
z−1

) ,

Therefore:

y
(
z−1

)
=

CBz−1

1−Az−1
u
(
z−1

)
+

Cz−1

1−Az−1
d
(
z−1

)
,

Hence:

1−Az−1y
(
z−1

)
= CBz−1u

(
z−1

)
+

Cz−1
(
1− z−1

)
1− z−1

d
(
z−1

)
,

where: 
A
(
z−1

)
= 1−Az−1

B
(
z−1

)
= CBz−1

T
(
z−1

)
= Cz−1

(
1− z−1

)
∆ = 1− z−1

.

Thus, the CARIMA form can be described as follows:

A
(
z−1

)
y
(
z−1

)
= B

(
z−1

)
u
(
z−1

)
+

T
(
z−1

)
∆

d
(
z−1

)
.

We then synthetize from the CARIMA model a one-step-ahead prediction equation, which
represents a set of simultaneous prediction equations:

A
(
z−1

)
∆y

(
z−1

)
= B

(
z−1

)
∆u

(
z−1

)
+ T

(
z−1

)
d
(
z−1

)
,

A
(
z−1

)
=

(
1−A

(
z−1

))(
1− z−1

)
= 1 + A1

(
z−1

)
+ A2

(
z−1

)
,

Therefore, our model design is:

A
(
z−1

)
y
(
z−1

)
= b

(
z−1

)
∆u

(
z−1

)
. (10)

The simultaneous prediction equations after n-steps-ahead can be considered as follows:

k + 1 : y(k + 1) + A1y(k) + A2y(k− 1) = CB∆u(k)
k + 2 : y(k + 2) + A1y(k + 1) + A2y(k) = CB∆u(k + 1)
k + 3 : y(k + 3) + A1y(k + 2) + A2y(k + 1) = CB∆u(k + 2)

...
k + n : y(k + n) + A1y(k + n− 1) + A2y(k + n− 2) = CB∆u(k + n− 1)

The idea is to arrange the above equations into a prediction matrix form, which is simple and easy
to handle as follows:

CA



y(k + 1)
y(k + 2)
y(k + 3)

...
y(k + n)

︸                 ︷︷                 ︸
yF
(k)

+ HA



y(k)
y(k + 1)
y(k + 2)

...
y(k + n− 1)

︸                   ︷︷                   ︸
yP
(k)

= CB



∆u(k)
∆u(k + 1)
∆u(k + 2)

...
∆u(k + n− 1)

︸                     ︷︷                     ︸
∆uF

(k)

+ HB



∆u(k− 1)
∆u(k− 2)
∆u(k− 3)

...
∆u(k− n)

︸                   ︷︷                   ︸
∆uP

(k)
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where yF
(k)

,yP
(k)

,∆uF
(k)

and ∆uP
(k)

are the unknown prediction output, known past output, future input
(decision variable) to be calculated, and the known past input, respectively. CA, HA, CB HB are the key
matrices of our predictive control:

CA =



1 0 · · · · · · · · · · · · 0

A1 1
. . . ...

A2 A1
. . . . . .

0

0

. . .

. . .
· · ·

. . .

. . .
0

. . .

. . .
A2

. . .
A1

...
0
1


,

HA =



A1 A2 0 · · · 0
A2 0 0 · · · 0

0 0
. . . . . .

...
...
0

. . .
· · ·

. . .
· · ·

. . .
· · ·

0
0


,

CB =


CB 0 · · · 0

0 CB
. . .

...
...

. . . . . . 0
0 · · · 0 CB

,

HB =


0 . . . 0
...

. . .
...

0 · · · 0

.

As follows, the output predictions using the shorthand notation for more compact representation:

CAyF
(k) + HAyP

(k) = CB∆uF
(k) + HB∆uP

(k), yF
(k) = C−1

A CB︸ ︷︷ ︸
H

∆uF
(k) + C−1

A HB︸ ︷︷ ︸
P

∆uP
(k) −C−1

A HA︸  ︷︷  ︸
Q

yP
(k) (11)

Let us now define the criterion to be optimized, which mainly relies in our case on error
change, between the predicted system output yF

(k)
and the predicted reference sequence rF

(k)
=

[rk+1, rk+2, rk+3, · · · rk+n] over the horizon, hence the error is eF
(k)

= rF
(k)
− yF

(k)
, and consequently the

optimal cost criterion is the following:

J =
(
eF
(k)

)T
.eF
(k) + λ

(
∆uF

(k)

)T
∆uF

(k) (12)

where λ is the control weighting factor that reduces the magnitude of the control increments in the cost
function. This criterion is optimized through the calculation of the gradient ∆uF

(k)
as follows:

By replacing the error change eF
(k)

= rF
(k)
− yF

(k)
into (12), we obtain:

J =
[
rF
(k)
−H∆uF

(k)
− P∆uP

(k)
−Q∆yP

(k)

]T
×

[
rF
(k)
−H∆uF

(k)
− P∆uP

(k)
−Q∆yP

(k)

]
+ λ

(
∆uF

(k)

)T
∆uF

(k)

J =
[(

H∆uF
(k)

)T(
H∆uF

(k)

)
−

(
2
(
H∆uF

(k)

)T(
rF
(k)
− P∆uP

(k)
−Q∆yP

(k)

))]
+ λ

(
∆uF

(k)

)T
∆uF

(k)

Then, we applied the mathematical rules: ∇X

(
aTX

)
= a

∇X
(
XTSX

)
=

(
S + ST

)
X

; ∇X

(
XTa

)
= a
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We get:

∇∆uF
(k)

J = ∇∆uF
(k)


(
∆uF

(k)

)T

︸    ︷︷    ︸
X

(
HTH + λI

)
︸        ︷︷        ︸

S

∆uF
(k)︸︷︷︸

X

− 2
(
H∆uF

(k)

)T
HT

(
rF
(k) − P∆uP

(k) −Q∆yP
(k)

)
︸                          ︷︷                          ︸

a


∇∆uF

(k)
J =

(
S + ST

)
∆uF

(k)
− 2HT

(
rF
(k)
− P∆uP

(k)
−Q∆yP

(k)

)
= 0

∆uF
(k) = S−1HT

(
rF
(k) − P∆uP

(k) −QyP
(k)

)
. (13)

In order to implement this control for real-time simulations, we note that the relation must be
adapted for the feedback design as follows:

∆uF
(k)

= MrF
(k)
−N∆uP

(k)
− LyP

(k)
∆uF

(k)
+ N∆uP

(k)
= MrF

(k)
− LyP

(k)
MrF

(k)
= M1zr(k) + M2z2r(k) + M3z3r(k) + · · ·Mnznr(k)+ = M(z)r(k)

LyP
(k)

= L0y(k) + L1z−1y(k) + L2z−2y(k) + · · ·+ Ln−1z−n−1y(k) = L
(
z−1

)
y(k)

∆uF
(k)

+ N∆uP
(k)

= D
(
z−1

)
∆u(k)

Hence, the schema bloc of the controlled system by the GPC-based CARIMA model is described
in Figure 1:
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( )
( ) ( ) ( ) ( )( ) ( )
   = − Δ − Δ − Δ × − Δ − Δ − Δ + λ Δ Δ   
 = Δ Δ − Δ − Δ − Δ + λ Δ Δ  

TTF F P P F F P P F F
(k) (k) (k) (k) (k) (k) (k) (k) (k) (k)

T T TF F F F P P F F
(k) (k) (k) (k) (k) (k) (k) (k)

J r H u P u Q y r H u P u Q y u u

J H u H u 2 H u r P u Q y u u
, 

Then, we applied the mathematical rules: 

( )
( ) ( )

 ∇ =

∇ = +

T
X

T T
X

a X a

X SX S S X
; ( )∇ =T

X X a a  

We get: 

( ) ( ) ( ) ( )

( ) ( )

Δ Δ

Δ

 
 ∇ = ∇ Δ + λ Δ − Δ − Δ − Δ
 
  

∇ = + Δ − − Δ − Δ =

 F F
( k ) ( k )

F
( k )

T TF T F F T F P P
(k) (k) (k) (k) (k) (k)u u

XSX a

T F T F P P
(k) (k) (k) (k)u
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Figure 1. System’s controller feedback blocs of the generalized predictive control (GPC)-based controlled
auto-regressive integrated moving average (CARIMA) model.

3. Results and Discussion

This section introduces the implementation and performance evaluation of the MPC and GPC
for the ventilation system’s control. Matlab/Simulink was used as a platform for computing and
implementing the MPC and GPC models. The controllers’ parameters were obtained by computing
different testing, taking into consideration the settling time, rise time and the overshoot of the CO2

concentration, which were chosen by the suitable tuning as illustrated in Table 1. Concerning the PI
and SF controllers, the tuning process together with their performance evaluation were detailed in
our previous work [39]. The gain values we used are Kp = −0.3 and Ti = 7.5, for proportional gain
and integral time, respectively. In addition, numerical simulations were conducted under the same
conditions as presented in Table 2, which describes the parameters and the building’s ventilation system,
respectively. We used the features and characteristics of the ventilation system already deployed in our
test site (EEBLab). Mainly, the ventilators were operating at a maximum air flow rate of about 0.6 m3/s
and were supplied by a solar photovoltaic system (24 V, DC). The simulations were performed during
a time period of about 15,000 s using same parameters and conditions.
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Table 1. Input tuning of the model predictive control (MPC) and GPC algorithms’ parameters.

Input Parameters Control Horizon
(Nu)

Prediction
(Np)

Sampling Time
(Ts)

Weighting Control
(λ)

Value 3 15 10s 0.6

Table 2. Settings of the ventilation system model parameters.

Parameters Name Parameter Description Value Unit

V Simulated space volume 400 m3

q CO2 generation rate per person 0.0086 l/s
Q0 Minimum ventilation rate 1/3600 m3/s

Qmax Maximum ventilation rate 0.6 m3/s
Cext Outdoor CO2 concentration 450 ppm
C0 Initial indoor CO2 concentration 700 ppm
Cset Setpoint of CO2 concentration 750 ppm

Nmax Maximum number of occupants 100 -
∆p Fan inlet/outlet increment total pressure 1500 Pa
µ Overall efficiency 0.65 -

In order to assess the performance of the CO2-based GPC control strategy with the MPC, PI
and SF control approaches, four main metrics were evaluated: (a) the indoor CO2 regulation, (b) the
ventilation rate operation of the controlled system in (m3/s), (c) the instantaneous electricity power,
and (d) the total electricity power consumed by the system in (kW/h), which was calculated using the
following equation presented in [45]:

PCelec = Qi × ∆p×
( t

3600

)
×

(
µ

1000

)
where PCelec is the power consumption in (kW/h), Qi is the ventilation rate in (m3/s), ∆p is the total
pressure rise from the fan inlet to the outlet in (Pa), t is the time in (s) and µ is the overall efficiency of
the fan.

An indoor CO2 concentration scenario generated by the occupants was used as the human
disturbance as well as a forecast input for the MPC and GPC. As illustrated in Figure 2, the generated
CO2 concentration (ppm) was estimated according to the occupants’ number using the transfer function
presented in [46]. The occupied building for our case study was considered a university lecture room
with a maximum occupation of 100 students. The estimated occupancy count of the lecture room was
drawn from our real-life knowledge of the building usage during the time period 15,000 s, which was
composed of three periods: a 1 h 40 min lecture, 1 h 10 min break, and then another 1 h 40 min lecture.Energies 2020, 13, 3246 10 of 16 

 

 
Figure 2. Generated indoor CO2 concentration used as the forecast input for the MPC and GPC. 

The rest of this sub-section presents the obtained results using the aforementioned simulation 
settings. First, the MPC controller is evaluated and compared against the PI and SF, while the second 
focuses on the comparison between the two predictive controllers, the MPC and GPC. 

3.1. MPC vs. PI and SF 

Figure 3 depicts the comparison between the MPC against the PI and SF controllers. Figure 3a 
shows the regulation of the CO2 concentration together with the occupancy number, the 
accumulated CO2 concentration generated by the occupants and the CO2 concentration reference 
(750 ppm). As shown in this figure, the regulation of the indoor CO2 concentration based on the 
MPC method strategy allowed the higher performance compared to the PI and SF control 
techniques. In fact, the MPC controller performed well, as expected, as it was able to reach and 
follow the CO2 reference and to maintain the comfort level despite the disturbance introduced by the 
occupants. On the other hand, the PI and SF showed an acceptable overshoot since the constraint 
range on the indoor CO2 concentration were fixed to ± 10 ppm around the CO2 reference. The MPC 
controller outperformed the PI and SF in terms of settling and rising time, which allowed achieving 
the desired indoor CO2 level limit while satisfying the indoor comfort. 

The performance of the MPC can be explained by its predictive mechanism, which includes the 
comfort cost and energy usage as optimization functions, for predicting the effective ventilation flow 
rate. It achieved 0.13 m3/s (468 m3/h), as depicted in Figure 3b. Compared to 0.135 m3/s and 486 m3/h 
obtained for both the PI and SF, respectively, the MPC flow rate was slightly optimized by 3.71%, 
and this was due to the future prediction of indoor CO2 values. Regarding the power consumption 
of the three controllers, we computed both the instantaneous and accumulated power. Figure 3c 
shows the instantaneous power consumption required by the first standalone fan for supplying the 
fresh outdoor air into the controlled space. The results show that the three controllers required 
almost the same power, but the MPC showed a slight energy reduction. 

The total power consumption for the first fan was estimated to be 598.37 Wh, 611.40 Wh, and 
612.76 Wh for the MPC, SF and PI, respectively, as illustrated in Figure 3d. The total power 
consumption demanded by the three controllers including the second fan, which exhausted the 
indoor air pollutant concentrations to the outside of the building, is reported in Table 3. As expected, 
the energy gain for the MPC strategy, when compared to both the state feedback and PI controllers, 
was slightly smaller. 

Table 3. Energy consumption based on the MPC, PI and the state feedback control approaches. 

Energy (Wh) PI SF MPC 
Total 1225.52 1222.8 1196.74 
Gain 2.35% 2.13% - 

Figure 2. Generated indoor CO2 concentration used as the forecast input for the MPC and GPC.

The rest of this sub-section presents the obtained results using the aforementioned simulation
settings. First, the MPC controller is evaluated and compared against the PI and SF, while the second
focuses on the comparison between the two predictive controllers, the MPC and GPC.
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3.1. MPC vs. PI and SF

Figure 3 depicts the comparison between the MPC against the PI and SF controllers. Figure 3a
shows the regulation of the CO2 concentration together with the occupancy number, the accumulated
CO2 concentration generated by the occupants and the CO2 concentration reference (750 ppm).
As shown in this figure, the regulation of the indoor CO2 concentration based on the MPC method
strategy allowed the higher performance compared to the PI and SF control techniques. In fact,
the MPC controller performed well, as expected, as it was able to reach and follow the CO2 reference
and to maintain the comfort level despite the disturbance introduced by the occupants. On the other
hand, the PI and SF showed an acceptable overshoot since the constraint range on the indoor CO2

concentration were fixed to ±10 ppm around the CO2 reference. The MPC controller outperformed the
PI and SF in terms of settling and rising time, which allowed achieving the desired indoor CO2 level
limit while satisfying the indoor comfort.

The performance of the MPC can be explained by its predictive mechanism, which includes the
comfort cost and energy usage as optimization functions, for predicting the effective ventilation flow
rate. It achieved 0.13 m3/s (468 m3/h), as depicted in Figure 3b. Compared to 0.135 m3/s and 486 m3/h
obtained for both the PI and SF, respectively, the MPC flow rate was slightly optimized by 3.71%, and
this was due to the future prediction of indoor CO2 values. Regarding the power consumption of the
three controllers, we computed both the instantaneous and accumulated power. Figure 3c shows the
instantaneous power consumption required by the first standalone fan for supplying the fresh outdoor
air into the controlled space. The results show that the three controllers required almost the same
power, but the MPC showed a slight energy reduction.

The total power consumption for the first fan was estimated to be 598.37 Wh, 611.40 Wh, and
612.76 Wh for the MPC, SF and PI, respectively, as illustrated in Figure 3d. The total power consumption
demanded by the three controllers including the second fan, which exhausted the indoor air pollutant
concentrations to the outside of the building, is reported in Table 3. As expected, the energy gain for
the MPC strategy, when compared to both the state feedback and PI controllers, was slightly smaller.

Table 3. Energy consumption based on the MPC, PI and the state feedback control approaches.

Energy (Wh) PI SF MPC

Total 1225.52 1222.8 1196.74
Gain 2.35% 2.13% -

3.2. GPC vs. MPC Performance

This section focuses on the performance evaluation of the GPC against the MPC controller. As
illustrated in Figure 4a, the GPC showed a great improvement compared to MPC with faster settling/rise
times to achieve and to maintain the CO2 at the fixed setpoint. The results also showed that the designed
GPC controller based on the CARIMA model provided better stability and robustness than the MPC. In
fact, it was able to rapidly reach the established CO2 reference and then continue maintaining it in spite
of the occupants’ presence variation. This was due, in our case, to the rate weighting of the control
action ∆u in the optimized criterion J. Its role was to minimize the deviation between the system’s
output (measured CO2 concentration) and the CO2 reference trajectory. Figure 4b shows the estimated
ventilation rate for both the predictive controllers according to the indoor CO2 concentration, which
was generated by the occupants. As expected, the ventilation based on the GPC was able to operate
firstly in order to provide the required flow rate as well as to meet the desired reference (fixed to
750 ppm), by anticipating the future CO2 concentration. Unlike the MPC, the ventilation flow rates
provided by the GPC achieved 0.2 m3/s (720 m3/h) and decreased to reach 0 m3/s according to the
occupants’ presence. This explained the ventilation cessation behavior, which allowed a significant
energy reduction during this period as illustrated in Figure 4c. In fact, the fast change in the ventilation
rate behavior nicely allowed keeping the CO2 comfort constraint at the required level with little increases
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in energy consumption, compared to the MPC. However, the GPC-based CARIMA anticipates well the
severity of occupancy changes and acts accordingly. As shown in Figure 4c, during unoccupied periods,
the ventilators are almost at rest because of the GPC anticipation behavior.
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The instantaneous power consumption results for the first fan showed that the GPC allows a
slight energy saving compared to the MPC, as shown in Figure 4c. Figure 4d shows that the GPC
consumes about 572.39 Wh and 598.37 Wh for MPC. The total consumption (i.e., two fans) for both
controllers is reported in Table 4. As expected, the energy gain for the GPC, when compared to the
MPC, is slightly better.

Table 4. Total energy consumption based on the predictive controllers.

Energy (Wh) MPC GPC

Total 1196.74 1144.78
Gain 4.34% -

4. Conclusions and Perspectives

In this work, a performance comparison between the two predictive controllers were performed
and analyzed for building ventilation systems. The PI and state feedback controllers were used as
baseline references to investigate the effectiveness of predictive control approaches. Both MPC and
GPC control algorithms were designed and successfully implemented. The main objective was to
evaluate the effectiveness of each predictive approach in terms of the indoor air quality and energy
efficiency. Mainly four metrics were evaluated: the regulation of the indoor CO2 concentration,
the ventilation rate, the instantaneous power consumption and the total power consumption. We
conclude from the simulation results that using the GPC algorithm based on the CARIMA input/output
model allowed the better performance than the MPC for improving both indoor air quality and energy
conservation. In fact, compared to the MPC, the GPC provided a better stability and robustness against
external disturbance introduced by the occupants. This was due to the fast mathematical derivation
of its prediction parameters between the system’s input/output, using the CARIMA model, and to
the simplicity of integrating disturbances and constraints in the controller’s structure. In terms of
energy consumption, the simulation results also showed that controlling the proposed system with the
GPC enabled a better reduction in the energy consumption compared to the MPC, with an overall
energy gain equal to 4.34%. This deviation on cumulative energy consumption was mainly related
to the occupancy behavior we used together with the other parameters, especially, the prediction
horizon and the set-point. This will be further investigated when deployed and experimented in
real-sitting scenarios. In fact, the studied controllers will be deployed in our ventilation system, already
integrated in our EEBLab. Real-time machine-learning algorithms, that we developed for occupancy
forecasting, will be used to forecast CO2, which is required for the MPC and GPC in order to forecast
the ventilation rates. The GPC and MPC will be also evaluated for different time horizons together
with their performance for both accuracy and time processing, especially when deployed in our IoT
platform’s edge nodes (e.g., Raspberry PI, NVidia Nano).

Future research will focus on enhancing the controllers’ order by adding the thermal comfort
equation for further applications in heating, ventilation and air-conditioning system control. Both
predictive control strategies will be assessed using different criteria in order to balance between the
occupants’ comfort (i.e., thermal and indoor air quality) and energy consumption.
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28. Moroşan, P.D.; Bourdais, R.; Dumur, D.; Buisson, J. Building temperature regulation using a distributed
model predictive control. Energy Build. 2010, 42, 1445–1452. [CrossRef]

29. Huang, G. Model predictive control of VAV zone thermal systems concerning bi-linearity and gain nonlinearity.
Control Eng. Pract. 2011, 19, 700–710. [CrossRef]

30. Xu, M.; Li, S. Practical generalized predictive control with decentralized identification approach to HVAC
systems. Energy Convers. Manag. 2007, 48, 292–299. [CrossRef]

31. Privara, S.; Široký, J.; Ferkl, L.; Cigler, J. Model predictive control of a building heating system: The first
experience. Energy Build. 2011, 43, 564–572. [CrossRef]

32. Yuan, S.; Perez, R. Multiple-zone ventilation and temperature control of a single-duct VAV system using
model predictive strategy. Energy Build. 2006, 38, 1248–1261. [CrossRef]

33. Afram, A.; Janabi-Sharifi, F. Theory and applications of HVAC control systems—A review of model predictive
control (MPC). Build. Environ. 2014, 72, 343–355. [CrossRef]

34. Bakhouya, M.; NaitMalek, Y.; Elmouatamid, A.; Lachhab, F.; Berouine, A.; Boulmrharj, S.; Ouladsine, R.;
Felix, V.; Zinedine, K.; Khaidar, K.; et al. Towards a context-driven platform using IoT and big data
technologies for energy efficient buildings. In Proceedings of the 2017 3rd International Conference of Cloud
Computing Technologies and Applications (CloudTech), Rabat, Morocco, 24–26 October 2017; pp. 1–5.

35. Berrabah, S.; Moussa, M.O.; Bakhouya, M. Towards a thermo-mechanical characterization approach of
buildings’ envelope. Energy Rep. 2020, 6, 240–245. [CrossRef]

36. Elmouatamid, A.; NaitMalek, Y.; Bakhouya, M. An energy management platform for micro-grid systems
using internet of things and big-data technologies. J. Syst. Control Eng. 2019, 233, 904–917. [CrossRef]

37. Boulmrharj, S.; Nait-Malek, Y.; Elmouatamid, A.; Bakhouya, M.; Ouladsine, R.; Zine-Dine, K.; Khaidar, M.;
Siniti, M. Battery characterization and dimensioning approaches for micro-grid systems. Energies 2019, 12,
1305. [CrossRef]

38. Elkhoukhi, H.; Nait-Malek, Y.; Bakhouya, M.; Berouine, A.; Kharbouch, A.; Lachhab, F.; Hanifi, M.; El
Ouadghiri, D.; Essaaidi, M. A platform architecture for occupancy detection using stream processing and
machine learning approaches. Concurr. Comput. Pract. Exp. 2019, e5651. [CrossRef]

39. Berouine, A.; Ouladsine, R.; Bakhouya, M.; Lachhab, F.; Essaaidi, M. A model predictive approach for
ventilation system control in energy efficient buildings. In Proceedings of the 2019 4th World Conference on
Complex Systems (WCCS), Ouarzazate, Morocco, 22–25 April 2019; pp. 1–6.

40. Allard, F.; Dorer, V.B.; Feustel, H.E. Fundamentals of the Multizone Air Flow Model-COMIS; Air Infiltration and
Ventilation Centre: Coventry, UK, 1990; p. 115.

41. Zannetti, P. Air Pollution Modeling: Theories, Computational Methods and Available Software; Springer Science &
Business Media: Berlin/Heidelberg, Germany, 2013.

42. Clarke, D.W.; Mohtadi, C.; Tuffs, P.S. Generalized predictive control—Part I. The basic algorithm. Automatica
1987, 23, 137–148. [CrossRef]

43. Yang, S.H.; Wang, X.Z.; McGreavy, C. A multivariable coordinated control system based on predictive control
strategy for FCC reactor-regenerator system. Chem. Eng. Sci. 1996, 51, 2977–2982. [CrossRef]

44. Qin, S.J.; Badgwell, T.A. A survey of industrial model predictive control technology. Control Eng. Pract. 2003,
11, 733–764. [CrossRef]

http://dx.doi.org/10.1093/ijlct/ctt051
http://dx.doi.org/10.3390/en11030495
http://dx.doi.org/10.1016/j.enbuild.2011.09.022
http://dx.doi.org/10.1016/j.enbuild.2010.10.023
http://dx.doi.org/10.1016/j.ces.2011.07.052
http://dx.doi.org/10.1016/j.enbuild.2010.03.014
http://dx.doi.org/10.1016/j.conengprac.2011.03.005
http://dx.doi.org/10.1016/j.enconman.2006.04.012
http://dx.doi.org/10.1016/j.enbuild.2010.10.022
http://dx.doi.org/10.1016/j.enbuild.2006.03.007
http://dx.doi.org/10.1016/j.buildenv.2013.11.016
http://dx.doi.org/10.1016/j.egyr.2019.08.051
http://dx.doi.org/10.1177/0959651819856251
http://dx.doi.org/10.3390/en12071305
http://dx.doi.org/10.1002/cpe.5651
http://dx.doi.org/10.1016/0005-1098(87)90087-2
http://dx.doi.org/10.1016/0009-2509(96)00184-4
http://dx.doi.org/10.1016/S0967-0661(02)00186-7


Energies 2020, 13, 3246 16 of 16

45. Gunnar, B.; Folkesson, K. Recommendations for Calculations of Energy Consumption for Air Handling Units;
Eurovent/Cecomaf WG 6C; Eurovent: Brussels, Belgium, 2005.

46. Benech, P.; Haessig, P. Estimation du Nombre de Personnes Presentes Dans Une Piece a Partir de la Concentration
En Dioxyde De Carbone; Institute of Electronics and Telecommunications of Rennes: Rennes, France, 2015.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	System Model and Methods 
	Ventilation System Modeling 
	Predictive Controllers Design 
	MPC Controller Design 
	GPC Controller Design 


	Results and Discussion 
	MPC vs. PI and SF 
	GPC vs. MPC Performance 

	Conclusions and Perspectives 
	References

