
energies

Article

Application of Norm Optimal Iterative Learning
Control to Quadrotor Unmanned Aerial Vehicle for
Monitoring Overhead Power System

Husam A. Foudeh 1,* , Patrick Luk 1,* and James Whidborne 2

1 Electric Power and Drives Group, Cranfield University, Cranfield MK43 0AL, UK
2 Centre for Aeronautics, Cranfield University, Cranfield MK43 0AL, UK; j.f.whidborne@cranfield.ac.uk
* Correspondence: Husam-Abdel-Rasoul-Yousef.Foudeh@cranfield.ac.uk (H.A.F.);

p.c.k.luk@cranfield.ac.uk (P.L.); Tel.: +44-1234-75-4716 (P.L.)

Received: 15 March 2020; Accepted: 8 June 2020; Published: 22 June 2020
����������
�������

Abstract: Wind disturbances and noise severely affect Unmanned Aerial Vehicles (UAV) when
monitoring and finding faults in overhead power lines. Accordingly, we propose repetitive learning
as a new solution for the problem. In particular, the performance of Iterative Learning Control (ILC)
that are based on optimal approaches are examined, namely (i) Gradient-based ILC and (ii) Norm
Optimal ILC. When considering the repetitive nature of fault-finding tasks for electrical overhead
power lines, this study develops, implements and evaluates optimal ILC algorithms for a UAV model.
Moreover, we suggest attempting a learning gain variation on the standard optimal algorithms instead
of heuristically selecting from the previous range. The results of both simulations and experiments of
gradient-based norm optimal control reveal that the proposed ILC algorithm has not only contributed
to good trajectory tracking, but also good convergence speed and the ability to cope with exogenous
disturbances such as wind gusts.

Keywords: unmanned aerial vehicles (UAVs); quadrotor; Iterative Learning Control (ILC); Norm
Optimal ILC; gradient-based ILC; power system; inspection task

1. Introduction

Overhead electrical power lines are a vital component of the power supply infrastructure. It is
essential to carry out preventive monitoring of high voltage transmission lines more safely and efficiently
in order to meet consumer demand [1–3]. UAVs have the potential to perform these monitoring tasks,
due to their inherent advantages of cost, manoeuvrability, speed, and easy set-up [4,5]. They can attain
the required heights and positions that are needed for performing major inspection tasks and do not
require contact. However, UAVs are susceptible to aerodynamic disturbances [6,7]. Because of this, the
autonomous identification of faults in terms of performance and accuracy for overhead power lines
remains a difficult problem. To ensure the quality of the tasks in fault-finding operations for overhead
power lines, precise and accurate trajectory tracking is important [8,9].

The UAV performance relies both on the chosen control strategy and on the underlying vehicle
dynamics. Quadrotors are under-actuated and open-loop unstable with significant non-linearity and
strong dynamic coupling. Furthermore, exogenous disturbances can easily compromise quadrotor
stability [10]. These make the control problem non-trivial. To design and test the control system, models
of the dynamics are required. However, the system is subject to modelling, plant and disturbance
uncertainties that should be accounted for.

Researchers have developed an ongoing design capability to overcome limitations using various
control methods. Some depend on classical control (e.g., PID controller), which is simple and capable
of providing acceptable performance [11]. Nevertheless, this method needs an accurate mathematical
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model, as do Linear Quadratic Regulator (LQR) [12] approaches. Others are based on non-linear control
such as sliding-mode [13] or back-stepping [14]. These works make use of conventional feedback
and feedforward and to improve the control performance by augmenting the previous controllers
(i.e., PID controller). Consequently, the feedback controllers react on the basis of the observation of
information using reference signal and disturbance that results in a delayed tracking response [15].
In these regimes, it can be observed that feedback is unable to react in time.

To achieve high performance, extending classical control methods with learning schemes
is another approach. Iterative Learning Control (ILC) algorithms provide some advantages over
conventional feedback controllers in that they develop an element of intelligence by memorizing from
previous practice [16]. ILC has been applied to quadrotors using various approaches. These include
derivative-type ILC [17], Proportional-Interactive-Derivative (PID-type) ILC [18], and basic optimal
ILC approaches [19] that assume the reference (r) is specified over the entire finite time horizon, [0, T],
and they also do not require a model. On the other hand, ILC has been applied to some complicated
systems, such as precise speed-tracking control of a robotic fish [20], for multi-agent systems in [21], and
recently in [22] for the distributed ILC of multiple flexible manipulators in the presence of uncertain
disturbances and actuator dead zones.

We propose using two ILC methods that are based on optimal approaches. These are the
Gradient-based ILC and the Norm Optimal ILC. They are chosen because of their prevalence, their
use of the same underlying cost function, and because they have similar implementations [23]. This
paper seeks to determine whether the proposed optimal algorithms can be applied to quadrotors for
tracking performance. Furthermore, it proceeds to motivate, develop, and evaluate the flight controller
required to address and if it can address this deficiency of these previous methods.

Existing ILC approaches to UAV control are reviewed in the next section. The ILC design,
application, and optimal algorithm designs are described in Section 3. A suitable experimental system
is selected in order to provide a test platform and results for the proposed algorithm G-ILC and
NO-ILC presented in Sections 5 and 4, respectively. Section 6 provides some concluding remarks.

2. ILC Controllers

2.1. Basic ILC

ILC relies on performing similar missions multiple times, so that the control can be modified to
improve performance over previous operations (i.e., trials, iterations, and passes) through learning.
However non-learning systems do not improve their performance due to the same tracking error on
each iteration in which despite large model uncertainty and repeating disturbances [23]. Learning-type
control strategies can accordingly be classified into ILC, Repetitive Control (RC), neural networks,
and adaptive control. Whilst ILC strategies modify the input signal (i.e., the control input), adaptive
and neural network learning control methods modify the system (i.e., the controller), and controller
parameters, respectively [24]. Additionally, ILC usually guarantees fast convergence within just a few
iterations, but the alternative strategies may not [25].

ILC has been applied to quadrotors in a few cases. ILC can be used for systems for which
a finite-duration task is repeated. Every iteration should have the same initial conditions and, as the
number of trials increase, ILC updates the input signal to ensure that the system output converges to
a reference signal. ILC has been applied to many fields, including robotics [26].

The simple D-type ILC form used in [27] for UAV trajectory tracking was based on the Additive
State Decomposition (ASD) method. The block diagram shown in Figure 1 demonstrates the D-type
algorithm, which employs the change of error rate to modify the input for the next iteration in lieu
of the error itself. It is evident that the derivative part in the ILC algorithm amplifies small noise
signals which may destabilize the system. Ref. [28] has developed another special case of D-type in
UAV applications in order to obtain a better tracking performance and lower errors than the typical
D-type update rule in [27]. However, although both [27] and [28] use the D-type ILC, they still do not
guarantee the rate of convergence in the presence of disturbances.
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Figure 1. Block diagram for D-type ILC:- here the uk(n) it is the input signal was used on kth iterations,
Lopt is the D-type gain, ek(n) the derivative of error, and r(n) and yk(n) are the reference and the plant
output, respectively.

In [29,30], the P and D-term ILCs are combined as a PD-type ILC to increase the convergence rate.
In [29], three different methods are additionally applied: offline ILC, online ILC, and a combination of
both ILCs. These have the respective forms for P-type ILC

uk+1(n) = uk(n) + KPek(n)︸ ︷︷ ︸
offline P-type

, (1)

uk+1(n) = uk(n) + KPek+1(n)︸ ︷︷ ︸
online P-type

, (2)

where subscript k denotes the iteration number and subscript n the the sample number.
An inner online PD type ILC update was designed by [29] for quadrotor trajectory tracking

control to stabilise the UAV system without taking disturbances into account. The algorithm is

uk+1(n) = uk(n) + KPek(n + 1) + KD [ek(n + 1)− ek(n)] (3)

The results show a high tracking error. However, the ILC was able to reduce it over subsequent
iterations but with low convergence. In [30], ILC was implemented by an adaptive term for enhancing
the performance and robustness. This controller term was implemented on a quadrotor platform, where
the test results showed improvement in tracking performance, despite the presence of disturbances.

In [31], another ILC form is proposed that includes a combination of the previous two simple
structures to include an integral term and is termed PID-type ILC. A controllable flight was optimized
using the PID-type ILC after a chnge in mass of the quadrotor. The method is based only on manual
auto-tuning for parameters. In summary, all the previous structures (D-type, PD type, PID-type ILC)
are susceptible to process disturbance and measurement error, while rarely being utilized in practical
applications.

ILC was applied to achieve quadrotor trajectory tracking while balancing an inverted pendulum [32].
The learning algorithm used was of the formmin

uk+1
‖S(Fuk+1 + d̂k)‖+ α‖Duk+1‖

subject to Loptuk+1 ≤ qmax,
(4)

where F is the lifted system matrix, α weights the additional penalty term, and d̂k is an updated
estimate of disturbance. Via the matrix D, the input derivatives can be penalized. The matrix S allows
for the error signal to be scaled or filtered.

The aforementioned approaches are very limited in accuracy. Apart from initial identification
procedures and tuning, it is also noted that these approaches demand a large level of computation and
do not require an explicit model. Although usability is an advantage of this simplicity, it necessarily
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degrades performance. There is a great opportunity to assess a wide variety of ILC approaches on UAVs.
There is no single algorithm that delivers all of the required features for high performance control
while facing uncertain dynamics and environmental factors. Overall, ILC approaches demonstrated
the best tracking performance only with medium complexity. Relatively few ILC schemes have been
applied to quadrotors, and their evaluation is quite limited.

2.2. Optimal Approach ILCs

The properties of linear optimal algorithms have been studied extensively [33–37]. Leading ILC
examples are now introduced with their own specific features.

2.2.1. Gradient-Based Iterative Learning Control

Due to their attractive theoretical properties, Gradient-based (G-ILC) algorithms have received
considerable attention in the literature. When compared to generic ILC approaches, the optimal
gradient ILC achieves faster error convergence by relying on the system model and utilizing the
characteristics of gradient-descent in order to structure the ILC control action update. In [38–40],
Gradient ILC has been used for SISO systems and was derived for MIMO systems.

The common form of standard ILC employed by the input update law is specified as [23]

uk+1(n) = uk(n) + Loptek(n) (5)

where Lopt is a learning operator, yd is the desired reference signal, and ek = yd − yk is the error.
By taking the transpose, GT , an alternative method of guaranteeing Equation (5) can be obtained.
The lifted form of the more general adjoint operator G∗ leads to

Lopt = βG∗ (6)

which yields the update law
uk+1 = uk + βGTek (7)

where the scalar β is the learning gain. Equation (7) is interpreted to be the gradient descent solution
to the minimisation problem min

u
J(uk) = ‖yd − Guk‖2. The spectral radius condition is a necessary

and sufficient condition for convergence

ρ(I − GLopt) < 1 . (8)

Substituting Lopt = βGT into the general convergence conditions Equation (8) yields

ρ
(

I − βGGT
)
= ‖I − βGGT‖ < 1 (9)

Here, the GGT is positive definite, so the convergence condition becomes

0 < β <
2

‖GGT‖ =
2
‖G‖2 . (10)

Therefore, it should be noted, when the number of trials, k, approaches infinity, Equation (10) ensures
the error converges monotonically to zero.

2.2.2. Norm Optimal ILC

The model-based Norm Optimal ILC (NO-ILC) algorithm was introduced in [41]. The ILC input
to the following trial is acquired through optimising a specific performance index that allows a balance
between the error convergence and input energy. NO-ILC has been used for many applications and
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extended, for instance a predictive approach based on norm-optimal ILC [42]. NO-ILC uses the
quadratic cost function:

J(uk+1) =
1
2
{[uk+1 − uk]

T R[uk+1 − uk] + [yd − yk+1]
TQ[yd − yk+1]} (11)

where the weighting matrices R(t) and Q(t) are positive semi-definite and symmetric.
The requirement is to minimize the tracking error by modifying the input control from one trial

pass to the next. This can be done by generating the control action uk+1 for the next trial. The problem
at each iteration is thus

min J(uk+1) (12)

which can be solved by applying a partial differentiation to Jk+1 with respect to u, and determining
the stationary point, ∂Jk+1/∂u = 0 . This leads to the update law

uk+1 = uk + GTek+1 (13)

where GT is the adjoint operator of the system G, where GT = R−1GTQ . It can be demonstrated that
the convergence condition in Equation (8) is always satisfied and, moreover,

‖ek+1‖ ≤
1

1 + σ2(GGT)
‖ek‖ ≤‖ek‖ (14)

where σ2(GGT) is the smallest spectral radius value of the symmetric, positive definite operator GGT.
Equation (14), being non-causal, can be manipulated to either generate a causal feed-forward form or
feedback and feed-forward form by [43], where

Lopt = GT(I − GGT)−1. (15)

Therefore, the updated law is
uk+1 = uk + GT(I − GGT)−1ek. (16)

Note that the implementation of optimal algorithms in such cases needs to be investigated. This is
more crucial in the application of UAVs for the monitoring overhead power system, especially since the
quadrotor UAV has more than one degree of freedom. Moreover, the electric power system inspection
task is inherently repetitive while detecting errors that require using optimal algorithms to critically
compare performance and inform design.

3. ILC Design and Application to Quadrotor

This section purports to put forward the optimal algorithms (G-ILC, NO-ILC) for the UAV
quadrotor. The design of the optimal algorithm is based on the following assumptions and steps :

I. The system is presumed to operate in a repetitive manner (iteratively) for both optimal algorithms,
G-ILC and NO-ILC.

II. At the end of every iteration, the state is reset operation toward a particular repetition that have
independent initial condition to the next operation.

III. A new control signal might be utilized during this time. A reference signal, r(t), is presumed
to be known and the ultimate control objective is to determine an input function u∗(t) such the
output function y(t) = r(t) on [1; N].

IV. For G-ILC, the value of the learning gain βold(k) is heuristically selected for the first step, and then
calculated automatically using the the gain βnew(k) by establishing the varying gain equations.
The established variable will be repeated again for NO-ILC, but with a different learning gain Qk.

V. To guarantee error convergence, the necessary conditions are J(βnew(k)) = ‖ek+1‖2 + ζβnew(k)
2.

Now, the SISO model is a non-linear, discrete, state space system:
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xk(n + 1) = f (xk(n), uk(n))

yk(n) = h(xk(n))
(17)

where xk(t) ∈ Rn, uk(t) ∈ Rm, yk(t) ∈ Rp and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are the system
matrices. Moreover, xk, uk, and yk are the state vector, input and output respectively, for trial k.

3.1. Gradient-Based ILC (G-ILC)

When compared to generic ILC approaches, the optimal gradient ILC depends on the system
model to obtain faster error convergence. It constructs the ILC control action update while using the
properties of gradient descent. This happens through minimising the cost function

minJ(uk) =
1
2
‖ek‖2=

1
2
‖yd − Guk‖2 (18)

where

G =


g0 0 · · · 0

g1 g0 · · ·
...

...
...

. . . 0
gh−1 gh−2 · · · g0

 (19)

gN = CAN+r−1B N = 0, 1, 2...., h− 1

and the tracking error ek from the Nth trial. This is the error between the actual outputs yk of the
system and their desired reference signal yd is then

ek = yd − yk. (20)

Using gradient descent to solve the optimisation problem given by Equation (18) gives

uk+1 = uk − β5 J(uk) (21)

= uk − β5 1
2
‖yd − Guk‖2 (22)

= Gukβ + uk − ydGT β (23)

= uk + βGTek (24)

where β represents the learning gain.
From Equation (24), the error evolution of the G-ILC can be derived as

ek+1 = yd − Guk+1 (25)

= GTGekβ + yd − ukG (26)

= (I − βGGT)ek. (27)

By choosing the learning gain β from the range 0 < β < 2/σ̄(G), where σ̄(G) is the largest singular of
the matrix G, it can be easily shown that ‖I− βGGT‖< 1. Therefore, the error converges monotonically
to zero, as the trials k goes to infinity.

Instead of arbitrarily selecting a value of βold(k) from the range, the error convergence rate can be
optimized. Repeating Equations (23) and (27)

uk+1 = uk + βold(k)GTek (28)

ek+1 = (I − βold(k)GGT)ek (29)
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the optimal iteration-varying βnew(k) can be obtained by minimising:

J(βnew(k)) = ‖ek+1‖2 + ζβ2
k. (30)

where ζ is a small positive weighting constant. Substituting Equation (29) into Equation (30) we get

J(βnew(k)) = ((I − βkGGT)ek)
T((I − βkGGT)ek) + ζβ2

k (31)

= eT
k ek − 2βkeT

k GGTek + β2
keT

k GGTGGTek + ζβ2
k. (32)

Differentiating Equation (32) with respect to βnew(k) and equating to zero gives the optimal learning
gain:

βnew(k) =
eT

k GGTek

eT
k GGTGGTek + ζ

(33)

=
(GTek)

TGTek
(GGTek)TGGTek + ζ

(34)

=
‖GTek‖2

‖GGTek‖2 + ζ
. (35)

Thus the necessary and sufficient conditions for guaranteeing a convergence of error are

‖ek+1‖ < ‖ek‖ for all k ≥ 0 and lim
k→∞

ek = 0. (36)

From Equation (29) we get

‖ek+1‖2 − ‖ek‖2 = eT
k ek(I − βkGGT)(I − βkGGT)T − eT

k ek (37)

= eT
k ((I − βkGGT)2 − I)ek (38)

= eT
k (−2βkGGT + β2

kGGTGGT)ek (39)

= β2
k(−2

eT
k GGTek

βk
+ eT

k GGTGGTek) (40)

= β2
k(−2

‖GTek‖2

βk
+ ‖GGTek‖2). (41)

Furthermore from Equation (34), we get

‖GTek‖2

βnew(k)
= ‖GGTek‖2 + ζ. (42)

Substituting Equation (41) into Equation (42) gives

‖ek+1‖2 − ‖ek‖2 = βnew(k)
2(−2(‖GGTek‖2 + ζ) + ‖GGTek‖2

= −βnew(k)
2(2ζ + ‖GGTek‖2) ≤ 0.

(43)

From Equation (43) it can be deduced that ‖ek+1‖ = ‖ek‖ if and only if βk = 0. Because GGT is a
positive definite matrix, from Equation (34) we have that βnew(k) = 0 if and only if ek = 0, Thus the
conditions of Equation (36) are satisfied and the and the system has monotonic convergence.

3.2. Norm Optimal ILC (NO-ILC)

To produce the optimal action ILC uk+1, we recall the Equation (11). Setting the gradient to zero gives

5J(uk+1) = −GTQek+1 + R(uk+1 − uk) = 0. (44)
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Since matrix R is a positive definite so is non-singular, rearranging gives

uk+1 = uk + R−1GTQek+1. (45)

From Equation (45), the error evolves as

ek+1 = yd − Guk+1 (46)

= yd − R−1GGTQ− uGkek+1 (47)

= (I − GR−1GTQ)−1ek (48)

However Equation (11) is implicit. However, it can be solved by supposing that G∗ = R−1GTQ and
substituting the Equation (48) into Equation (11) gives

uk+1 = uk + G∗ek(I − GG∗)−1. (49)

Monotonic convergence can be shown as follows

lim
k→∞
‖ek‖2 = lim

k→∞
‖Jk‖2 : J∞ > 0, (50)

implying

lim
k→∞
‖uk+1 − uk‖2 = 0. (51)

Thus

lim
k→∞

(uk+1 − uk) = lim
k→∞

R−1GTQek+1 = 0. (52)

We get error convergence if either there exist no e such that GTe = 0 so lim
k→∞

ek+1 = 0, or if yd ∈ range(G).

3.3. Application to Quadrotors

The dynamics of standard quadrotors are well established, the main equations are given here.
Details of the dynamics model can be found in [34], for example.

The control inputs are related to each rotor speed Ωi by:

u =


u1

u2

u3

u4

 =


b b b b
0 lb 0 −lb
lb 0 −lb 0
d d d d




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 (53)

where and l is the arm length and b and d are rotor thrust and drag coefficients respectively.
The dynamic model for the quadrotor attitude is given by

ṗ =
1

Ixx

[
u2 + qr(Iyy − Izz) + qJpΩr

]
(54)

q̇ =
1

Iyy

[
u3 + pr(Izz − Ixx) + pJpΩr

]
(55)

ṙ =
1

Izz

[
u4 + qp(Ixx − Iyy)

]
(56)

where the triplet (p, q, r) are the rotation rates about the body axes, Ixx, Iyy, Izz are the moments of
inertia about the body axes, and Jp is the rotor moment of inertia about the rotor rotation axis.
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We define a state variable vector as

x =
[
φ θ ψ x y z φ̇ θ̇ ψ̇ ẋ ẏ ż

]T
(57)

where the triplet (x, y, z) is the position of the vehicle in the earth axes, and (φ, θ, ψ) are the standard
aerospace Euler angles. By approximating the rotation rate triplet (p, q, r) by the Euler angle derivative
(φ̇, θ̇, ψ̇) and from the standard aeronautics navigation equations we get the dynamic model in the
form ẋ = f (x, u) where

f (x, u) =



φ̇

θ̇ψ̇a1 + θ̇a2Ω̄ + b1u2

θ̇

φ̇ψ̇a3 − φ̇a4Ω̄ + b2u3

ψ̇

θ̇φ̇a5 + b3u4

ẋ
1
m (cos φ sin θ cos ψ + sin φ sin ψ)u1

ẏ
1
m (cos φ sin θ sin ψ− sin φ cos ψ)u1

ż
g− 1

m (cos φ cos θ)u1



,

and where m is the mass, g is the gravitational constant, Ω̄ is the rotor rotation rate sum, a1 =

(Iyy − Izz)/Ixx, a2 = Jp/Ixx, a3 = (Izz − Ixx)/Iyy, a4 = Jp/Iyy, a5 = (Ixx − Iyy)/Izz, b1 = l/Ixx,
b2 = l/Iyy, and b3 = l/Izz.

The SISO structure of Equation (17) is extended to a MIMO dynamics to give

xk(n + 1) = f (xk(n), uk(n)),

yk(n) = h(xk(n), uk(n)), x(0) = x0.
(58)

The model ẋ = f (x, u) can be discretized by an Euler approximation. Full state feedback is assumed,
that is yk = xk.

4. Experimental Platform Selection

4.1. Physical Parameters

The AscTec Hummingbird is chose as the experimental test platform. This quadrotor is popular,
has good performance and is light-weight maneuverable. It has a payload of 200 g and a flight
endurance of nearly 20 min.The aircraft component frame is made out of balsa wood and carbon fiber.
The vehicle is powered by four brushless DC motors running off an 11.1V Lithium Polymer (LiPo)
battery pack. It is equipped with an accelerometer, pressure sensor, magnetic sensor, gyros, and GPS
module. These can provide the vehicle state. Some of the technical details are listed in Table 1 [44].
The model parameters are given in Table 2.

4.2. Test Bed

A test bed, designed for analysing the motor’s performance and enabling controller tuning,
is constructed from steel and finished in black paint and bearings, so that it allows three DOF of rotation.
Steel tube was selected because of its easy availability and high density gives the rig stability and
rigidity. The UAV is secured in place with a spherical rolling joint. The assembled mechanical design is
shown in Figures 2 and 3, The UAV installed on the top. A Raspberry Pi 3 is used for the control.
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Table 1. Technical Details of the Quadrotor.

Type of Platform AscTec HB. UAV
The Producer AscTec GmbH + Intel

Take-off Weight 480 g
Battery 2100 mAh LiPo

Distance between motors 34 cm
Propeller Standard propellers (8′′), flexible (PP) plastics
Motors HACKER Motors Germany (X-BL 52 s)

Motor Controllers X-BLDC controllers
Transmitter Futaba 2.4 GHz

Wireless Link Xbee 2.4 GHz

Table 2. Quadrotor model parameters.

Parameters Description Value Unit

Ixx x axis-Moment Inertia 10.7 × 10−3 kg·m2

Iyy y axis-Moment of Inertia 10.7 × 10−3 kg·m2

Izz z axis-Moment of Inertia 18.4 × 10−3 kg·m2

Jp Rotor Inertia 47 × 10−6 kg·m2

m Mass 0.547 kg
l Arm Length 0.168 m
g Gravitational constant 9.81 ms2

Ωmax Maximum rotor speed 200 rad/s

(a) (b)

Figure 2. The complete assembly of proposed mechanical test-bed for quadrotor: (a) High precision
spherical rolling joints with its features. (b) Mechanical-bed reconfiguration with precision rolling
joints.

Figure 3. Quadrotor system with complete hardware test frame design for Iterative Learning Control
(ILC) controllers.
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5. Results and Discussion

The G-ILC and NO-ILC algorithms are applied to the test system. Simulations are also performed.
The simulations and experiments were conducted on a Laptop (i7) ThinkPad P1 Mobile WorkStation
with 16 GB RAM/2.20 GHz via MATLAB R2018b. The reference trajectory is shown in Figure 4.
The trajectory consists of a single period sin wave and is non-smooth; hence is a challenging task for
the ILC algorithm. Sixteen iteration trials were performed for each algorithm. The input update for the
G-ILC and NO-ILC algorithms was acquired by Equations (28) and (35), respectively, with the help of
the linearized quadrotor dynamics from Equation (49).

Figure 4. References for ILC controllers.

Demonstrating the monotonic convergence of the G-ILC algorithm is also important. The simulation
results show a notable decrease in the error over different trial iterations. Figure 5 shows the decrease of
the 2-norm of the error, with a value of 0.3092 at the 16th iteration. The variation in φ and θ over time for
different iterations are also shown in Figure 5.

(a) (b)

Figure 5. G-ILC for different iterations without disturbance: (a) the variation in theta over time for
different iterations. (b) two norm for roll and pitch over time for different iterations.

Figure 6 similarly shows the results for the NO-ILC algorithms, The improvement over the G-ILC
is noticeable. Again the convergence is shown by the decrease of the error 2-norm. The error 2-norm is
0.1215 at 16th iteration, a considerable improvement over the G-ILC approach.

The G-ILC with updating Equations (28) and (29) was implemented to track the reference signal.
An optimal value of gain, β, is chosen between 0.01 and 1.0. After testing a wide range of values of β,
the best performance was found with β = 0.1. The experimental results show a significant decline in
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the error over the first five trial iterations as shown in Figure 7a. A slight increase occurred at the 7th
and 10th trials but the trend was from 1.277 at first trial to the value of 0.574 at the 6th trial.

(a) (b)

Figure 6. Norm Optimal ILC (NO-ILC) for different iterations without disturbance: (a) the variation in
theta over time for different iterations. (b) two norm for roll and pitch over time for different iterations.

(a) (b)

Figure 7. Experimental results of G-ILC for different iterations with disturbance. (a) Experimental
tracking with different iteration. (b) Monotonic convergence result.

The performance of the NO-ILC algorithm is also investigated with the reference signal shown in
Figure 4. The results are shown in Figure 8a. The weighting parameter is set to Q = 0.1. The value of
Q can be increased to improve convergence, but Figure 8b shows the convergence is similar to that of
the G-ILC experiment, with the latter slightly better. Convergence was achieved after 8 iterations.

Note that although convergence is established theoretically, in practice the system is subject to
disturbances and uncertainty. The effect of disturbances is evaluated in simulation and by experiment
for the two approaches. First the performances of the two methods in sumulation without disturbance
are quantified and compared. The results are shown in Table 3. The NO-ILC method had significantly
better performance and convergence properties in simulation.

The disturbances took the form of torques that were injected in the φ and θ channels. The disturbances
defined as exponentially decaying sinusoidal functions δτ = e−0.1t(sin t), cos t, 0) for t ∈ (2, 6) s. The
results for experiment are shown in Table 4. These show the better performance of the NO-ILC but the
difference is less marked.

To improve the performance of the G-ILC algorithm, the value of the learning gain β can be
changed. Figure 9 shows the effect of β on the convergence rate.
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(a) (b)

Figure 8. Experimental results of NO-ILC for different iterations with disturbance. (a) Experimental
tracking with different iteration. (b) Monotonic convergence result.

Table 3. Simulation norm error results for attitude angles without disturbance.

ILC Approaches Passes No. ‖θ̂− θ‖ ‖φ̂−φ‖

G-ILC (without disturbance)

1 1.92 1.92
3 1.38 1.38
6 0.532 0.532

16 0.309 0.303

NO-ILC (without disturbance)

1 1.92 1.92
3 1.24 1.24
6 0.476 0.476

16 0.121 0.119

Table 4. Experimental norm error results for ILC algorithms with Disturbance Injection.

ILC Approaches Trial (1) Trial (3) Trial (7) Trial (10)

‖eθ‖ ‖eψ‖ ‖eθ‖ ‖eψ‖ ‖eθ‖ ‖eψ‖ ‖eθ‖ ‖eψ‖
G-ILC + Disturbance Injection 1.277 2.834 0.920 1.281 0.612 0.705 0.574 0.534

NO-ILC + Disturbance Injection 1.283 3.214 0.926 1.212 0.562 0.633 0.434 0.446

Figure 9. Optimized error convergence rate with a variation on the learning gain β values, as proposed
in Equations (35) and (42).
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For a large class of practical systems, such as UAV reference tracking (as required for power
line surveillance and monitoring) it is required that the output achieves perfect tracking at more
than one defined time and enables the system error to converge to zero norm as rapidly as possible.
Consequently, it includes future work on an alternative controller (i.e., ILC with hybrid controller)
as an extension to enhance the tracking performance at subset (instantaneous in time) for many
critical positions.

6. Conclusions

The suggested G-ILC and NO-ILC have been formulated and applied to the problem of reference
tracking for UAV. When comparing the findings, the NO-ILC has shown superior tracking performance.
Furthermore, the suggested NO-ILC has shown substantially improvement over the G-ILC in terms
of error decrease and monotonic convergence. The results of the simulations and experiments both
with and without an external disturbance show the proposed ILC performance for the two methods.
The results the potential potential to achieve good trajectory tracking.

The NO-ILC method could form the basis for a power line inspection system. The repetitive
nature of the power line geometries lends itself to this approach. However there are many control
challenges to be faced, such as disturbances in the form of steady wind and unsteady wind gusts,
and decision-making in the face of uncertainty. This points to the urgent need for additional future
work for expanding ILC (i.e., point-to-point with hybrid controller) for tracking identification, for
instance, through a straight conductor for a electrical overhead conductors monitoring-task.
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Abbreviations

COG Center Of Gravity
DOF Degrees Of Freedom
G-ILC Gradient-based Iterative Learning Control
GPS Global Positioning System
ILC Iterative Learning Control
IMU Inertial Measurement Unit
LiPo Lithium Polymer
LQG Linear Quadratic Regulation
MIMO Multi Input Multi Output
MIT Massachusetts Institute of Technology
MPC Model Predictive control
NO-ILC Norm Optimal Iterative Learning Control
PD Proportional Derivative
PID Proportional Integral Derivative
SISO Single Input Single Output
SMC Sliding Mode Control
UAV Unmanned Aerial Vehicle
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