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Abstract: A method of determining the effective thermal conductivity of moist capillary-porous
materials has been proposed, in which calculations are carried out while taking into account all
components of the system (solid, liquid and gas) at once. The method makes it easy to take into
account the way water is distributed in the pore space of the material, either as isolated inclusions
(drops) or as a continuous component, depending on the moisture content of the material. In the
analysis of heat transport in moist capillary-porous materials, the theory of generalized conductivity
is used and the structure of moist material is modeled using an ordered geometric structure consisting
of identical unit cells in the form of a cube. An equation is obtained for calculating the effective
conductivity of capillary-porous materials with isolated and continuous liquid inclusions, with
adiabatic and isothermal division of the unit cell. The proposed method is compared to the previously
proposed method of determining the effective thermal conductivity of moist materials, in which the
three-component system is gradually reduced to a binary system, showing disadvantages of this
method compared to the currently proposed. It has been shown that the proposed formulas grant the
possibility of a sufficiently accurate prediction of experimental results using the experimental results
of the thermal conductivity of moist aerated concrete.

Keywords: thermal conductivity; porous structure modelling; capillary-porous materials

1. Introduction

Capillary-porous materials, commonly used in building envelope structures, are exposed to
intense thermal and hydric influences during operation. It follows from the data published in a number
of works (e.g., [1–3]) that as a result of these influences, the moisture of external wall materials ψmay
increase to a value several times exceeding the values adopted when designing a building. Increasing
the moisture content of wall materials causes a decrease in their thermal insulation properties and other
negative effects. Therefore, the thermal conductivity of materials should be determined taking into
account real operational moisture designated with appropriate calculation or experimental methods
when designing external walls.

The analysis of works [4–7] shows that the correct experimental assessment of the thermal
conductivity of moist porous materials is very difficult, because the measurements obtained for the
same material with the same average moisture content may differ significantly (in some cases even
several times). First, this can be explained by the character of wetting the pore surface with liquid
(partial or total), the character of moisture distribution in the volume of sample (even or uneven),
the measurement method (stationary or non-stationary), etc. Therefore, to determine the thermal
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conductivity of moist materials engineering calculation methods based on mathematical modeling of
the coupled heat and moisture transport process should be used and developed.

Literature presents numerous formulas for determining thermal conductivity of dry porous
materials using methods developed over recent decades. Many of those formulas were considered
in [8,9]. However, it is difficult to get the compliance of the calculated and experimental values of
thermal conductivity for moist materials, which is shown by the results of works [4,5,10] in which the
Krisher method or its modification has been used. The formulas used in the abovementioned works
contain empirical coefficients, the determination of which is often fraught with errors. In addition, only
in [5] the nature of the distribution of moisture in the liquid phase in the material is considered, which
can only partially wet the material skeleton by concentrating locally in the form of drops or completely
wet the material skeleton, depend on the level of moisture. The transition from partial to total wetting
of the skeletons is accompanied by a significant increase in the effective thermal conductivity of the
material. Moreover, the effect of the resistance of the porous medium to vapor diffusion is not taken
into account in a sufficient way when assessing the effect of vapor diffusion on heat transfer.

Thus, due to the complexity of the problem of coupled heat and mass transport in capillary-porous
materials, modern science does not propose widely recognized methods for calculating the conductivity
of moist building materials, the results of which can be sufficiently confirmed by experimental
measurements. Therefore, this paper is another attempt to develop a simple calculation method
enabling the determination of the thermal conductivity of capillary-porous materials, which can be
used to solve various engineering problems (design of building partitions, assessment of existing
buildings, etc.). The first attempt was to develop a calculation scheme presented in [11], proposed for
determining the effective thermal conductivity of polyurethane foams. The dependencies presented in
the current publication are the result of further work in the chosen direction, aimed at simplifying
the calculation procedures and extending the possibility of their application to other materials with
capillary-porous structure.

2. Problem Description

Wet capillary-porous materials can be considered as heterogeneous systems of three components,
consisting of a solid skeleton (1), gas (2) and liquid (3). With the known structure of such a system,
its thermal conductivity λ (W/(m·K)) is a function of the thermal conductivity of components λi and
their volumetric concentrations mi (m3/m3); that is:

λ = f(λi; mi), i = 1, 2, 3. (1)

To determine this dependency, it is expedient to use well-founded and effective methods of
the theory of generalized thermal conductivity, using geometric models of the material structure [5].
Two different approaches to solving this problem are possible. In the first approach, the method of
gradual reduction of the multi-component system to subsequent binary systems is used, while in
the other, thermal conductivities λi and volumetric concentrations of all components are taken into
account simultaneously.

Let us consider the scheme of the first method for the determination of the effective thermal
conductivity of a three-component system. During the first stage of calculations, one of the components
is excluded from the system, for example component 3. Then a binary system is obtained, in this
case consisting of components 1 and 2, already with different concentration values m1

′ and m2
′

(m2
′ = 1 −m1

′), related to m1 and m2 by dependencies:

m1
′ =

m1

m1 + m2
; m2

′ =
m2

m1 + m2
. (2)

Then, based on known formulas for binary systems, presented for example in [4,5,8], the thermal
conductivity λ12 is determined. When choosing these formulas, the structural properties of the binary
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systems under consideration should be taken into account, due to the liquid and gas being distributed
in the pore space of the material in the form of continuous components or isolated inclusions.

During the second stage, the third component with the thermal conductivity λ3 and concentration
m3, as well as the first binary system with the thermal conductivityλ12 and concentration m12 = m1 + m2

are considered to be the next binary system. The formulas for the binary system are repeated and the
effective thermal conductivity of the three-component system is calculated.

In the case under discussion, the combination of component indices (the order in which components
are taken into consideration) is 12 & 3. For a three-component system, two more combinations of
indices are possible: 13 & 2 and 23 & 1. As emphasized in [5], the order in which the components are
reduced to binary systems has an impact on the calculated value of the effective thermal conductivity
of the considered material (system).

The above-mentioned disadvantage can be avoided by using another, more justified approach,
which simultaneously takes into account the thermal conductivities and volume concentrations
of all three components. However, to date, formulas for calculating the thermal conductivity
of three-component systems, which would take into account the structural properties of wet
capillary-porous materials, are not known. The work here provides a solution to this problem
based on the methods of the theory of generalized conductivity.

3. Models of the Geometric Structure of Binary Systems and Dependencies for Determining
Their Thermal Conductivity

Various methods of modeling the structure of capillary-porous building materials are used to
analyze the heat transport process in such materials. In this work, a widely used method of transition
to the unit cell has been used. In porous materials, you can always isolate binary systems with
a continuous structure and isolated inclusions. For example, if in open-porous materials water
moistens the entire surface of the solid skeleton, then together with the gas it forms a binary system
having a structure with continuous, interpenetrating components. They are geometrically equivalent
components. On the other hand, when the liquid only partially moistens the hard skeleton to form
droplets, it can be considered to be a discontinuous component consisting of insulated inclusions in
the continuous gas or solid component. Similar binary systems can also be identified in materials
with closed pores, e.g., solid skeleton as a continuous component and gas filling closed pores as a
discontinuous component consisting of isolated inclusions. The components of the binary system of
such a structure are not equal geometrically.

If the material is isotropic, then its real structure can be adequately replaced by its model, consisting
of ordered unit cells in the simplest cubic form [5,12–14]. The symmetry of the unit cell in two mutually
perpendicular directions makes it possible to describe the heat transfer process in 1/2, 1/4 and 1/8 parts
of it. The eighth part of the unit cell having a structure with interpenetrating components (e.g., solid
skeleton and gas) is illustrated in Figure 1a. If the solid skeleton (component 1) is concentrated in the
cell bars, then the relative cross-sectional dimension of the bar c = ∆/L is related to the volumetric
concentration of the considered component m1 by equation [15]:

c = 0.5 + sin
[

arcsin(2·m1 − 1)
3

]
. (3)

The volumetric concentration of gas (component 2) is determined by the formula:

m2 = P = 1−m1. (4)

When selecting a unit cell structure with isolated inclusions, it is sufficiently justified to use the
cubic form of inclusions [8]. In this case, the unit cell will be in the form of a cube in a cube with
symmetry in two mutually perpendicular directions. Figure 1b shows the eighth part of the said unit
cell. It is obvious that the volume concentration of inclusions m2 = (l/L)3.
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Figure 1. The eighth part of a cubic unit cell: (a) structure with two continuous, interpenetrating
components (1 and 2); (b) structure with continuous component (1) and isolated cubic inclusions (2).

With the appearance of underhygroscopic liquid moisture with a volume concentration of m3 = ψ,
the volume concentration of the gas component m2 decreases and is equal to:

m2 = P−ψ = 1−m1 −m3. (5)

Let us consider the process of a gradual increase of moistureψ (m3/m3) in an open porous material
and the accompanying structural changes that should be taken into account when calculating the
effective thermal conductivity. At relatively low values of the material moisture ψ, the liquid will fill
a small part of the pore space ψp = ψ/P forming isolated inclusions (drops). As the pore moisture
raises, the drops grow and when a certain boundary value ψp

′ is reached, the drops merge together
and form a continuous inclusion. With a further increase of pore moisture to the next boundary value
ψp” the continuous distribution of gas changes into distribution in the form of isolated inclusions.
Such a case is possible when the liquid is sucked by the material in contact with water due to capillary
action. The boundary values of the pore moisture ψp

′ and ψp” depend on the contact angle θ and
the properties of the capillary-porous material structure. For the adopted hard skeleton model of the
porous material (Figure 1a), the values of ψp

′ can be determined using the dependency ψp
′ = f (θ, c)

presented in [11]. When deriving these dependencies, it is assumed that in the process of sorption
moisture there is no capillary condensation and the maximum hygroscopic moisture of the material is
very low (ψp ≈ 0.002), and therefore it is not considered.

Let us determine formulas for calculating the pore moisture boundary values ψp” for a contact
angle θ equal to 0, 45 and 90◦. The method of determining these dependencies for one value of the
contact angle, for example θ = 45◦, will be considered. Figure 2 shows the eighth part of a unit cell
with mutually penetrating components (solid skeleton and liquid) and isolated gas inclusions for
the contact angle under consideration. Figure 2 shows that the volume of gas inclusions is equal to
Vg = 1/6(L − ∆)3, the pore volume Vp = (L − ∆)3 + 3∆ (L − ∆)2 = (L − ∆)2 (L + 2∆) and the liquid
volume Vw = Vp − Vg. Then the boundary value of the pore moisture for θ = 45◦ is:

ψp
′′ =

Vw

Vp
=

5 + 13c
6(1 + 2c)

, (6)

where c = ∆/L = f (m1) is given by Equation (3).
Similarly, for θ = 0◦ we obtain the equation:

ψp
′′ =

6(1 + 2c) − π(1− c)
6(1 + 2c)

, (7)
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and for θ = 90◦:

ψp
′′ =

16 + 44c + π(1− c)
20(1 + 2c)

. (8)
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Figure 2. The eighth part of the unit cell at the boundary moisture ψp” and contact angle θ = 45◦;
1,2,3—solid, gas and liquid component of the structure, respectively.

An illustration of the dependency ψp” = f (θ, c), determined using Equations (6)–(8), is shown in
Figure 3. This figure also shows the dependency ψp

′ = f (θ, c) determined in [11]. These dependencies
render it possible to assess the structure of the moist open-porous material as a three-component
system, and then, using appropriate formulas, determine its effective thermal conductivity.
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Figure 3. Dependence of the boundary pore moisture ψp
′ and ψp” on the contact angle θ and relative

dimension of the bar with a square cross section c = ∆/L = f (m1).

When determining the effective thermal conductivity of three-component systems using the
method of gradually reducing a multi-component system to a binary one various dependencies
formulated for binary systems can be used. As part of the adopted theory of generalized thermal
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conductivity, the formulas for binary systems presented in [5] and determined by the division of unit
cells shown in Figure 1 with planes parallel (adiabatic) and perpendicular (isothermal) to the heat
flux can be used. Depending on the method of unit cells division, different formulas are obtained for
determining the thermal conductivity. These equations will be presented, as they are needed for the
subsequent comparative calculations.

The formulas for determining the thermal conductivity of a binary system with interpenetrating
components have the form [5]:

- when dividing a unit cell (Figure 1a) with adiabatic planes:

λa

λ1
= c2 + ν(1− c)2 + 2νc(1− c)(νc + 1− c)−1, (9)

where ν = λ2/λ1;

- when dividing this unit cell with isothermal planes:

λiz

λ1
=

 1− c
c2 + ν(1− c2)

+
c

c(2− c) + ν(1− c)2

−1

. (10)

The value of thermal conductivity at isothermal division λiz exceeds the value of thermal
conductivity at adiabatic division λa. The actual thermal conductivity λ is between λiz > λ > λa [5].
Therefore, it is suggested to take the arithmetic mean as the final result:

λ = (λa + λiz)/2. (11)

The thermal conductivity of the binary system with isolated inclusions, the structure of which is
modeled by the unit cell shown in Figure 1b, is determined on the basis of the following Equations [5]:

- at adiabatic cell division

λa

λ1
=
ν− (ν− 1)

(
1−m2

2
3
)
m2

1
3

ν−m2
1
3 (ν− 1)

; (12)

- at isothermal cell division

λiz

λ1
=

1 + (ν− 1)m2
2
3

1 + (ν− 1)m2
2
3
(
1−m2

1
3
) . (13)

Application of the presented dependencies formulated for binary systems to three-component
systems does not allow for simultaneous consideration of all components in calculations. It is necessary
to decide which two components are considered at the first stage of calculations, and which one to
include at the second stage, while this order affects the final result. Therefore, it is necessary to formulate
new dependencies that allow for calculation of thermal conductivity of moist capillary-porous materials
while taking into account all components of the system at the same time. Such dependencies will be
developed further in this work for both possible forms of liquid distribution (as an isolated inclusion
and as a continuous component).

4. Thermal Conductivity of Capillary-Porous Materials with Insulated Liquid Inclusions

The structure of the moist material in the form of a unit cell with a drop of underhygroscopic
liquid concentrated at its node is presented in Figure 1a. Depending on the value of the contact angle
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θ, the surface of this drop of liquid can be both concave and convex [11]. As presented in [5] and
confirmed by calculations made for the unit cell under consideration, the form (shape) of inclusion
has a negligible effect on the effective thermal conductivity. Therefore, it is purposeful to use a cubic
form of inclusion to make the analysis simple. In this case, the eighth part of the unit cell, as in [16],
has the form shown in Figure 4. The dimension x shown in Figure 4 is related to the volume of liquid
Vw by the formula Vw = x3 + 3∆x2. By dividing both sides of this equation by the volume of the unit
cell V = L3, we get the cubic equation, associating the liquid volume concentration m3 = ψ (where
ψ—material moisture) with the geometrical parameters c = ∆/L = f (m1) i d = x/L = f (m1, m3):

m3 = ψ = d3 + 3cd2. (14)
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Figure 4. The eighth part of the unit cell with isolated liquid inclusion and G1... G5 of the total heat
flux G (a) and a diagram of the connection of thermal resistances of the elements (b); 1, 2, 3—solid, gas
and liquid component of the structure, respectively.

Once the values of m3 and c are known, the positive, physically justified root of parameter d using
Equation (14) is calculated.

Let us follow the method of determining the formula for calculating the effective thermal
conductivity when dividing a unit cell (Figure 4a) with adiabatic planes (dashed lines) parallel to the
lateral surface and the heat flux direction. As a result, the volume of the unit cell is divided into 14
elements, 9 of which are homogeneous. The thermal resistance of the i-th element of the unit cell is
determined by the formula

Ri =
li
λi·Si

; (15)

where:

li—flux line length (height) of the i-th element [m],
λi—thermal conductivity of the i-th element [W/(m·K)],
Si—cross-sectional area of the i-th element [m2].

Let us assume that the general heat flow G penetrating the unit cell consists of five interconnected
fluxes G1, ..., G5, flowing through separate parts of the cell. The heat flux G1 enters the hard skeleton
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bar, which has a length l1 = L, thermal conductivity λ1 and a cross-sectional area S1 = ∆2. According to
Equation (15), the resistance of a given element is:

R1 =
L

λ1·∆2 . (16)

Flux G2, with cross-section S2 = 2 · x ·∆, passes successively through gas, liquid and solid
components, with resistances

R2 =
L− ∆ − x
λ2·2·x·∆

, R3 =
x

λ3·2·x·∆
, R4 =

∆
λ1·2·x·∆

. (17)

Flux G3, with cross-section S3 = 2·∆·(L−∆−x), passes through gas and solid components, whose
resistances are as follows:

R5 =
L− ∆

λ2·2·∆·(L− ∆ − x)
, R6 =

∆
λ1·2·∆·(L− ∆ − x)

. (18)

Flux G4, with cross section S4 = x2, passes through gas and liquid components with resistances:

R7 =
L− ∆ − x
λ2·x2 , R8 =

∆ + x
λ3·x2 . (19)

Finally, flux G5 with cross-section S5 = (L − ∆)2
− x2 passes through the gas component

with resistance:
R9 =

L

λ2·
[
(L− ∆)2

− x2
] . (20)

The scheme of connection of thermal resistances of all elements of the unit cell is shown in
Figure 4b. In this case, the overall thermal resistance of the unit cell R can be calculated as follows:

1
R

=
1

R1
+

1
R2 + R3 + R4

+
1

R5 + R6
+

1
R7 + R8

+
1

R9
. (21)

The overall thermal resistance of the analogous volume V = L3, filled with a homogeneous
substance with the effective thermal conductivity λa is determined by the formula:

R =
L

λa·L2 =
1
λa·L

. (22)

From Equation (21), taking into account Equations (16)–(20) and (22), after some transformations,
we obtain the dependency for the effective thermal conductivity of a three-component system, one of
which (liquid) is an isolated inclusion, when the cell is divided with adiabatic planes:

λa

λ1
= c2 +

2·ν1·ν2·c·d
ν2·(1− c− d) + ν1·ν2·c + ν1·d

+
2·ν1·c·(1− c− d)
ν1·c + 1− c

+
ν1·ν2·d2

ν2·(1− c− d) + ν1·(c + d)
+ ν1·

[
(1− c)2

− d2
]
, (23)

where ν1 = λ2/λ1, ν2 = λ3/λ1, c = ∆/L and d = x/L.
In the absence of insulated inclusions of the liquid (dry material), parameters ν2 and d are equal

to zero and dependency (23) is transformed to Equation (9) determined by G. M. Dul’niev in 1965 [5].
In what follows, we determine the formula for calculating the effective thermal conductivity of

the three-component system when dividing a unit cell with isothermal planes. The unit cell shown in
Figure 4a will be divided with planes perpendicular to the direction of the general heat flux into three
layers of different thickness. The thickness of the first (top) layer is equal to h1 = L – ∆ − x, the second
(middle) layer h2 = x and the third (bottom) layer h3 = ∆. In each layer, each component is separated
from the other by adiabatic planes parallel to the direction of the general heat flux. As a result, the
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first layer consists of two elements, and the last two layers of three elements, the thermal resistances
of which can be determined using Equation (15). And so for the first layer, the following resistances
are obtained:

R1 =
L− ∆ − x

λ1∆2 , R2 =
L− ∆ − x

λ2
(
L2
− ∆2

) . (24)

For the second (middle) layer, the following equations are obtained:

R3 =
x

λ1∆2 , R4 =
x

λ2
[
L2
− (∆ + x)2

] ; R5 =
x

λ3(2∆x + x2)
. (25)

For the third bottom layer, we have:

R6 =
∆

λ1
(
2L∆ − ∆2

) ; R7 =
∆

λ2
[
(L− ∆)2

− x2
] ; R3 =

∆
λ3x2 . (26)

The scheme of connection of thermal resistances of the three layers of the unit cell is shown in
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For such a scheme, the overall thermal resistance of the unit cell R can be written as follows:

1
R

=

( 1
R1

+
1

R2

)−1

+

(
1

R3
+

1
R4

+
1

R5

)−1

+

(
1

R6
+

1
R7

+
1

R8

)−1−1

. (27)

After substituting the resistances determined from Equations (24)–(26) to Equation (27) and
taking into account Equation (22), we determine the dependency for calculating the effective thermal
conductivity λz of a three-component system when the unit cell is divided with isothermal planes
shown in Figure 4a:

λiz
λ1

=

 1− c− d
c2 + ν1(1− c2)

+
d

c2 + ν1
[
1− (c + d)2

]
+ ν2d(2c + d)

+
c

c(2− c) + ν1
[
(1− c)2

− d2
]
+ ν2d2


−1

, (28)

where, as in Equation (23), ν1 = λ2/λ1, ν2 = λ3/λ1, c = ∆/L, d = x/L. In the absence of a liquid component
(λ3 = 0, m3 = 0, then ν2 =0, d = 0) dependency (28) takes the form of Equation (10), given by Van Frey in
1935. The final value of the effective thermal conductivity λ of an open porous material with insulated
liquid inclusions is defined as the arithmetic mean of λa and λiz, determined on the basis of (23)
and (28).

Let us compare the results of calculations of the effective thermal conductivity of a three-component
system obtained by the method of simultaneous consideration of all components and the method of
gradual reduction of a multi-component system to a binary system. As an example, we will consider a



Energies 2020, 13, 3211 10 of 14

system (moist material with open porosity) with known thermal conductivities and concentrations of
three components: solid skeleton (λ1 = 1 W/(m·K) and m1 = 0.5), gas (λ2 = 0.026 W/(m·K) and m2 = 0.39)
and liquid (λ3 = 0.6 W/(m·K) and m3 = 0.11). Of course, the hard skeleton and gas are continuous
and interpenetrating components. The character of the liquid inclusion will be explained, assuming a
contact angle θ = 45◦. With known porosity P = 1−m1 = 0.5 and moisture of the materialψ = m3 = 0.11,
the pore moisture ψp = ψ/P = 0.11/0.5 = 0.22 is determined. Then from Equation (3), at m1 = 0.5 we
determine c = 0.5. Using the graphic dependency ψp

′ = f(θ, c) in Figure 3 the boundary value of
moisture content of the pores is found to beψp

′
≈ 0.41, which exceeds the actualψp = 0.22. As assumed,

the liquid in the material takes the form of isolated inclusions. Now, the thermal conductivity of the
wet material will be calculated using both methods. The easiest way to do this is to take into account
all components at the same time, using Equations (11), (23) and (28) and. Whereas, when calculating
the thermal conductivity applying the method of gradual reduction of a multi-component system to a
binary system, it is expedient to take into account all possible combinations of component indices, i.e.,:
12 & 3, 13 & 2 and 23 & 1. The scheme of implementation of this method for the combination of indices
of components 12 & 3 has already been considered in the introduction, so it remains to specify this
scheme taking into account that the liquid in the pore space may be in the form of isolated inclusions.
In the first binary system with indices 12 (solid and gas phase), the components are uninterrupted
and interpenetrate, therefore the thermal conductivity λ12 is determined from Equations (9) and (10).
In the next binary system, isolated liquid inclusions appear (index 3) and the calculation of the thermal
conductivity is carried out using Equations (12) and (13). In the same way, calculations are made for
other combinations of component indices. The results of calculations of the thermal conductivity of
the three-component system under consideration based on both the methods described above are
presented in Table 1.

Table 1. Calculated values of thermal conductivity of a porous material with isolated liquid inclusions
(a three-component system) at adiabatic and isothermal division of the unit cell and their arithmetic
means determined on the basis of the two methods used.

The Method of Consideration
of Components Gradual Reduction to Binary Structures

Simultaneous
Consideration of
All Components

Combination of Components Indices 12 & 3 13 & 2 12 & 3 123
λa 0.3467 0.3527 0.2972 0.2948
λiz 0.4787 0.5031 0.4226 0.4729

λ = (λa + λiz)/2 0.4127 0.4279 0.3599 0.3838

It follows from Table 1 that final results of calculations obtained by means of the method of gradual
reduction to binary systems depend on the order in which components are considered. They may
also significantly differ from the result obtained while considering all the components simultaneously.
The indicated inaccuracies justify the need to simultaneously take into account all components when
calculating the thermal conductivity of moist capillary-porous materials.

5. Thermal Conductivity of Capillary-Porous Materials with Continuous Liquid Inclusion

In this case, the open-porous material has a structure with three continuous components, which
is presented in the form of a unit cell shown in Figure 6. It can be seen from the figure that
underhygroscopic moisture wets the entire surface of the solid skeleton bars with a layer of constant
thickness. The pore moisture cannot exceed the boundary value ψp” determined by Equations (6)–(8).
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After dividing the unit cell with adiabatic planes and carrying out the procedure used to derive
Equation (23), a dependency is obtained for determining the effective thermal conductivity λa of an
open-porous material with a continuous liquid inclusion:

λa

λ1
= c2 +

2ν1c(1− cx)

ν1c + 1− cx +
ν1(cx−c)
ν2

+
2ν2c(cx − c)
ν2c + 1− c

+ ν1(1− cx)
2 + ν2(cx − c)2 +

2ν1(cx − c)(1− cx)

1− cx + ν1cx/ν2
, (29)

where ν1 = λ2/λ1, ν2 = λ3/λ1, c = ∆/L and cx = ∆x/L. As before, the value of the c parameter is determined
from Equation (3). The value of the cx parameter is also determined from Equation (3), in which the
sum of m1 + m3 is used instead of m1.

Division of the unit cell with isothermal planes leads to the following dependency for calculating
the effective thermal conductivity λiz (upper assessment) of the capillary-porous material with a
continuous liquid inclusion:

λiz

λ1
=

 1− cx

c2 +ν1(1− c2) +ν2(cx
2 − c2)

+
cx − c

c2 +ν1(1− cx)
2 +ν2(2cx − cx

2 − c2)
+

c

2c− c2 +ν1(1− cx)
2 +ν2[2(cx − c) − cx

2 + c2]

−1

; (30)

in which the dimensionless parameters ν1, ν2, c and cx are the same as in Equation (29). The final value
of the thermal conductivity λ is determined as the arithmetic mean λ = (λa + λiz)/2.

To check whether Equations (29) and (30) can be used to predict experimental results the data
obtained for aerated concrete are used [6]. It should be emphasized that for this material a continuous
liquid inclusion can appear even if the material is not in contact with water. The maximum hygroscopic
moisture ψh can reach 0.1 and more. Aerated concrete samples had an average apparent density of
485kg/m3 and porosity P = 0.773. Their thermal conductivity was measured at an average temperature of
t = 10 ◦C. The thermal conductivity of dry samples was λdry = 0.095 W/(m·K). The thermal conductivity
of wet samples varied depending on the value of underhygroscopic moisture ψ. For example, at
ψ = 0.185, the measured thermal conductivity was 0.202 W/(m·K). For this case, demonstrative
calculations are performed. Let us determine the thermal conductivity λi and volume concentration
of components. The volume concentration of components is as follows: the solid skeleton m1 = 1 −
P = 0.227, gas (vapor-air mixture) m2 = Pψ = 0.588 and water m3 = ψ = 0.185, whereas the thermal
conductivity of water at t = 10 ◦C is λ3 = 0.575 W/(m·K).The thermal conductivity of the vapor-gas
mixture λ2 is calculated as the sum of the thermal conductivity of dry air λair = 0.0249 W/(m·K) and the
thermal conductivity caused by the diffusion of water vapor λv, which was determined on the basis of
the method described in [11] as λv = 0.0066 W/(m·K). Then λ2 = λair + λv = 0.0315 W/(m·K).

To determine λ1 Equation (9) will be used, assuming λa = λdry = 0.095 W/(m·K). From Equation (3)
at m1 the parameter c = 0.3083 is determined, writing ν = λair/λ1. As a result, in Formula (9)
there is one unknown λ1, which is determined by iteration (Newton’s procedure), and we obtain
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λ1 = 0.715 W/(m·K). Next, Equations (29) and (30) are used and the lower λa = 0.1646 W/(m·K) and the
upper λiz = 0.217 W/(m·K) assessments are calculated, the average of which gives the final calculation
value λ = (λa + λiz)/2 = 0.191 W/(m·K), which turneds out to be smaller than the experimental one
λw = 0.202 W/(m·K) by 5.4%.

The results of calculations of the thermal conductivity at other values of ψ and experimental data
are shown in Figure 7, from which it can be seen that the formulas obtained allow a sufficiently accurate
prediction of experimental data. The shown convergence indicates the usefulness of the proposed
dependencies for calculating the thermal conductivity of moist capillary-porous materials.
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6. Summary

Two methods of determining the effective thermal conductivity of a moist capillary-porous material
considered as a three-component system are compared. In the first method, the three-component
system is gradually reduced to two successive binary systems, whereas in the other, all components
are taken into account simultaneously. The disadvantages of the first method are demonstrated and
compared to the other method, which is more reasonable. When analyzing heat transport in wet
capillary-porous materials, the theory of generalized conductivity is used and the structure of a wet
material is modeled using an ordered structure consisting of unit cells in the form of a cube. Through
the approach adopted and taking into account all components simultaneously, a formula is obtained
for calculating the effective conductivity of capillary-porous materials with isolated and continuous
liquid inclusions at adiabatic and isothermal division of the unit cell. It is found that the results of
calculations based on the formulas obtained predict experimental data sufficiently accurately.

The presented dependencies can be used to determine the thermal conductivity of various
capillary-porous materials, in particular high-porous insulation and insulation-construction materials,
such as polyurethane foam or aerated concrete. To perform calculations, only basic information about
moist material is needed, such as porosity and moisture level. Calculations can be carried out for
any moisture content of the material, both in hygroscopic and under-hygroscopic range, assuming
any temperature. It can be helpful in solving various engineering problems, for example for building
design and assessment of the technical conditions of operated buildings.

Further work on the presented methodology should aim at its calibration for the high level of
material moisture, where the accuracy of experimental data prediction is slightly lower.
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Nomenclature

ψ material moisture (m3/m3)
ψp pore moisture (m3/m3)
ψp
′,ψp” boundary values of the pore moisture (m3/m3)

ψh maximum hygroscopic moisture (m3/m3)
λ thermal conductivity coefficient (W/(m·K))
λi thermal conductivity of the i-th element (W/(m·K))
λa thermal conductivity at the adiabatic division of unit cell (W/(m·K))
λiz thermal conductivity at the isothermal division of unit cell (W/(m·K))
λdry thermal conductivity of dry material (W/(m·K))
λair thermal conductivity of dry air (W/(m·K))
λv thermal conductivity caused by the diffusion of water vapor (W/(m·K))
mi concentration of components (m3/m3)
P porosity (m3/m3)
Θ contact angle (◦)
V volume of the unit cell (m3)
Vg gas volume (m3)
Vp pore volume (m3)
Vw liquid volume (m3)
G general heat flow (W)
G1, . . . , G5 components of the general heat flux (W)
Ri thermal resistance of the i-th element of the unit cell (m2

·K/W)
x, L, ∆, ∆x geometrical parameters of the unit cell (m)
c, cx relative dimensions of unit cell bar (m)
li flux line length of the i-th element (m)
Si cross-sectional area of the i-th element (m2)
R thermal resistance of the unit cell (m2

·K/W)
h1 thickness of the first (top) layer (m)
h2 thickness of the second (middle) layer (m)
h3 thickness of the third (bottom) layer (m)
t temperature (◦C)
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