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Abstract: A modified closed binary Brayton cycle model with variable isothermal pressure drop
ratios is established by using finite time thermodynamics in this paper. A topping cycle, a
bottoming cycle, two isothermal heating processes and variable-temperature reservoirs are
included in the new model. The topping cycle is composed of a compressor, a regular combustion
chamber, a converging combustion chamber, a turbine and a precooler. The bottoming cycle is
composed of a compressor, an ordinary regenerator, an isothermal regenerator, a turbine and a
precooler. The heat conductance distributions among the six heat exchangers are optimized with
dimensionless power output as optimization objective. The results show that the double
maximum dimensionless power output increases first and then tends to be unchanged while the
inlet temperature ratios of the regular combustion chamber and the converging combustion
chamber increase. There also exist optimal thermal capacitance rate matchings among the working
fluid and heat reservoirs, leading to the optimal maximum dimensionless power output.

Keywords: finite time thermodynamics; modified binary Brayton cycle power plant; power output;
energy saving; heat exchanger optimization

1. Introduction

Due to the characteristics of high power density (PD), small vibration, high automation, low
operating pressure and easy lubrication, gas turbine plants (Brayton heat engine cycle) are
extensively applied in the fields of aviation, energy, transportation, etc. According to the different
working fluid (WF) circulation modes, the Brayton cycle is divided into open and closed cycles, and
many works concerning the classical thermodynamic analyses and optimizations for various
Brayton cycles have been performed [1-3]. The WF of closed Brayton cycle is not directly connected
with the atmosphere, and does not participate in the combustion process. Hence, it is applied to
convert nuclear energy, geothermal energy, solid fuel and other primary energy into electricity
energy.

For the case of simple heating, the temperature of the gas elevates in the direction of a duct
when the subsonic compressible gas flows through the smooth heating duct with a fixed
cross-sectional area. For the case of simple cross-sectional area change, the temperature drops when
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the gas flows through the smooth adiabatic duct with a reduced cross-sectional area. Based on these
two gas properties, the isothermal processes can be realized when the subsonic compressible gas
flows through the smooth heating duct with a reduced cross-sectional area. Vecchiarelli et al. [4]
presented a combustion chamber where the WF could be heated isothermally. The introduction of
this type of combustion chamber could effectively improve the thermal efficiency (TEF) of the
Brayton cycle, and reduce the emissions of nitrogen oxides and other harmful gases. Goktun and
Yavuz [5] applied the isothermal heating combustion chamber to the regenerative Brayton cycle,
and discovered the isothermal pressure drop ratio impacted the cycle performance significantly.
Based on [5], Erbay et al. [6] compared the optimal performances of an isothermal heating
regenerative Brayton cycle under maximum power output (PO) and maximum PD. Jubeh [7] found
the exergy efficiency was enhanced by adding the isothermal heating combustion chamber in
regenerative Brayton cycle. EI-Maksoud [8] combined the isothermal concept and double Brayton
cycle to establish a new cycle model. Based on [8], Qi et al. [9] derived the specific work and exergy
efficiency, and analyzed the impacts of different parameters on the exergy efficiency. All those
works were carried out by using classical thermodynamics.

Finite time thermodynamics (FIT) [10] have been extensively applied in the analyses and
optimizations of many thermodynamic systems. The purpose of FIT is to reduce the
irreversibilities of processes and cycles and to improve the energy utilization rates [11]. Plenty of
FTT studies have been conducted for various heat engine cycles, including the Novikov engine [12],
the Stirling engine [13], Rankine cycles [14-21], heated gas expansion process [22], thermoelectric
generators [23-26], the fuel cell hybrid cycle [27], the gas—mercury combined cycle [28], the
thermocapacitive heat engine [29], the Maisotsenko-Diesel cycle [30], the trigeneration cycle [31],
Dual-Miller cycles [32-34], Feynman’s ratchet [35], the Kalina cycle [36] and so on.

For the Brayton cycles, FIT studies have been also conducted for simple cycles [37],
regenerative cycles [38—40], multi-intercooling-and-regenerative cycles [41-43], the fuel cell-Brayton
combined cycle [44], Maisotsenko-Brayton cycles [45,46], Brayton cycle-based cooling, heat and
power combined cycles [47,48] and so on.

For the Brayton cycles with isothermal heating modification, Kaushik et al. [49] optimized the
regenerative Brayton cycle with isothermal process whose optimization objective was the PO. Tyagi
et al. [50-56] optimized the performances of the isothermal heating modified simple, regenerated
and intercooling Brayton cycles with different optimization objectives. Based on [49-56], Wang et al.
[57,58] and Tang et al. [59,60] analyzed and optimized the endoreversible simple, irreversible
simple and irreversible regenerative Brayton cycles with isothermal processes. Arora et al. [61]
optimized the regenerative Brayton cycle with isothermal process by employing the NSGA-II
algorithm.

Based on El-Maksoud’s classical thermodynamic model [8], Qi et al. [62] established a closed
endoreversible binary Brayton cycle model with two isothermal processes, without internal
irreversibility, and coupled to constant-temperature reservoirs (CTRs). They derived the functional
expressions of PO, TEF, PD and ecological function, respectively. The impacts of different
thermodynamic parameters on the relationships among performance indexes and the pressure ratio
of the topping cycle were analyzed, and the heat conductance distributions (HCDs) among heat
exchangers were further optimized.

Based on the previously established cycle models in [8,62], a modified closed binary Brayton
cycle (MCBBC) with variable isothermal pressure drop ratios and internal and external
irreversibilities will be established by using FTT in this paper. The HCDs will be optimized with
dimensionless PO. The influences of different thermodynamic parameters on the optimal
performance will be analyzed, and the thermal capacitance rate matchings (TCRMs) among the WF
and the heat reservoirs will be also discussed.

2. Cycle Model

Figure 1a shows the schematic diagram of the MCBBC with two isothermal heating processes
[8]. A topping cycle and a bottoming cycle are included in the model. The topping cycle is
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composed of a compressor (Com1), a regular combustion chamber (RCC), a converging combustion
chamber (CCC), a turbine (Turl) and a precooler (PC1). The bottoming cycle is composed of a
compressor (Com2), an ordinary regenerator (OR), an isothermal regenerator (IR), a turbine (Tur2)
and a precooler (PC2).

TIIZ T, TII 4 TIM

(b)
Figure 1. (a) Schematic diagram of the cycle [8]; (b) T-s diagram of the cycle.

Figure 1b illustrates the T-s diagram of the MCBBC. In the figure, processes 1 -2, 2—3,
354, 45, 556, 67 and 7 —1 represent the irreversible adiabatic compression, isobaric
heating, isothermal heating, irreversible adiabatic expansion and three isobaric exothermic processes
of the WF in Com1, RCC, CCC, Turl, IR, OR and PC1, respectively. Processes la —2a, 2a —3a,
3a >4a, 4a—>5a and 5a —la represent the irreversible adiabatic compression, isobaric heating,
isothermal heating, irreversible adiabatic expansion and isobaric exothermic process of the WF in
Com2, OR, IR, Tur2 and PC2, respectively. Processes 1 —2s, 4—5s, la —2as and 4a — 5as are
the isentropic processes corresponding to the processes 1 -2, 4—=5, la—2a and 4a— 5a
respectively.

It is assumed that the WFs of the topping and bottoming cycles are the same, both of which are
ideal gases. The specific heat at constant pressure, thermal capacity rate, specific heat ratio, mass
flow rate and gas constant of the WF are C,, C,,
and m=(k-1)/k. The temperatures and pressures at different state points are signed as 7, and P,

k, m and R,, respectively, where C,=Cm

(i1=1,2,3,4,5,6,7,1a,2a,3a,4a,5a,2s,5s,2as,5as ), and the ambient temperature is 7, . The inlet
temperatures of the outer fluids in the RCC, CCC, PC1 and PC2 are T,,, T,,, I,, and T,,, and the
outlet temperatures of outer fluids in the RCC, CCC, PC and PC2 are 7,,, T,,, I;, and T,,,
respectively. The thermal capacity rates of outer fluids in the RCC, CCC, PC1 and PC2 are C,,

C,,, C, and C,,, respectively. The pressure ratios in the Coml and Com?2 are 7, andr,

com om2 /

and the isothermal pressure drop ratios at the CCC and IR are #, andr,, respectively. The heat
conductances of the heat exchangers for the RCC, CCC, OR, IR, PC1 and PC2 are U,

(j=HL,H2,R1,R2,L1,L2), and the corresponding effectivenesses are E; namely:

1=exp[-N,, (1= Chpin / Crpinar)] (1)
1 - (CHlmin / CHImax ) eXp[_]\[Hl (CHlmin / CHImax )]

E, =

Ey, =1=exp(=N,;,), Egy = Ny / (N +1), Ey =1—exp(=N,,) (2)

E = 1=exp[=Ny, (1= C i / Crima)] 3)
- 1 - (Clein / Cleax)eXp[_NLl (Clein / Cleax )]
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1—exp[-N,,(1-Cp,, / Craa)]

E B = 4
- 1 - (CL2min / CLthLr ) eXp[_]vlj (CLZ/m'n / CLZmax )] ( )
where C,,,,,. = max{Cw/.,Cm} v Chtimin = min{cw/" Cui}r Crime = max{wa s Cut s Cripin = min{cnf’ Cut,
Cpype =max{C,,C,,} andC,,, . =min{C, ,C,,}. The numbers of heat transfer units for the heat
exchangers are calculated as:
Ny =Upy, /CHlmin’ Ny, =Uy, 1 Cyy ®)
NRI = URI /waa NR2 = URZ /wa (6)
Nuy=U,/Cpp> Ny =U L 1 Cyy (7)
When CH]max = CH]m[n 4 Cleax = Cle[n and CLZmax = CLZmin 4 Equations (1)’ (3) and (4) are
simplified into:
Eyy =Ny / (Ngy +1), Epy = Ny /(Npy +1), Epy = Npp /(N +1) 8)

The efficiencies in the Com1, Com2, Turl and Tur2 are 7., Hum, Mun and 7., respectively:

Neom = (T =T /(1 =T)) ©)
Heomz = (Daas =T1,) 1 (1o = Ti,) (10)
N = (L =T) (T, = T5,) (11)
Mua = Loy =T5,) 1 (T, = Ty (12)

The heat absorbing rates of WF in the RCC, CCC, OR and IRare O, ,, O, ,, O,,,, and O, ..,
and the heat releasing rates in the PC1 and PC2 are Q, , and 0, ,, . They are calculated as:

0,3 =Cy (T =T,,) = C\y (T, = T,) =y, Eyy (T, = T5) (13)
Oy 4 =Cppy(Tyy =Ty) = Copy By (T = T) = (VS = V) /2 (14)
Oro 50 =Coy (T, =T,) = C, (T, = T,,) = C, E,y (T, - T,,) (15)
Ospaa =Cop (I, =T) = C, Epy (T, = T,,) = iV, = V3.) | 2 (16)

Q7—1 = Cw/' (T7 _];) = CL] (TLz _TLI) = CL]minEL] (T7 _Tu) (17)

QScz—lcl = Cw/' (I, —T,,)=Cp, (T, —T;3) = Cpy, EL (T, = T15) (18)
The power output and thermal efficiency of the cycle are W and #, respectively:
W= Q'273 + Q'374 - QSa—la - Q7—l (19)

n=W1(0,;+0,,) (20)

Processes 3—4 and 3a—4a are the isothermal ones, and the heat absorbing rates of the two
processes are:

- . 4 .
O,y = rilh, =) =] vdp =R, T, Inx, 1)

. . . (4a .
Q3a74a = m(h4a _hSa)_ mJ.:;a Vdp = ngT;a ln n-m (22)
Processes 1-2s, 1-2as, 4-5s and 4a-5as are the isentropic processes; namely:

T’Zs /TI = ﬁ:;ml =X, T‘Zas /Tia = ﬁ:(;mZ = xa (23)
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T;t /]; = ﬂ.m ﬂ.m = xy? Tl‘a /Y;a = ”:;mlﬂ.t’:: = xaya (24)

coml“%t

where x, y, x, and y, are the parameters of temperature ratios which can be calculated by the

pressure ratios.
The upper limits of z, and =z, are 1, which means that the isothermal heating is not used.

When =z, <1 or =x, <1, the topping or bottoming cycle adopts the isothermal process. The

isothermal pressure drop ratios must meet the following constraints:

T 2 T oy 2 T (25)
—C (k—D)(M}-M?
Inrz, = Pk DM; ~M;) =—0.7(M} -M?) (26)
2Rg
~C (k—=1)(M}, —M:
Inz, = »( ;(R 4a 30) = _(),7(Mfa _M;a) 27)
g

where M, and M, (M,, and M, ) are the Mach numbers at the inlet and outlet of CCC (IR),
respectively. If M, =M, =0 and M,=M,, =1, (M;-M;) and (M; —M;) get their maximum
values of 1, and z, and =z, get their minimum values of 0.4966. For the initial velocity of the WF,
the Mach numbers satisfy M,=M,, =02 and M,=M,, =1, and the corresponding minimum
values of z, and 7, are 0.5107. At the same time, # must be greater than or equal to zero;
otherwise, the cycle is meaningless.

The major difference between the model in this paper and that in [8] is that all the heat transfer
losses in the six heat exchangers are considered in this paper. This is also the major difference
between classical thermodynamic model and FTT model. The major differences between the model
in this paper and that in [62] are two aspects: One is that the irreversible compression and expansion
losses are considered in this paper; this is also the major difference between the endoreversible
model and the irreversible one. Another is that the heat reservoirs are assumed to be
variable-temperature ones in this paper; this is one of basic characteristics of practical closed
engineering cycles.

According to the above model, the dimensionless PO # and TEF 5 can be given by:

laa,+T,;;,—Cynly(@a, +T,)/ Cw/ YCoa By +Coppin By (@a+Ty))

7 - +C, (a, —a;) = C, [a,a, 1]y, | (e +x =1 +a5] (28)
waT(‘)
C“.’/'[(ala27lcoml ) / (ncoml +x— 1) + a3 — a4 + aS]
7=l (29)

Co By i-Cripin B (@ay, +Tyy,) / Cnf +aa,+ T3 +Cpy By (@a, +T)

1min 1min

where a,, a,, a,, a, and qa, are listed in Appendix A.

If Equations (21) and (22) are not considered when solving Equations (28) and (29), the final
analytical solutions for W and # of the cycle cannot be obtained. Considering Equations (21) and
(22), the values of x and y in Equations (28) and (29) are obtained by numerical calculation, and

the corresponding values of # and 5 can be obtained.
If C

ms Cwrr Cus Cow Eyiy Eyyy Epy Epyy Epy Epyy et s Meoma s M and 7, take
different values, the model can be converted into different special models; Equations (28) and (29)
can be reduced to the corresponding dimensionless PO and TEF respectively, which have a certain
universality.

When 7., = em = Mt = Hu =1, Equations (28) and (29) can be reduced to the dimensionless
PO and TEF of a modified closed endoreversible binary Brayton cycle with two isothermal heating

processes and coupled to variable-temperature heat reservoirs (VIHRs):
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CHzEHz {blbz + TH3 - CHlminEHl (blbz + THI) / Cnf} - Cw" [blbz /x+ b3 ] + CHlminEHl
(blbz + THI ) + Cw/* (b4 - bs) (30)
wa]l)

W:

~ C, [bb, ! x+b,—b, +b]
n=1- (31)

CH2EH2{b1b2+TH3_[CH EHl(b1b2+THl)]/wa}+CH EHl(b1b2+THl)

1min 1min

where b, b,, b,, b, and b, are listed in Appendix A.
When C,, =C,, =C,, =C,, >, Equations (28) and (29) can be reduced to the dimensionless
PO and TEF of a modified closed irreversible binary Brayton cycle with two isothermal heating
processes and coupled to CTRs:
CiElec, + Ty = Ey (e, + Ty )= CleoMom | (egm + X =D+ 3]+ (0, +T)))
7 CoEy +C, (e, =¢5) (32)
C T

wf =0

Cw/ [Clczﬂwm] / (ﬂcoml +x— 1) +c,—c, + CS]

CinEpplec, + T, —(cc, +TH1)]+CW/EH1(CICZ +T,)

n=1 (33)
where ¢, ¢,, ¢, ¢, and ¢, arelisted in Appendix A.

When #,,.; = ewm =M = T =1 and C,, =C,, =C,, =C,, >, Equations (28) and (29) can
be reduced to the dimensionless PO and TEF of a modified closed endoreversible binary Brayton
cycle with two isothermal heating processes and coupled to CTRs [62]:

_wa [dd,/ x+c]+CyprEy, [dle +T,—Ey(dd, + T, )] + waEm (dd,+T,)+
wa (d4 - ds ) (34)
C.T

wf*0

C,dd,/x+d;—d, +d;)
CHZEHZ[d]dZ +TH3 _Em (d]dZ +TH1)]+CW/'EH] (dle +TH])

W=

n=1- (35)
where d,, d,, d;, d, and d, arelisted in Appendix A.
When E, =E,, =E,, =0, Equations (28) and (29) can be reduced to the dimensionless PO and

TEF of a modified closed irreversible Brayton cycle with an isothermal heating process and coupled
to VIHRs:

waxy(CHZEHZTHS +CinEn ) +Cy

Llmin

Xy =Cpin B fn } + e{_xy[CHlminCw/'EHl +Cy,Ey, (wa = Coin B+ C

EHITHI{[wa _CHZEHZ +CL1minEL1(77mr1 _1)]
E, (C

1min

Llmin wf' (36)
W= “Corinin Ly )y =DXy =11, 13
Cif%xy
CHlminCleinEHlELlnturlTHl - 'xy{CleminE'HlTHI[vajr - CH2EH2 + CleinELl (;/lturl - 1)] + wa

(Con By Tys + Criin EL T+ V[C,0 Cp By + Copn By (Cp = Crpi Eg )1 - Ey

Cranin(Cop = Coprin By )0 =Dy =171, 13 (37)
xy{eleZ[CHZCWfEHZ + CriminEm (wa =Ci By )1+ Cotpin En T (Con By — wa) -
CiCo By Ty}

1min

where e is listed in Appendix A.

When E, =E;,=E,,=0 and C,, =C,, =C,, =, Equations (28) and (29) can be reduced to
the dimensionless PO and TEF of a modified closed irreversible Brayton cycle with an isothermal
heating process and coupled to CTRs:
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(Copr By Ty + waELlTLl )+ E, Ty, {[Cw’ =CyrEyy + waELl (M —=DIxy = wa
W = E; yn t +bb, {ELwa' (I=ED[yn = Dxy =1 1— [CW/EH +Cp By (1= Ey) v} (38)
wa]—;)xy
Cw/'EHlELlnturlTHl —x{E, Ty, [wa —Cy By + CW’ELI (Mt = DI+ (Cop By, Ty +C E
5= TL] )} + b]bZ {[Cw/'EHl + CHz (1 - EH] )Eh'z ]xy - Cw/‘ELz (1 - EHl )[xy(nturl - 1) ~ Nourt ]} (39)

xy{b b, [CyrEyy +EH1(CWf = CpEy )+ Ey (Cpr By — wa)T —Cyr By Ty}

When E, =E,, =E,, =0 and 5, =#,, =1, Equations (28) and (29) can be reduced to the

dimensionless PO and TEF of a modified closed endoreversible Brayton cycle with an isothermal
heating process and coupled to VTHRs [59,60]:

Cx{Cp,n O En T (v =D+ Cp By, [C Ty (v D+ € B Ty T v [+ €y
EyiCmEL [Cw/‘THl (x-D+ wa»Tle(l —x0)+ Copo By (T xy — Typy) 1+ Cw/x[cw : (40)
W= Ly (y=D+Cpo By, (T =T, )1}

waTO'x[Cj/fy - (wa - CHlminEHl)(wa - CleinE ])]

1min

Cw/'%x{Cleirzcvq/'ELlTLl (y-D+ CHzEyz[waTm (V=D+Cpn £, (T =T x0)]} +

CH]minEHl {CL]minELl[wa'THl (x_ 1) + Cu;/‘Tle(l _Xy) + CHZEHZx(Tley_ TH} )] + Cw/

_ x[Cw_/'Tm Y=D+C By (Tys =T 01}
Cw/];)x{CHlminEHl[Cj'f T,(y=D+ CHZCW/’EHz (Tys =T )+ CleinCw/'ELl (Ty, —T,xy)
+Ci,Crimin By B (T xy = Tyy3) ]+ CHZCW/'EHZ [Cw/‘Tﬂs =D+Cp,0 B (Tys = T,00)]}

(41)

When E, =E;,=E,,=0, C,, =C,,=C,, > and 7., =#., =1, Equations (28) and (29)
can be reduced to the dimensionless PO and TEF of a modified closed endoreversible Brayton cycle
with an isothermal heating process and coupled to CTRs:

x{waELJTLl =D+ Cp B [Ty (v =D+ E T T 0] + By {ELI[waTHl(x_ D+
W= waTux(l—xy)+ Co By x(T xy — Ty, )]+X[CM;/'TH1(y_1)+ Coi By (T =Ty, )1}

(42)
waZ)x[y -(I-E,)(1-E,)]
Tz)x{cufELlTLl (Y =D+Cp B[ T (v =D+ E, (T =T, 000 + Ey B, [Cw/ Ty (x=1)
+Cw;fTle(1 =xp)+ Cpy By X(Txy = T3]+ x[cnfTHl (=D+Cy Ey(Tys =T 1} 3)
Cw/‘Tox{EHl [Cw/'Tm (Y=D+Cp By (T =T y) + Cu;/‘ELl Ty, — T x0)+ Cu By E

(Txy =Ty )+ CopEs [Ty (y—D+ E, (TH3 —Tley)]}

When E,, =E, =E;, =E,, =0, Equations (28) and (29) can be reduced to the dimensionless
PO and TEF of a closed irreversible simple Brayton cycle coupled to VTHRs [37,63]:

{ncomlcwf = (L= + M / x)[(cwf = Climin B )X =1+ 100+ Moot Crtmin E0t BC ot 1min Bt

VI_/ _ TH] - {(x_1+ ncoml)[(cwf' - CHlminEH])(l_”tur] +I7tur] /‘x)+ CHlminEHl]_”comlcwf'}CL]minE

(44)
;/Icomlcwfz - (x - 1 + ;/Icoml )(wa - CHlminEHl )(wa - CleinELl )(1 - rlturl + rlturl / x)

n=1- ELE i Meom Tt A= Mn + Hiarr %) = Moy + =14 o YA = Ey YA =1y + 1 / X)] (45)
Ey T Meom = (X =14 Mg ) A= EL DA =1y + M /)] = Ey (X =14 70000}

When E,,=E; =E;,=E,,=0 and C,, =C,,=C,, >, Equations (28) and (29) can be
reduced to the dimensionless PO and TEF of a closed irreversible simple Brayton cycle coupled to
CTRs [37,63]:

{EHITHI {ncoml - (1 - nturl + ”turl /x)[(x_ 1 + ”coml)(l - EL1)+ ncomlELl]} - {('x—1+ rlcoml)
W= (A= Hrs + M/ X)A=E) + Egi 1= MooV E L}

ncoml - (X - 1 + ncoml )(1 - EHI )(1 - ELI )(1 - nturl + nturl / X)

(46)
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n=1- E i oomt En Tt A= Mon + Hart 7 X) = Hogmy + 6 =14 e A= Ey YA =11 + 1 / X)]

EH] {[ncoml - (x _l + ncoml)(l _ELI )(1 - nturl + ”turl / x)]THl _ELI (x_1+ ncolnl)}

(47)

When E,,=E, =E;, =E,, =0 and 5, =#,, =1, Equations (28) and (29) can be reduced to

the dimensionless PO and TEF of a closed endoreversible simple Brayton cycle coupled to VTHRs
[64]:

14 C minC minE E (x_l)(T —XT )
W = H1 L1 H1™L1 Hi Ll (48)
Clein waELl + CHlm[n EHI (wa - Cle[n EL])
n=1-x" (49)

When E,,=E;, =E;,=E,,=0, 1., =% =1 and C,, =C,, =C, =, Equations (28) and
(29) can be reduced to the dimensionless PO and TEF of the closed endoreversible simple Brayton
cycle coupled to CTRs [65,66]:
7 = E, .E, (1-1/x)(t,, —x7,)
Ey+E,—EyEy,

(50)
n=1-x" (51)

3. Optimal Heat Conductance Distributions

With 7 as the optimization objective, the heat conductances of six heat exchangers will be
optimized by fixing the total heat conductance (THC); namely, U, = ZUj
(j=H1,H2,R|,R2,L1,L2). The HCDs in the RCC, CCC, OR, IR, PC1 and PC2 are defined as:

u,=U,/U, (52)
where u; must meet the following constraints:

Du,=1,0<u, <1 (53)

The dimensionless PO of the MCBBC can be maximized by optimizing the HCDs. Finally, the

maximum dimensionless PO (17, ) and the corresponding optimal HCDs ((u,,); , ()5

w, )y (W,)y; , (ug); and (uy,); ) can be obtained. Moreover, the optimal isothermal
pressure drop ratios ((7,); and(x,); ) can be calculated based on the optimal HCDs. The values

or ranges of the variables are listed in Table 1. The flow chart of dimensionless PO optimization is
displayed in Figure 2. Calculate the negative number of the dimensionless power output, and then
the function “fmincon” in MATLAB is used to solve the minimum value. The parameters of
“fmincon” are: “TolCon” is 1076, “TolConSQP” is 300 and “TolFun” is 10-%.

Start

Calculate the dimensionless

‘ Input the known data power output by using Eq.(28)

Initialize the heat conductance
distributions

‘The function ‘fmincon’ in MATLAB
is used to determi the negative
number of the dimensionless power output is
the minimum

Calculate the isothermal pressure drop
ratios by using Eqs. (21) and (22)

Yes

Calculate thermodynamic
parameters under the maximum

Do the isothermal pressure drop ratios meet Eqs. (25) - (27)

and the heat conductance distributions meet Eq. (53) dimensionless power output

Yes End

Figure 2. Flow chart of dimensionless power output (PO) optimization.
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Figures 3a,b, 4a,b, 5a,b and 6 illustrate the relationships of the maximum dimensionless PO

(W,,.), the corresponding dimensionless PO (7, of the topping cycle, dimensionless PO

ax op )W max

xxxxxxxxxx

ma

(7ym and z,,)inthe Coml and Com?2, respectively.

Table 1. Values or ranges of the variables.

Parameters Symbol Initial Value Range Unit
Thermal capacity rate of outer fluid at RCC Cu 1.2 —— kW/K
Thermal capacity rate of outer fluid at CCC Cu, 1 —— kW/K
Thermal capacity rate of outer fluid at PC1 C, 1.2 —— kW/K
Thermal capacity rate of outer fluid at PC2 Ch 1.2 —— kW/K
Thermal capacity rate of WF Cy 1 —— kW/K
Specific heats ratio k 1.4 —— ——
Gas constant R, 0.287 ——  kI/(kg-K)
Ambient temperature T, 300 —— K
THC U 18 8-36 kW /K
Compressor efficiencies Noomt » Moomn 0.9 0.7-1 —_—
Turbine efficiencies Nt 7 M 0.9 0.7-1 ——
Inlet temperature ratio of outer fluid at RCC T 4 3-6.67 _——
Inlet temperature ratio of outer fluid at CCC Tys 5 3-6.67 ——
Inlet temperature ratio of outer fluid at PC1 7, 1 —_— —_—
Inlet temperature ratio of outer fluid at PC2 T3 1 —— ——
Pressure ratio at Com1 T, _— 2-20 _—
Pressure ratio at Com2 T, —— 1-6 ——

Figure 3a shows that W, increases first and then decreases as «,,, or 7, increases. There

com com.

Z), so that VI_/H achieves the double

nax

and (7,

is a set of optimal pressure ratios ((r, com2 )7

coml )Wmax 2

maximum dimensionless PO W, This is because when 7, gradually increases, O, ,, O,

max,2 *
and Q. ,, gradually reduce, and Q,, slightly increases. With the increase in =,,, O,
decreases, O, , decreases slightly, Q,, decreases first and then increases, and Q, ,, decreases.

Under the given conditions, W

max,2 /

(T, and (7))  are approximately 1.01, 7.7 and 2.8,

respectively.

Figure 3b shows that (¥, increases first; then decreases as 7 increases; and remains

coml
A

op )W

substantially unchanged with the change of 7, decreases at first and then tends to

com2 * ot ) Wmax

remain unchanged with the increase in z the value of which is much smaller than that of

coml /
w, . This is because 7T decreases at first and then tends to be constant as 7

com

OP)WM , increases. As

7., increases, (W, increases at first and then tends to be constant when x, , is smaller;

C

w,

o7,

o)y increases at first and then decreases to zero when 7, islarger. Thatis, 0,,;,and O, ,,

ma

increases at first and then becomes constant with the increase in 7, or 7

com com2 *

Figure 4b shows that (z,); remains unchanged as r,,, or 7z, increases, and is always

max coml
located at the lower limit. This indicates that the degree of the isothermal heating in CCC always

reaches the maximum. Therefore, O, , only slightly changes with the change of 7, or

com2 *
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When 7«

coml

or 7 and reaches

com2

is smaller, (z,); decreases slightly with the increase in r,

coml
the lower limit with the increase in 7, . That indicates that under this condition, the degree of the

and 7«

com2

does; when 7«

coml

isothermal heating in IR increases as

coml

or 7

com2

are larger,

(m,)y  increases with the increase in «,,, or 7z,,; when (W, is zero, (m,); remains

o).

substantially unchanged as «,, or r,, increases.

oml c

0.9 S A J° ‘\“““““\\ “‘§§§§\‘
Iig 0.8 \;‘E 0.60 Wﬁ“&&“\\ (U
= W 7,
0.7 w01 “‘ Fooi_.
. o \\\\\\\\\\\\\\\\\\|
05 0.15F ;iiéiillllllll"l 6% :’” :: Z
= |
0.1 0.00 A\
N =
(a) (b)
Figure 3. (a) Relationships of Wmax versus 7, and 7. ,; (b) relationships of (VI_/'top )7 and
(W_/bm )W versus ”coml and ”comZ .
0.45 ’:\ 0.68F I (i,
0.38 \ P I i “"’ I
RN o //////l///-""""’”””;%%
s SR = i
]I I i
\ li‘ 0. 56 III
Ty, =4 ~ T =
Iv” . 0.50 [t: : 18kW/K
N = 0.9
[/, =0.9
6 com2 Ny = 0.9
N, =0.9
() (b)
Figure 4. (a) Relationships of #; versus 7, , and 7, ; (b) relationships of (x,); and
(r,)7 versus 7., and 7., .
\‘:é 0. 36 III III ()
:-;f 0.18p
0.09F T, =4
0.00 (;i\ ; I‘Hk‘»/}(
Nt = 0.9 0.00
Ny = 0.9 93
Ny = 0.9 coml
N = 0.9
(a) (b)

Figure 5. (a) Relationships of (u,,); and (u,,); versus 7, and 7« ,;(b)relationships of

(u)y and (up,)y  versus 7, and 7T, .

com
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NNy
NN
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N
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0.08

0.01 &5 o
(S
gz

U, = 18kW/K

T

0.00
=0.9

B 0.9
coml 3 . com2

and 7

com2 *

Figure 6. Relationships of (uy,); and (ug,); versus 7,

coml

Figure 5a shows that when (u, ), is not zero, (u,,); increases slightly at first and then
decreases slightly with the increase in «_; (u,,); decreases first and then tends to remain

unchanged with the increase in 7,,, . When (ug,); iszerobutbothof (z,); and (W,

com2

o) y_ are

or 7

coml com2

not zero, (u,,);  decreases as 7, increases; when both of (u;); and (z,); are

zero but (W,,);  is not zero, changing 7, or 7,

(t,)y  and (7,

oml

does not change (u,,); ; when (u,); |,

max

are zero, (u, ), decreases with the increase in 7,

coml

or ﬂ-comZ’ (uH2)W

max

ot)W‘ X

ma

OF 7., and is far less than (u,); . With the decrease in (uy,);

max

has nothing to do with

oml

E,, decreases, and then Q,, decreases. (u,,); remains basically unchanged, E;, is constant

and the variation of Q3_ , is very small.

increases; it

coml

Figure 5b shows that when (u); is not zero, (u,); increases as 7,

decreases first and then increases slightly as 7,

om2

increases; (u,,); decreases first and tends to

it increases first and then tends to be the same with the
and (7,

remain unchanged with the increase in .

coml /

. When (u,,); is zero but both of (,

increase in 7, i

com2

are not zero, (u,);

max

o7,

decreases sharply with the increase in 7

coml

or 7

com2 /

while (u,,); increases sharply with the

increase in 7, . When both of (u,); and (z are zero but (7, is not zero,

coml

or 7

com Wi, o7,

(u,,); increases slightly with the increase in 7,

coml

When (uy); , (,); and (7,

or T

com2 /

and (u;,); remains basically

unchanged with the increase in 7

coml

or 71

com2 *

o)y are Zero,

nax

or 7 increases.

com2

(u,); decreasesand (u,,); increasesas T,

coml

Figure 6 shows that (u,), decreases to zero with the increase in 7, and increases at first

com

and then decreases to zeroas 7,

. When (x nr
or 7., When both of (z,), and (W,

increases. When (x

)y, isnotzero, (ug,); increases with the

increase in 7, is zero but (W,

coml

or 7@

com2

a )Wm is not zero, (u RZ)WW decreases with

the increase in 7

coml

ot )W § are zero, (uRZ )W inCreaseS

with the increase in 7

coml

or 7

com2

- Because increasing (u,); leads to the increases in E;, and

0., ., 50 as to avoid the negative value of (%, namely, inverse dimensionless PO of the

)i,
bottoming cycle.

According to the numerical calculation, the influences of the temperature ratios, compressor
efficiencies, turbine efficiencies and THC on optimization results are further analyzed. Figure 7a,b
illustrates the relationships of the double maximum dimensionless PO ( ¥, , ) and the

corresponding TEF (7, ) versus the temperature ratios (7, and7,,). As can be seen from figure

7a,b, both W, , and 7 , increase first and then tend to be unchanged with the increase in 7,

coml

There is an optimal temperature ratio (z,,),, which makes %,

opt max,2

or 7

com2 *

reach the optimal. The
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corresponding fitting expression is (t;),, =1.17,,+0.14 , and the correlation coefficient is

r=09964 . As for n; , there also exists (7;),, that satisfies the fitting expression:

opt
(Ty3)op = 1.1z, +0.18, and its correlation coefficient is also r=0.9964 . In the actual design process,
7, and 7,, should meet the relationship similar to (z,,),, =1.17,,+0.14 or

(Ty3)op =1.17,, +0.18 , in order to obtain as much W,

max,2

and 7;  as possible and reduce the

requirement for high temperature resistances of materials.

. 5

0.10 F

7 A N
\ TR
7 R
ST AR

AT
Uy

S
L

J, = 18KW/K
=09

U, = 18kW/K

(@ (b)
Figure 7. (a) Relationships of Wmax,z versus 7,, and 7,;; (b) relationships of #; versus 7,
and 7,;.
Figure 8a illustrates the relationships of ,,,, (VI—/top)W N Wi o and 7 - Versus 7.

It shows that W

max,2 /

Ny and (I/I_/b )i , increase and (W, decreases slightly with the

increase in 7,,,. With the increase in 7,,,, 0, , and O, basically increase. With the increase in
Nemss Os, Temains substantially unchanged, O, ,, decreases and Q,, ,, increases. The amount
of change in W, , is mainly affected by that in Q;,_,, . It should be noted that when 7, <0.75,

W i Wi ~and o, do not exist and are indicated by dashed lines.

max,2

o -

Figure 8b illustrates the relationships of (7)) + (Tem)y versus

max,2

¢ (nt)Wmaxl and (ﬂm )Wmax,z

Nooms - 1t sShows that (7,

wm )y, , decreasesand (m,);  increasesas 7, increases.The decreasein

(Zeom )y, Teduces T,, thereby increasing 0O, ;. Under the given condition, 7, is less than T;,
when 7, isless than or equal to 0.76. As 7, increases, (z,);  remains the lower limit, which
indicates that the degree of the isothermal heating in CCC always reaches the maximum. As 7,
increases, (m,);  decreases to the lower limit, which indicates that increasing 7, improves the

degree of the isothermal heating in IR.
Figure 8c illustrates the relationship of (u;);  versus n,,. It shows that as 7, decreases,

(”Hl)W

max,2

, () and (), , Temains basically unchanged; (g decreases first and then

max,2

tends to remain unchanged; (u,,); increases first and then tends to be unchanged; (ug,);

increases.
Similarly, both of %, , and Ny, increase as 7, #,, and 7,, increase. The effects of
Mot @nd 7., on W, ., and 7, are greater than those of 7, and 7,,- (W) increases

max,2

with the increases in 7, and 7,,, while (7, decreases with the increases in 7, and

op )Wm.ax,z

M- Phoa iz, decreases with the increases in 7, and 7,,, while (W, increases with the

op )Wmax,z
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increases in 7,,,, and #,, . It should be noted that when 7, <0.74, W, ,, n; , (me )y and

max,2 max,2

Wi _ also do not exist. When 7, >0.74, the change of 7, has little effects on W, and

ny . Within the given range, the changes in 7,

max,2

and 7 . do not exceed 7% and 4%,

respectively. In practical design of improving cycle performance, it is suggested to give priority to
appropriately increasing #,, and #,, . Then one can choose to increase #,,, and #,, ,

successively. Apart from this, ., and 7 , increase as U, increases.

Lo 0.43 12.50 0.71
F= =
10.50 = =~ Jo.67
0.42 ) \
0.41 5
o
sk
0.40 =
K
0.39
[
. 0.38 0. 50 L L L L L 0. 47
0.70 0.75 0.80 0.85 0.90 0. 95 1. 00 0.70 0.75 0.80 0.85 0.90 0.95 1. 00
Meoma ’7c0m2
(a) (b)
0.5
= =N
\
L__-
0.4 .
~ )y,
1
$0.3F \
,-‘;S_ (l/”)ﬁrxm\l
& 0.2 {@u, () )y,
—
’I () )
0.1F )
R
L - — :_’,———
O. 0 — 1 1 1 1 1
0.70  0.75 0.8 0.8  0.90  0.95 1.00
7/c0m2
()
Figure 8. (a) Relationships of W_, ., Ny (me)WW2 and (W, )WW2 versus 1, ; (b)

relationships of (7., )5

max,2

’ (ﬂcomz )W

max,2

, (7rt)me_Z and (ﬂtﬂ)%ax.z versus 1., (c) relationships of

(u;)y . versus 7, .

4. Optimal Thermal Capacitance Rate Matchings

The W of the cycle also affected by the TCRMs. By taking ¥ as the optimization objective,
TCRMs are optimized. Figure 9a,b illustrates the relationships of W, and ny . versus Cy, /C,

and C,,/C,, when C,/C, =1 and C,/C,, =1.2.The figures show that both of W__ and Ny

max

increase, and then tend to remain constant with the increase in C,,/C,, or C,,/C, . These

indicate that there is a set of the optimal C,,/C,, and C,,/C,,

value. Similarly, there is a set of the optimal C,,/C,, and C,,/C,, , sothat 7, gets the optimal

so that W, gets the optimal

value.

Figure 10 illustrates that the effects of C,,/C,, on the characteristics of W, —C,,/ C, and

max

ny —Cy/C,, when C,, =1 and C,,/C,, =12. It shows that when W.. and 7, reach the
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optimal values, C,,/C,, mainly reduces the corresponding C,,/C,, , and has little effect on the
optimal values of W, and 75, .Similarly, C, /C,, mainly reduces the corresponding Cy /C,,

when W, and 5, reach the optimal values, and has little effects on the optimal values of W,

'?"

and 7; .
I Il

]

.5 1.5 . 1.5
0.00.0 0.00. 0
(a) (b)
Figure 9. (a) Relationships of Wmax versus C,, /C,, and Cy,/C, ; (b) relationships of 7y
versus Cy, /C,, and Cy,/C, .

o}
.
D0
[
e

CufCn - 0.83]

T8 9 10
Figure 10. Effects of C,, /C},, on the characteristics of Wmax -Cy,/C,, and 5 —C, /C,, .

5. Conclusions

Based on the previous established models in [8,62], a modified closed binary Brayton cycle
model coupled to VTHRs with two isothermal heating processes and variable isothermal pressure
drop ratios is established by using FIT in this paper. The HCDs of the six heat exchangers are
optimized, and the effects of 7,,, 7,5, Ur, Negmis Meomas Munts Muns Cui/C,, and C,, /C,, on the

optimal performances are analyzed by taking # as the optimization objective. The results show

. and 7, which makes W,__ reach VI_/M,Z =1.01. 7,, and 7,, have

com

that there is a set of «

certain linear relationship ((z,;),, =1.17,,+0.14, and the correlation coefficient is r=10.9964 ),
which makes Wmax’z optimal. Wmax’z increases with the increases in U, , #,.., #wms M1 and
N - 1t should be noted that when 7,<0.75 or n,,<0.74, W, , does not exist. W, ,
increases first and then remain unchanged with the increasesin C,,/C,, and C,,/C,,. This cycle

can effectively improve energy efficiency and reduce emissions of nitrogen oxide and other harmful
gases. Additionally, the optimal results can guide the practical designs for the gas turbine plants.
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Nomenclature

a,bc,demxy

SSTSHFQZETTOO

Greek symbol
n

T

T

Subscripts
bot

com

top

1,2,3,4,5,6,7,1a,2a,3a,4a,5a,2s,5s,2as,5as
Abbreviations
CCC

CTR

FTT

HCD

IR

MCBBC

PO

PD

OR

RCC

TCRM

TEF

THC

Tur

VTHR

Intermediate variables

Thermal capacity rate (kW/K)

Specific heat at constant pressure (kJ/(kg-K))
Effectiveness of heat exchanger

Specific heat ratio

Mach number

Number of heat transfer units

Heat absorbing rate or heat releasing rate

Gas constant (kJ/(kg-K))
Temperature (K)

Heat conductance (kW/K)
Heat conductance distribution
Power output(kW)
Dimensionless power output

Efficiency
Pressure ratio
Temperature ratio

Bottoming cycle
Compressor

Hot-side heat exchanger
Cold-side heat exchanger
Regenerator

Isentropic

Converging combustion chamber/isothermal regenerator
Total

Turbine

Topping cycle

Working fluid

State points

Converging combustion chamber
Constant-temperature reservoir
Finite-time thermodynamics

Heat conductance distribution
Isothermal regenerator

Modified closed binary Brayton cycle
Power output

Power density

Ordinary regenerator

Regular combustion chamber
Thermal capacitance rate matching
Thermal efficiency

Total heat conductance

Turbine

Variable-temperature heat reservoir
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WEF

Working fluid
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