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Abstract: In the current age, power systems contain many modern elements, one example being Flexible
AC Transmission System (FACTS) devices, which play an important role in enhancing the static and
dynamic performance of the systems. However, due to the high costs of FACTS devices, the location, type,
and value of the reactive power of these devices must be optimized to maximize their resulting benefits.
In this paper, the problem of optimal power flow for the minimization of power losses is considered for a
power system with or without a FACTS controller, such as a Static Var Compensator (SVC) device The
impact of location and SVC reactive power values on power system losses are considered in power systems
with and without the presence of wind power. Furthermore, constant and variable load are considered.
The mentioned investigation is realized on both IEEE 9 and IEEE 30 test bus systems. Optimal SVC
allocation are performed in program GAMS using CONOPT solver. For constant load data, the obtained
results of an optimal SVC allocation and the minimal value of power losses are compared with known
solutions from the literature. It is shown that the CONOPT solver is useful for finding the optimal
location of SVC devices in a power system with or without the presence of wind energy. The comparison
of results obtained using CONOPT solver and four metaheuristic method for minimization of power
system losses are also investigated and presented.

Keywords: power system losses; SVC devices; wind energy; optimal location; CONOPT solver;
metaheuristic methods

1. Introduction

Today, life without electricity is almost impossible to imagine. Generated electricity (active and reactive
power) is usually transmitted over long distances to end users. However, due to the AC transmission line
impedance and the voltage drop across the line, power losses always exist [1,2].

Modern power systems, besides classic generating units, consist of many renewables [3]. There are
also a lot of different devices based on power electronics, an example being Flexible Alternating Current
Transmission System (FACTS) devices. At the moment, FACTS devices are used as the most advanced
reactive energy compensation devices [2]. They are also used to solve various problems in the power
system such as power system stability, power transfer capacity, voltage profile, power system efficiency,
and so on [2]. This paper, in general, deals with one of the most used types of FACTS devices, known as
SVC devices (Static VAr Compensator).
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The SVC is the first FACTS device to be developed. This device connects in parallel to the system and
is essentially a combination of parallel-connected capacitors (fixed or variable capacity) and coils so that it
can operate in either inductive or capacitive mode [2]. Therefore, it is dominantly used to regulate voltage
and reactive power in a power system. Furthermore, these devices can regulate, i.e., produce and absorb
reactive power over a wide range. As they are one of the cheaper FACTS devices, they are often observed in
power studies. In the available literature, we can find many different studies on FACTS devices, especially on
SVC devices, and their allocation in power systems with or without the presence of renewables [3–25].
For example, the coordination of SVC devices and other FACTS devices for the management of power
flow is presented in [3]. Furthermore, the optimal placement and parameter setting of SVC devices for
solving power system stability problems, the damping system-wide low-frequency oscillations, as well as
power system loadability is presented in [4–11]. The loadability problem is often investigated along with
the optimal system control for the minimization of total power system losses [11]. The minimization of
total power losses is one of the main goals of the implementation of FACTS devices in power networks;
for this reason, almost all the papers dealing with FACTS devices observe this problem [11–14]. Finding the
optimal setting of all control variables of FACTS devices, for different purposes, is investigated in [15–22].
In the literature, we can also find research looking into the improvement of voltage profiles in distribution
networks with renewable power sources [15,17], the maximization of photovoltaic hosting capacities that
minimize system operating costs [16], the improvement in the reconstruction of power systems with wind
generation [17], voltage profile enhancement [22], power quality improvement [24,25], and so on.

The enhancement of the voltage profile by using FACTS devices is strongly related to power
loss minimization [15,22]. This fact is investigated in detail in [22], observing both IEEE 9 and IEEE
30 bus systems. However, in [22], the authors analyze voltage profile enhancement and power loss
minimization only at constant load (a one-time step), which is not a realistic case. On the other side, in [22],
some data mismatching is evident. For example, system data do not correspond to the graphical view of
analyzed networks, and so on. Also, the obtained results of optimal power system losses without SVC
devices differ from results evident in many of the previously published papers that deal with optimal
power flow (OPF). In [22], it is observed that the minimal value of power losses in the IEEE 30 test
bus network, without SVC devices, is 2.86 MW, while in [26–30], the value of power system losses is about
3.1 MW or higher. The same situation occurs with the IEEE 9 test bus system. On the other side, in [31],
the authors analyze the impact of SVC devices on a IEEE 24 test bus system with three wind generators
without any discussion about the power loss variation, the optimal node for an SVC or similar device.

Beside large power systems, the use of FACTS devices is also investigated for microgrid systems [32–37].
In general, microgrids are small energy grids in terms of scale, power, voltage level, and contain a different
generator unit that can provide an adequate energy supply to demand [36]. This design, in grid-connected
and islanding modes, with SVC devices can significantly improve voltage stability, enhance power factor,
reduce power system losses, mitigate the harmonic distortion, and so on [37].

Different FACTS devices and power system stabilizers (PSS) can be also used for damping power
system oscillations [38,39]. A PSS in control devices provides maximum power transfer and thus improves
power system stability [40]. Disturbances occurring in a power system cause electromechanical oscillations,
and PSS have been widely used to damp these oscillations [41]. By introducing additional signals into the
excitation controllers of the generators, PSS can increase the damping torque of a system’s local mode [42].
PSS are used as additional control devices to provide extra damping. The basic role of an SVC device is to
control reactive power flow and fluctuations in system voltage. A supplementary role added to an SVC is
to increase the power system damping. In order to enhance the damping of system oscillations, an SVC
can be designed to modulate its bus voltage, especially for inter-area modes [43].

The abovementioned studies have observed many different types of power systems. In some cases,
the authors observed standard IEEE test bus systems [4,8,12,13], while in other papers, authors observed
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distribution systems [15,16]. Also, the problem of the optimal location of FACTS devices is predominantly
solved by using some metaheuristic techniques. The techniques that can be found in the literature
are Particle Swarm Optimization (PSO) [4,19,20], Genetic Algorithm (GA) [5,10,20], Hybrid Imperialist
Competitive Algorithm genetic Algorithm (HICAGA) [11], Whale Optimization Algorithm (WOA) [12],
Differential Evolution (DE) [12], Grey Wolf Optimization (GWO) [12], Quasi-Opposition based Differential
Evolution (QODE) [12], Quasi-Opposition based Grey Wolf Optimization (QOGWO) [12], Differential
Search (DS) [13], Simulated Annealing (SA) [20], Pattern Search (PS) [20], Backtracking Search Algorithm
(BSA) [20], Gravitational Search Algorithm (GSA) [20], and Reproduction Optimization (ARO) [20].
An updated review of papers dealing with the optimal placement of different FACTS devices in power
energy systems using metaheuristic optimization techniques is presented in [21]. Besides metaheuristic
methods, the optimal placement of SVC devices can be also solved by using the Newton–Raphson
method [22], as well as by using non-traditional optimization techniques [23]. Many existing optimization
methods dealing with the optimal location of SVC devices to obtain better system performance, such as
smaller power system losses, point to the necessity of further research in this scientific field.

In this paper, we present the use of a CONOPT solver [26,31,44,45] embedded in the Generalized
Algebraic Modeling Systems (GAMS) software package for this issue. The advantage of a CONOPT solver
embedded in GAMS over other optimization techniques is its high-speed processing, as well as the fact that
it always converges to the same optimal solution for any program starting [26]. This paper also presents
addition comparisons of the CONOPT solver and four metaheuristic methods (PSO, GSA—Gravitational
search algorithm [46,47], ABC—Artificial bee colony algorithm [29], and DE [12,48–50]). The optimal
location of SVC devices is analyzed in IEEE 9 and IEEE 30 test systems. However, unlike [22], in this paper,
four cases are analyzed—the optimal SVC location in a power system with constant load; the optimal SVC
location in a power system with variable load; the optimal SVC location in a power system with variable
load in the presence of wind energy, and the impact of location of both a wind generator and SVC devices
on power system losses. To the best of our knowledge, this kind of research has not been presented in any
of the previously published papers.

The main contributions of this paper are as follows:

- The comparison of four metaheuristic algorithms applied to single-objective optimal power flow
(with the objective function of minimization of power system losses) is presented and tested on both
IEEE 9 and IEEE 30 test bus systems and comparison is made with similar studies in the literature;

- The comparison of minimum power system losses obtained using a CONOPT solver and the
metaheuristics algorithms is presented;

- The impact of SVC location on power system losses is analyzed in both IEEE 9 and IEEE 30 test
bus systems;

- The impact of the limited reactive power of SVC devices on power system losses is also analyzed in
the same test systems;

- The impact of SVC location on power system losses in power networks with renewables is analyzed;
- The impact of different wind power generator connections in power networks on the SVC location

is tested;
- For constant load data, the results obtained using the Newton–Rapson method for optimal SVC

location and the minimal value of power losses are compared with known solutions from the literature

The remainder of the paper is organized as follows. Section 2 gives basic information about SVC devices.
The main equations related to the OPF problem are presented in Section 3. Basic information about the
GAMS-CONOPT solver and a comparison of the CONOPT solver with metaheuristic algorithms are
presented in Section 4. The impact of SVC location on power system losses that have been analyzed in four
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basic cases, their variations, and the simulation results are given in Section 5. Concluding statements and
directions for future work are presented in Section 6.

2. SVC Devices

The general circuit structure of an SVC is presented in Figure 1 [1,2]. As can be seen, and as noted
earlier, an SVC is composed of a fixed capacitor and thyristor-controlled reactor. The equivalent susceptance
BSVC of the SVC device is determined by the firing angle α of the thyristor. The equivalent susceptance,
and the reactive power provided by SVC, in i-th node, can be expressed as follows:

BSVC = BL(α) + BC, BL(α) = −
1
ωL

(
1−

2α
π

)
, BC = ωC (1)

QSVC = −V2
i BSVC (2)

where L and C are the inductance of the reactor and the capacitance of the capacitor, respectively, and Vi
is the voltage value in node i. If the system load is capacitive, the SVC uses thyristor-controlled coils to
consume reactive power from the system, and when the load is predominantly inductive, the SVC uses
parallel-coupled capacitors and produces reactive energy, thus improving voltage conditions. The basic
task of an SVC is to achieve fast and continuous control.
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Figure 1. A Static Var Compensator (SVC). (a) circuit structure and (b) equivalent model.

3. Optimal Power Flow Formulation

Optimal power flow is one of the most crucial problems in power systems; it is used to determine the
optimal settings for control variables while respecting various constrains [51].

The standard formulation of an OPF problem is:

Minimize J(x, u)
g(x, u) = 0
h(x, u) ≤ 0

(3)

where u is a vector of independent or control variables (such as active power generation at the PV buses
except the slack bus, voltage magnitudes at PV buses, tap settings of the transformers), x is a vector
of dependent or state variables (such as active power at slack bus, voltage magnitude at PQ busses,
reactive power output of all generator units), J is the system’s optimization goal—objective function (such
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as total fuel cost, total emission, total power losses, voltage deviation, etc.), g is set of equality equation,
and h is set of the inequality constraints.

The equality constraints of the OPF can be represented as follows:

PGi − PDi −Vi
NB∑
j=1

V j
[
Gi j cos

(
θi j

)
+ Bi j sin

(
θi j

)]
= 0

QGi −QDi −Vi
NB∑
j=1

V j
[
Gi j sin

(
θi j

)
+ Bi j cos

(
θi j

)]
= 0

(4)

where θi j = θi − θ j, θi and θi are phase angle of voltage in node i and j, respectively, NB is the number of
buses, Vi and Vj are voltages in node i and j, respectively, PGi is the active power generation in node i,
QGi is the reactive power generation in node i, PDi is active power of demand in node i, QDi is reactive
power of demand in node i, and Gij and Bij are elements of admittance matrix representing conductance
and susceptance between buses i and j, respectively.

The inequality constraints of the OPF reflect the limits of the devices present in the power system.
The main inequality constraints are as follows:

- Generator constraints:
Vmin

Gi
≤ VGi ≤ Vmax

Gi
, i= 1, . . . , NG

Pmin
Gi
≤ PGi ≤ Pmax

Gi
, i= 1, . . . , NG

Qmin
Gi
≤ QGi ≤ Qmax

Gi
, i= 1, . . . , NG

(5)

- Transformer constraints:
Tmin

i ≤ Ti ≤ Tmax
i , i= 1, . . . , NT (6)

- Security constraints:
Vmin

Li
≤ VLi ≤ Vmax

Li
, i= 1, . . . , NL

Sli ≤ Smax
li

(7)

In the above Equations (5)–(7), NG refers to the number of generators, NT is the number of transformers,
NL is the number of lines, T is transformer-tap settings ought, VL is line voltage, VG is generator voltage,
and Sl is line power.

Some OPF objective functions are:

- Minimization of total fuel cost:

OF =
NG∑
i=1

(
aiP2

Gi
+ biPGi + Ci

)
(8)

where ai, bi, and ci are the cost coefficients of generator i.
- Minimization of total emission:

OF =
NG∑
i=1

(
γiP

2
Gi
+ βiPGi + αi + ξie

λiPGi
)

(9)

where γi, βi, αi, ξi, and λi are the emission coefficients of unit i
- Voltage deviation minimization:

OF =
NG∑
i=1

|Vi − 1| (10)
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- Total active power loss minimization:

OF =
NB∑
i=1

(
PGi

)
−

NB∑
i=1

(
PDi

)
(11)

In an OPF problem, one (single-objective OPF) or more (multi-objective OPF) objective functions can
be optimized at the same time.

4. Comparison of Metaheuristics Methods and Solver CONOPT for OPF Problem Solving

The optimal placement of SVC devices in power networks requires the optimal power flow
problem solving. As noted in the Introduction, different metaheuristic methods can be used for the
optimal placement of SVC devices in power networks. Firstly, this section gives a short review of the
advantages and drawbacks of metaheuristic methods for OPF problem solving. Secondly, basic information
about program GAMS and solver CONOPT is presented. Thirdly, comparisons of the results obtained
by using three metaheuristic methods and solver CONOPT for the minimization of power system losses
are presented.

4.1. Short Comments on Metaheuristic Methods for OPF

The fast development of power systems and the power market has introduced the need to optimize
many practical problems, and make operation, planning, and maintenance as efficient as possible.
One optimization problem that is continuously present in the power system is the optimal power flow
(OPF) problem. OPF was first discussed by Carpentier [52].

OPF has been previously evaluated in a complex, non-linear, and non-convex problem mix-integer
and highly constrained fashion. Therefore, the need for new methods to solve the problem has risen.
Classical optimization methods such as Newton’s methods, linear programming, nonlinear programming,
quadratic programming, and many others [53], due to their difficulties of differentiability and nonlinearity,
are not able to a provide global optimum and often just provide a local solution. To overcome this issue,
a solution has been found in metaheuristics. The term metaheuristic, first introduced by Glover in [54]
derives from two words—heuriskein (ancient Greek) or heurisricus (Latin) means “to find out, discover”
and meta (ancient Greek) means “beyond, in an upper level”. Significant development of different
methods in the field of metaheuristics have occurred in the last two decades. These methods, using simple
mathematical rules, are designed to search a large solution space and find a sufficiently good candidate
solution (global or near-global solution) iteratively in a reasonable computation time. Metaheuristic
methods are mainly based on phenomenon in natural, biological, physical, and chemical systems. Therefore,
there are a plethora of different metaheuristic methods [55,56].

If the classical optimization method is used to solve optimizations problems, it is necessary that
the defined objective function should be differentiable and continuous. In metaheuristics, there are no
restrictions for objective functions, which is one of its main advantages. Metaheuristics can be used for
various complex optimization problems considering different objective functions and constrains but it
never guarantees the optimal solution. There are a lot of different metaheuristic methods that can be
applied to different optimization problems. However, some can be used to solve some specific problems
very well, while not being appropriate for other types of problems. Therefore, it is always advisable to
test a variety of metaheuristics methods for a specific problem and compare the results. The two main
drawbacks of metaheuristics methods are that they do not guarantee that a globally optimal solution can
be found, and that the solution found is dependent on the initial condition.
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Metaheuristics has been recognized as one of the most successful approaches to solving large-scale
optimization problems in power systems [57], including OPF problems [51,58,59]. In recent years,
to overcome specific limitations of the underlying metaheuristics, a new field in metaheuristics has
appeared combining the ideas of two or more metaheuristic method, called a hybrid metaheuristic [60].

4.2. Basic Information about CONOPT Solver Embedded in GAMS

The GAMS is a modeling tool for mathematical programming and optimization purposes. It can
be used to solve different types of optimization problems [45]. This is a consequence of the fact that a
large number of solvers for mathematical programming models, such as Linear Programming, Nonlinear
Programming, Linear Regression and so on, are embedded in GAMS.

The CONOPT solver embedded in GAMS is well-suited for models with very nonlinear constraints,
large models, models described with smooth functions, and so on. Finally, the CONOPT solver is
an unequaled GAMS solver in terms of requested computation time. Namely, it has implemented
three active-set methods and algorithmic switches that automatically detect the best method for
problem-solving [61]. For this reason, in [61] is noted that the CONOPT solver is a high-speed solver.

4.3. Results of Comparisons

Four metaheuristic methods were applied on an OPF problem and the obtained results were compared
in terms of copulation time, accuracy, and impact of system dimension with GAMS/CONOPT [21]. It was
shown that the CONOPT solver embedded in GAMS provides an efficient and accurate solution, and that
results are equal or better than those obtained using other optimization techniques.

In this paper, PSO, GSA, ABC, and DE algorithms were applied to OPF problem in both IEEE 9
and IEEE 30 test bus systems in order to further investigate some performances of CONOPT over
metaheuristics algorithms. The objective function was power loss minimization. The basic PC parameters
in this research were: 2.5 GHz Intel Core i7 and 8 GB RAM. The population size was set to 100 in each
algorithm. For both observed IEEE test systems and each algorithm, 50 runs were performed, and the
maximal iteration was set to 1000.

The change of the OPF objective function during the iterative procedure and the multiple runs of PSO,
GSA, ABC, and DE algorithms in IEEE 9 test bus system are presented in Figure 2. Comparing OF values
obtained by four metaheuristic algorithms, it is evident that DE and ABC algorithms are more stable,
converge faster, and after 1000 iterations, end in the same OF value for multiple runs.

The values of OF in the first 10 iterations for multiple runs in case of the same four metaheuristics
(PSO, GSA, ABC, DE) applied to the OPF problem in the IEEE 30 test bus system are presented in Figure 3.
It can be noticed that OF has different values at the beginning of the iterative procedure in each run.
In comparison with other observed algorithms, DE shows a smaller value of initial OF for multiple runs.

For the IEEE 9 test bus system, the maximal, mean, and minimal values of OF for all runs during the
iterative procedure are presented in Figure 4. Different algorithms require a different number of iterations
to reach an appropriate convergence. The ABC algorithm has the best convergence characteristics. The DE
algorithm shows similar behavior to the ABC algorithm regarding convergence characteristic in this case.
Both ABC and DE algorithms converge to the best solution among the others in less iterations.

The values of OF in the 1st, 50th, and 300th iteration, for each run and for both the IEEE 9 and IEEE
30 test bus systems, are presented in Figure 5a,b, respectively. It is evident that the chosen algorithms,
although after a large number of iterations, do not converge to the same value. Convergence curves of
ABC and DE algorithms are smoother than the curves of the PSO and GSA algorithms. The ABC and
DE algorithms show similar and stable convergence in the 50th iteration and especially in 300th iteration
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for all 50 runs. The PSO algorithm has the worst convergence characteristics, with many variations in a
wider range.
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Figure 2. Change of optimal flow (OF) during the iterative procedure in multiple runs for the IEEE 9 test
system (a) PSO, (b) GSA, (c) ABC, and (d) DE.

A summary of the obtained results regarding the best solution, the number of iterations needed to
achieve the best solution, and the computation time for the four applied algorithms in both IEEE 9 and
IEEE 30 test systems is given in Table 1. In addition, CONOPT results regarding the best solution and
computation time are also given in Table 1. As the minimum problem consideration, the underline-bold
value of power losses presents the best value while the bold value presents the worst. The DE algorithm
provides the best solution and the total power losses in IEEE 30 is 2.994 MW, while the PSO algorithm
provides the worst one, with 3.39 MW in total power losses. Active losses are reduced from 3.39 MW to
2.994 MW, that is, 11.68%. Because IEEE 9 is a small system, there are no visible differences between the
algorithms. However, the best solution is achieved again by the DE algorithm. Regarding the computation
time, it is interesting to notice that even though ABC and DE algorithms have very similar solutions (IEEE
9—ABC power system losses (Ploss) = 2.317 MW and DE Ploss = 2.316 MW; IEEE 30—ABC Ploss = 2.995
and MW and DE Ploss = 2.994 MW) and number of iterations are higher in the case of DE (e.g., in IEEE 30,
DE needs 750 iterations while ABC needs 600), computation time is considerably less in the case of DE for
both systems (e.g., in IEEE 30 DE needs 247.5 s for 750 iterations while ABC needs 420 s for 600 iterations).
Therefore, in this comparison, DE beats the other meta-heuristics algorithms.
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PSO, (b) GSA, (c) ABC, and (d) DE algorithm.

The value of total power losses obtained using the CONOPT solver for the IEEE 9 test bus system is
2.3157972 MW, while for the IEEE 30 test bus system it is 2.9937435 MW. The results regarding total power
losses are not much better than those obtained by DE (2.316 MW for IEEE 9 and 2.994 MW for IEEE 30).
In order to obtain better results in terms of total power losses, the metaheuristic algorithms need a large
number of iterations (DE needs 750 iterations for IEEE 30 and 320 iterations for IEEE 9) and computation
time is 8.32 s for IEEE 9 and 247.5 s for IEEE 30, while CONOPT needs 0.073 s for IEEE9 and 0.092 s for
IEEE 30 to achieve the best solution.

In [26], the authors also show that the requested computation time of the CONOPT solver embedded
in GAMS is significantly lower compared to other techniques. On the other hand, the CONOPT solver
embedded in GAMS always converges to the same optimal solution for each run. However, to make
comparison with the research work of other authors, it is hard to find similar conditions in the literature
review when solving OPF problems by different algorithms in the same test systems. Authors in [62]
analyze different methods for the OPF problem with multi-objective and single objective functions in the
IEEE 30 test system; in the case of single objective OF, the total power losses obtained by PSO algorithms
are 3.629 MW, which is higher than in this research. In [63], the authors obtained total power losses of
3.24 MW in the IEEE 30 test system by DE with a population size of 100 and 300 maximum iterations.
According to the results shown in Table 1, the total power losses obtained by DE in the IEEE 30 system are
2.994 MW, with the same population size of 100, but after 750 iterations. In the 300th iteration for IEEE 30,
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total power losses are 3.01MW (Figure 5b that is little less than in [63]). In [64], the authors obtained total
power losses of 3.1216 MW in the IEEE 30 test system by ABC and 3.0917 MW by improved ABC (IABC)
with a population size of 100 and 200 maximum iterations. In Table 1, total power losses are 2.995 MW in
the IEEE 30 system obtained by ABC with the same population size of 100, but only after 600 iterations.Energies 2020, 13, x FOR PEER REVIEW 9 of 23 
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Table 1. Comparison of the algorithms regarding the best solution, the number of iterations needed to
achieve the best solution, and computation time.

Best Solution—Ploss [MW] Iterations Computation Time [s]

IEEE 9 IEEE 30 IEEE 9 IEEE 30 IEEE 9 IEEE 30

PSO 2.317 3.39 440 810 10.56 317.5
GSA 2.317 3.220 650 700 16.89 195.5
ABC 2.317 2.995 240 600 12.24 420
DE 2.316 2.994 320 750 8.32 247.5

CONOPT 2.3157972 2.9937435 - - 0.073 0.092

Considering all the comparisons of the different metaheuristics shown above, the CONOPT solver
embedded in GAMS gave 2.9937435 MW in total power losses, which is a slightly better result for a single
objective OPF. Therefore, a CONOPT solver embedded in GAMS can be a usable, reliable, and efficient
tool for solving optimal power flow problems.

5. Impact of SVC Location—Simulation Results

The impact of SVC location on power system losses has been analyzed through the following
case scenarios:

- CASE 1—system supply constant load;
- CASE 2—system supply variable load;
- CASE 3—system supply variable load in the presence of a fixed wind generator location; and
- CASE 4—system supply variable load for different wind generator locations.
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All results are presented for both IEEE 9 and IEEE 30 test bus systems. A variable load data profile is
taken from [45] and wind profile data are taken from [65]. In each analyzed case, the OPF is first handled
to obtain the minimal value of power losses when there are no SVC devices in the system.

5.1. CASE 1

The results of OPF for the minimization of power system losses when there are no SVC devices in the
system are presented in Tables 2 and 3 for the IEEE 9 and IEEE 30 test bus systems, respectively. After that,
the optimal value of the SVC’s reactive power that minimizes power system losses were tested in all
non-generator nodes of this network. All obtained results are presented in the mentioned Tables 2 and 3
as well.

Table 2. Power losses (MW) without and with SVC in the IEEE 9 test bus system—CASE 1.

Losses [MW]

Without SVC-a 2.3157972

SVC in Node: Losses [MW] Optimal Value of SVC Devices—QSVC in [MVAr]

4 2.3029 31.962
5 2.3082 7.811
6 2.3157 28.347
7 2.3033 16.992
8 2.3157 48.066
9 2.2429 28.504

Table 3. Power losses (MW) without and with SVC in the IEEE 30 test bus system—CASE 1.

Without SVC 3.1361950 [MW]

SVC in Node: Losses
[MW]

QSVC
[MVAr]

SVC in
Node:

Losses
[MW]

QSVC
[MVAr]

SVC in
Node:

Losses
[MW]

QSVC
[MVAr]

3 3.1283570 7.88470 15 3.0790903 12.11422 23 3.0615291 9.28462
4 3.1102065 20.22564 16 3.1164431 6.32258 24 2.9937435 13.83753
6 3.0935250 30.53385 17 3.0808191 12.75020 25 3.0782495 7.47845
7 3.1051779 13.46546 18 3.0849214 7.83266 26 3.0832614 3.83518
9 3.0595039 35.83722 19 3.0753885 8.64813 27 3.1104100 7.02192

10 3.0663123 23.01893 20 3.0824500 8.70667 28 3.1103671 13.42805
12 3.1361950 9.94304 21 3.0117611 19.28986 29 3.1100272 3.54662
14 3.1270511 3.33737 22 3.0215217 18.06944 30 3.1036651 3.66248

In this case, for the IEEE 9 test bus system, the SVC device was found to be optimally located in
node 9, and for IEEE 30 test bus system, in node 24. The minimal value of the power system losses is
2.2429 MW for the IEEE 9 test bus system and 2.9937 MW for the IEEE 30 test bus system, which is a
lower value than that of the power system losses for a power system without an SVC device. Therefore,
with SVC devices, the power system’s efficiency can be improved. For the IEEE 9 test bus system the
reduction of power system losses is about 3%, while for IEEE 30 test bus system it is about 4%. In this case,
during an optimization process the value of the reactive power of SVC devices was not limited. Hence,
the optimized value of the SVC reactive power for some nodes is very high in comparison with others.

The calculation of the SVC reactive power for the minimization of power system losses when the
maximal available SVC reactive power is limited is presented in Tables 4 and 5 for both IEEE 9 and IEEE 30
test bus systems, respectively. Evidently, the limitation of the upper limit of the SVC reactive power do not
have a high impact on the power system losses. If the SVC reactive power is limited to 10 MVAr in the
case of a IEEE 9 test system, the minimal power system losses are 2.2699 MW, which is very close to the
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optimal value of an SVC reactive power for minimal power system losses (2.2429 MW). For a higher value
of the SVC limited reactive power, the power system losses are closer to optimal solution (see the results
for node 9 presented in bold). A similar conclusion can be derived for the IEEE 30 test bus system. If the
SVC reactive power is limited to 10 MVAr, the minimal power losses are 3.004 MW, while the power losses
are 2.9937453 MW when there is no limitation set on the SVC reactive power.

Table 4. Power losses (MW) with SVC in the IEEE 9 test bus system with a limited value of QSVC—CASE 1.

QSVCmax = 10 [MVAr] QSVCmax = 15 [MVAr] QSVCmax = 20 [MVAr]

SVC in Node: Losses [MW] Optimal Value of
QSVC in [MVAr] Losses [MW] Optimal Value of

QSVC in [MVAr] Losses [MW] Optimal Value of
QSVC in [MVAr]

4 2.3029 8.6 2.3029 8.6 2.3029 20.0
5 2.3082 7.8 2.3082 7.8 2.3082 7.8
6 2.3157 −4.1 2.3157 −5.5 2.3157 −6.9
7 2.3054 10.0 2.3035 15.0 2.3033 17.0
8 2.3157 10.0 2.3157 15.0 2.3157 20.0
9 2.2699 10.0 2.2562 15.0 2.2482 20.0

QSVCmax = 25 [MVAr] QSVCmax = 30 [MVAr] QSVCmax = 35 [MVAr]

SVC in Node: Losses [MW] Optimal Value of
QSVC in [MVAr] Losses [MW] Optimal Value of

QSVC in [MVAr] Losses [MW] Optimal Value of
QSVC in [MVAr]

4 2.3029 25.0 2.3029 30.0 2.3029 11.2
5 2.3082 7.8 2.3082 7.8 2.3082 7.8
6 2.3157 −8.3 2.3157 −9.7 2.3157 −23.3
7 2.3033 17.0 2.3033 17.0 2.3033 17.0
8 2.3157 25.0 2.3157 30.0 2.3157 −4.4
9 2.2438 25.0 2.2429 28.5 2.2429 28.5

The impact of SVC reactive power, when located in the optimal node, on the power system losses
is presented in Figure 6 for the IEEE 9 test bus system and in Figure 7 for the IEEE 30 test bus system.
In these Figures 6 and 7, the results obtained in [22] are also presented. As can be seen, the CONOPT
solver embedded in GAMS gave different power system losses in comparison with the results presented
in [22]. The results obtained by using the CONOPT solver in systems without SVC devices, for both
observed power systems, correspond to the results of OPF presented in [27]. Hence, the optimal placement
of SVC devices obtained by using the CONOPT solver are achieved with a higher accuracy compared
to the Newton–Raphson method [22]. Note that the results presented in [22] are obtained by using the
classic Newton–Raphson method, which has several drawbacks (e.g., it requires accurate initial value,
the function and its derivatives must be continuous on the range you search, etc.), unlike the usage of a
CONOPT solver [26].
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Table 5. Power losses (MW) with SVC in the IEEE 30 test bus system with a limited value of QSVC—CASE 1.

QSVCmax = 10 [MVAr] QSVCmax = 20 [MVAr] QSVCmax = 30 [MVAr]

SVC in Node: Losses [MW] QSVC [MVAr] SVC in Node: Losses [MW] QSVC [MVAr] SVC in Node:

3 3.128 7.9 3.128 7.9 3.128 7.9
4 3.116 10.0 3.110 20.0 3.110 20.2
6 3.112 10.0 3.098 20.0 3.093 30.0
7 3.107 10.0 1.105 13.5 3.105 13.5
9 3.103 10.0 3.080 20.0 3.064 30.0

10 3.088 10.0 3.067 20.0 3.066 23.0
12 3.136 10.0 3.136 14.2 3.136 30.0
14 3.127 3.33 3.127 3.33 3.127 3.33
15 3.080 10.0 3.079 12.1 3.079 12.1
16 3.116 6.32 3.116 6.32 3.116 6.32
17 3.083 10.0 3.080 12.8 3.080 12.8
18 3.084 7.83 3.084 7.83 3.084 7.83
19 3.075 8.64 3.075 8.64 3.075 8.64
20 3.082 8.7 3.082 8.7 3.082 8.7
21 3.039 10.0 3.011 19.3 3.011 19.3
22 3.043 10.0 3.021 18.1 3.021 18.1
23 3.061 9.28 3.061 9.28 3.061 9.28
24 3.004 10.0 2.994 13.8 2.994 13.8
25 3.078 7.47 3.078 7.47 3.078 7.47
26 3.083 3.83 3.083 3.83 3.083 3.83
27 3.110 7.02 3.110 7.02 3.110 7.02
28 3.112 10.0 3.110 13.4 3.110 13.4
29 3.110 3.54 3.110 3.54 3.110 3.54
30 3.103 3.66 3.103 3.66 3.103 3.66
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5.2. CASE 2

In this case, the optimal location and optimal reactive power of SVC devices to minimize the power
system losses when the system supplies a variable load was determined. The load variation is given in
Figure 8 [45]. Firstly, the results of OPF for power system minimization of power system losses, in the case
when there are no SVC devices in the system, are presented in Tables 6 and 7 for both analyzed networks,
respectively. All non-generator nodes of these networks were tested to find the optimal value of SVC’s
reactive power that minimizes power system losses. The summarized obtained results are also presented
in Tables 6 and 7 for both networks.
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Table 6. Power losses (MW) without and with SVC in the IEEE 9 test bus system—CASE 2.

Power Losses [MW]

Without SVC 33.203

SVC in Node: Power Losses [MW]

4 33.175
5 33.065
6 33.203
7 33.120
8 33.203
9 32.726

Table 7. Power losses (MW) without and with SVC in the IEEE 30 test bus system—CASE 2.

Without SVC 39.048 [MW]

SVC in Node: Power Losses [MW] SVC in Node: Power Losses [MW] SVC in Node: Power Losses [MW]

3 38.986 14 38.926 22 37.647
4 38.783 15 38.324 23 38.097
5 39.048 16 38.815 24 37.246
6 38.627 17 38.409 25 38.388
7 38.703 18 38.405 26 38.393
9 38.238 19 38.292 27 38.831

10 38.285 20 38.397 28 38.805
12 39.048 21 37.516 29 38.774

30 38.693

The optimal location of an SVC is node 9 in the IEEE 9 test bus system (minimal power losses are
32.726 MW) and node 24 in the IEEE 30 test bus system (minimal power losses are 37.246 MW). If there
is an SVC device in the system, power losses are lower than if there is no SVC device. Power losses are
about 0.5 MW lower in the IEEE 9 test bus system and about 1.8 MW lower in the IEEE 30 test bus system.
Therefore, for the IEEE 9 test bus system, reduction in power system losses is very small (about 1.5%),
while for the IEEE 30 test bus system, it is about 4.1%. Figure 9 presents the power losses versus time
(without SVC in the network and with SVC in the optimal node), the reactive power of an SVC device
connected in the optimal node versus time, and 3D graphs (node number-time-reactive power) for the
IEEE 9 and IEEE 30 test bus systems.
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Figure 9. Power losses and reactive power of an SVC device connected in the optimal node for (a) IEEE 9
and (b) IEEE 30 test bus system, as well as 3D graphs (node number-time-reactive power) for (c) IEEE 9 and
(d) IEEE 30 test bus systems.

As can be seen, SVC has the highest impact in time step around maximal power load (Figure 9a,b.
The reactive power of an SVC device changes during a day (for optimal node its maximal value is at
maximal value of load), as well as for different nodes. During the previously mentioned optimization,
the value of Qsvc was not limited, and therefore it is evident that in some period of the observed interval,
a very high value of Qsvc is required.

5.3. CASE 3

This case deals with the optimal location of SVC devices in power networks that contain one wind
generator. For both test systems, a 15 MW wind generator was connected in node 5. The wind speed
profile and load profile are given in Figure 8 (wind profile 1). The wind power Pw was calculated according
to the following expression:

Pw =


0 wt < wCI or wt ≥ wCO

Pmax
w

wt−wCI
wR−wCI

wCI ≤ wt < wR

Pmax
w wR ≤ wt < wCO

(12)
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where Pmax
w represents the rated wind power, while wt, wCI, wCO, and wR are the wind speed at hour t,

cut-in wind speed, cut-out wind speed, and rated wind speed, respectively. Figure 10 shows wind power
versus wind speed characteristics. In this paper wCI = 1 m/s , wCO = 11 m/s and wR = 4 m/s.
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Figure 10. Typical wind power versus wind speed curve.

The procedure to determine the optimal node for SVC is the same as in CASE 2. The obtained results
of OPF for the minimization of power losses in systems where SVC devices are not included are presented
in Table 8, and Table 9, for the IEEE 9 and IEEE 30 test bus systems, respectively.

Table 8. Power losses (MW) without and with SVC in the IEEE 9 test bus system—CASE 3.

Power Losses [MW]

Without SVC 31.102

SVC in Node: Power Losses [MW]

4 31.081
6 31.102
7 31.020
8 31.102
9 30.630

Table 9. Power losses (MW) without and with SVC in the IEEE 30 test bus system—CASE 3.

Without SVC 36.972 [MW]

SVC in Node: Power Losses [MW] SVC in Node: Power Losses [MW] SVC in Node: Power Losses [MW]

3 36.911 15 36.252 23 36.025
4 36.709 16 36.741 24 35.176
6 36.558 17 36.338 25 36.315
7 36.634 18 36.332 26 36.319
9 36.170 19 36.219 27 36.757
10 36.213 20 36.324 28 36.732
12 36.972 21 35.445 29 36.699
14 36.851 22 35.576 30 36.619

After that, all non-generator nodes of these networks were tested to find the optimal value of
SVC’s reactive power that minimizes power system losses. The obtained results are also summarized in
Tables 8 and 9 for both networks. In the IEEE 9 test bus system with a wind generator, the optimal SVC
location is in node 9. In this case, the minimal power system losses are 30.63 MW, which is about 0.5 MW
lower than in the case that there is no SVC device. It can be concluded that for the IEEE 9 test bus system,
the increase in the power system efficiency is very small.
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In the IEEE 30 test bus system, the optimal SVC location is in node 24, and the minimal value of losses
is 35.176 MW, which is about 1.7 MW lower than in the case that there is no SVC device. Thus, the reduction
of power system losses is about 4.5%. In this case, the optimal SVC location is the same as that presented
in CASE 2 (variable load without renewables). The power losses versus time (without SVC in the network
and with SVC in optimal node), reactive power of SVC device connected in the optimal node versus time,
and 3D graph (node number-time-reactive power) for IEEE 9 and IEEE 30 test bus systems, when they
contain a 15 MW generator, are presented in Figure 11. Observing the 3D graphs presented in Figure 11,
it is evident that the wind generator has a significant impact on the SVC reactive power profile during
the day, for any observed node. Note that, as in CASE 2, during the optimization the value of QSVC was
not limited.
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Figure 11. Power losses and reactive power of SVC device connected in the optimal node for (a) IEEE 9 and
(b) IEEE 30 test bus system, as well as 3D graphs (node number-time-reactive power) for (c) IEEE 9 and
(d) IEEE 30 test bus systems with a wind generator.

5.4. CASE 4

In this section, the impact of the locations of the wind power generator and SVC device on the power
system losses are tested. Namely, the optimal location of SVC devices is observed for all possible wind
generator positions. For this goal, the modified IEEE 9 test bus system is observed. Also, two different
wind profiles are analyzed. The wind data are taken for the city of Dharan, Nepal [65], for data 01.12.2019
and 05.01.2020. Unlike the analysis in Case 3, the rated power of the wind generator is 70 MW. During the
optimization process, the maximum value of the SVC reactive power was limited to 20 MVAr. The obtained
results are presented in Table 10.
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Table 10. Power system losses in the case of a wind generator and different SVC connections.

Wind Generator in Node 4 Wind Generator in nOde 5 Wind Generator in Node 6

Wind Profile 1 Wind Profile 2 Wind Profile 1 Wind Profile 2 Wind Profile 1 Wind Profile 2

Without SVC 33.573 33.600 Without SVC 25.993 25.178 Without SVC 33.466 34.228

SVC in Node: Power Losses
[MW]

Power Losses
[MW] SVC in Node: Power Losses

[MW]
Power Losses

[MW] SVC in Node: Power Losses
[MW]

Power Losses
[MW]

4 33.438 33.465 5 25.983 25.172 4 33.440 34.202
6 33.573 33.600 6 25.993 25.178 5 33.325 34.091
7 33.488 33.515 7 25.908 25.093 7 33.381 34.142
8 33.573 33.600 8 25.993 25.178 8 33.466 34.228
9 33.107 33.133 9 25.528 24.715 9 32.989 33.752

Wind Generator in Node 7 Wind Generator in Node 8 Wind Generator in Node 9

Wind Profile 1 Wind Profile 2 Wind Profile 1 Wind Profile 2 Wind Profile 1 Wind Profile 2

Without SVC 29.581 29.072 Without SVC 33.285 33.683 Without SVC 25.688 24.300

SVC in Node: Power Losses
[MW]

Power Losses
[MW] SVC in Node: Power Losses

[MW]
Power Losses

[MW] SVC in Node: Power Losses
[MW]

Power Losses
[MW]

4 29.555 29.046 4 33.259 33.656 4 25.680 24.297
5 29.443 28.934 5 33.146 33.546 5 25.559 24.174
6 29.581 29.072 6 33.285 33.683 6 25.688 24.300
8 29.581 29.072 7 33.200 33.597 7 25.603 24.215
9 29.104 28.595 9 32.809 33.208 8 25.688 24.300
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These results can be summarized as follows:

- For both wind profiles, when there are no SVC devices, the optimal location of the wind generator is
node 9.

- When the wind generator is connected in nodes 4, 5, 6, 7, or 8 for both wind profiles, the optimal
location of SVC device is node 9. When the wind generator is connected in node 9 for both wind profiles,
the optimal location of the SVC device is node 5.

- Finally, for wind profile 1, the minimal losses can be obtained if the wind generator is connected in
node 5, and SVC in node 9 (25.528 MW). For wind profile 2, the minimal losses can be obtained if the
wind generator is connected in node 9, and SVC in node 5 (24.174 MW).

Based on the presented results, as well as the literature review, a comparison of the different approaches
is presented in Table 11. It can be concluded that the problem of optimal SVC allocation in power systems
has been considered taking into account different test systems with and without renewable power sources,
optimization methods, and other criteria.

Table 11. Comparison of different approaches for optimal SVC allocation.

IEEE Test Bus System Power System with Renewables Optimization Method Criteria

Proposed method 9, 30 Yes CONOPT solver power loss
minimization

Mondal, 2012 [4] 14 Yes PSO signal stability problem

Huang, 2013 [8] 30 No GA loadability

Basiri-Kejani, 2016 [11] Isfahan–Khuzestan
power system No HICAGA

loadability,
power system losses,

total voltage deviations
SVC installation cost

Ray, 2018, [12] 30, 57 No WOA, DE, GWO,
QODE, QOGWO

voltage collapse
proximity indication

Mahdad, 2016 [13] 33, 69 Yes DS power
loss minimization

Belati, 2019 [14] 118 branch and bound
algorithm

voltage profile
Power loss

minimization

Savić, 2014 [15] distribution network Yes GA Voltage deviations

Xu, 2018, [16] distribution network Yes - Investment cost

Benabid, 2009, [19] 30-bus Algerian 114-bus
power system No PSO Voltage stability

Singh, 2018 [22] 9, 30 No Newton–Raphson
method

Voltage profile
Power

loss minimization

6. Conclusions

This paper deals with the improvement of power system efficiency using SVC devices. Although
this solution is known in the literature, in this paper the optimal SVC location was optimized using a
CONOPT solver embedded in GAMS, which was not seen in the literature before. Two test systems (IEEE
9 and IEEE 30), with and without wind generators were observed and analyzed through 4 different cases:
system supply constant load, variable load, variable load in the presence of a fixed wind generator location,
and variable load for different wind generator locations. It was shown that the wind profile, power of
wind generator, and location of the wind generator (connection to networks) all have a significant impact
on power system losses regarding the usage of SVC devices. Based on our knowledge and our review of
the literature, a CONOPT solver embedded in GAMS was used for the first time for optimal SVC allocation
in the abovementioned cases.
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Furthermore, based on obtained results that were compared with known solutions from the literature,
it can be concluded that the CONOPT solver is suitable and effective for finding the optimal SVC location.
Also, the use of the CONOPT solver for optimal power flow problem solving over metaheuristic methods
was investigated. It was shown that the CONOPT solver is more accurate than classical methods, and more
efficient and reliable in comparison with metaheuristics methods.

In our future work, attention will be paid to the both economic and technical aspects of installing
SVC devices in grids. Also, attention will be paid to the mutual impact of the device for reactive
power compensation and devices for power energy storage to minimize power system losses and power
production costs.
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