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Abstract: Smart grid operation schemes can integrate prosumers by offering economic rewards in
exchange for the desired response. In order to activate prosumers appropriately, such operation
schemes require models of the dynamic uncertain price-response relationships. In this study, we
combine the system identification of nonlinear dynamics with control (SINDyc) algorithm with
Bayesian inference techniques based on Markov-chain Monte-Carlo sampling. We demonstrate this
combination of two algorithms on an exemplary system in order to obtain parsimonious models
alongside parameter uncertainty estimates. The precision of the identified models depends on the
identification experiment and the parameterization of the algorithms. Such models may characterize
the prosumer response and its uncertainty, thereby facilitating the integration of such entities into
smart grid operation schemes.

Keywords: system identification; Bayesian inference; Markov-chain Monte-Carlo; smart energy
system

1. Introduction

Prosumer response (PR) activation, similarly as DR, is considered a key ingredient in a smart
energy system [1,2]. A prosumer is a unit within the power system that can act both as consumer and
producer. Examples are EV with V2G functionality. Such cars can extract and inject power from and
to the power system [3]. Inclusion of prosumers into the system operation consequently leverages
flexibility potentials, which may facilitate the integration of higher shares of RES, thereby contributing
to a more sustainable grid operation [4,5]. Furthermore, this may lead to a reduction of the cost of
system operation [6]. In order to coordinate prosumers during real-time operation in an optimized
manner, a control scheme requires knowledge of the PR dynamics. Such a control scheme can act
pro-actively, contrary to naive flexibility schemes; see for example [7].

System identification (Sys-ID) techniques are one central building block for achieving long-term
reliable control; see e.g., [8–10]. By treating the system as a black-box, Sys-ID enables the control of
systems without explicitly modeling the underlying physical properties. The SINDyc algorithm [11]
is a recent addition to the Sys-ID field. It builds on sparsity-promoting optimization techniques
such as the LASSO algorithm [12]. A response model derived using SINDyc is sparse in the model
coefficients. SINDyc therefore aims at an accurate model with a low number of active terms selected
from a candidate model structure. A model with such properties is referred to in the literature as
parsimonious [13]. Furthermore, SINDyc models have been shown to perform well when facing scarce
availability of data [14].

This data-driven approach bears potential for smart grid applications where, for example, privacy
restrictions apply [15]. The application of Indirect Control (ICo) is one approach to the integration of

Energies 2020, 13, 3183; doi:10.3390/en13123183 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-1807-7009
http://www.mdpi.com/1996-1073/13/12/3183?type=check_update&version=1
http://dx.doi.org/10.3390/en13123183
http://www.mdpi.com/journal/energies


Energies 2020, 13, 3183 2 of 16

PR mechanisms; see [16–20]. The estimated response of prosumers to price-signals is a component—or
the sole component—of the ICo model. An ICo scheme provides economical incentives for a desired
system response, such as a reduction of active power consumption [15,17,20,21]. By integrating the ICo
into existing control hierarchy concepts, we can activate flexibility when needed. See [22] for examples.
PR can in this way alleviate system congestion by introducing additional degrees of freedom in the
operational scheme. Due to the PR being potentially uncertain [23,24], it is beneficial to represent this
uncertainty in order to be able to account for it. Aside from the application in dispatch and control
problems, price-response flexibility models can be used in planning problems; see for example [25].

SINDyc does not permit estimation of the uncertainty associated with the derived model as-is.
Inference techniques such as MCMC sampling, however, can provide parametric uncertainty estimates.
Consequently, the combination of SINDyc with MCMC yields parsimonious models, alongside
uncertainty estimates with respect to its parameters.

MCMC can utilize an SINDyc model in the prior PDF. By using a well-posed SINDyc model for
the formulation of the prior PDF, the parameter space sampled by MCMC is pre-optimized. In this
way, the prior PDF is partly specified by the SINDyc candidate model and a guess on the uncertainty
associated with it. Furthermore, the modeler can introduce additional assumptions into the prior PDF.
MCMC, as a sampling-based method and in contrast to analytical approaches, enables the sampling of
complex prior and posterior PDF. Therefore, it is a flexible method when aiming to formulate more
complicated probabilistic modeling problems.

Related approaches in the context of MCMC can be found in [26–28]. The work in [26] employed a
Gaussian process-based state space model and a particle-based MCMC (PMCMC) in order to perform
Bayesian inference. They utilized an approach that adjusted the candidate model in an adaptive
way, such that the model complexity increased alongside available data. The work in [27] built
on [13], however with the focus on using a Bayesian framework based on hierarchical Gaussian prior
distributions for the task of parameter inference. The work in [28] combined a stochastic collocation
method with MCMC. They reported that this reduced the large computational load that is characteristic
of MCMC. The approach in [29] was a related analytical approach in the context of MLE, contrary
to the aforementioned sampling-based publications. They also used a LASSO penalization and used
it to obtain sparse system models while preventing stability issues. The work in [30] focused on the
estimation of Gaussian models in large-scale applications.

In this paper, we combine the SINDyc algorithm with Bayesian inference using MCMC in the
context of PR estimation. The approach works in a similar manner in the context of DR. We employ the
probabilistic programming language Stan [31] and its NUTS implementation [32] in order to perform
MCMC. We aim to obtain a probabilistic model leveraging the flexibility and robustness of MCMC
while reducing the computational burden of this sampling technique by incorporating sparse SINDyc
models into the prior PDF used in MCMC. Probabilistic models may be used in SMPC, for example,
in order to account for uncertainty in PR. To the best knowledge of the authors, the coupling of the
SINDyc algorithm with MCMC has not yet been investigated.

This paper is organized as follows. In Section 2, we outline the SINDyc algorithm as introduced
by [11] and discuss Bayesian inference incorporating an SINDyc model as part of the prior PDF. In the
Results Section 3, we consider a PR estimation example in order to illustrate the coupling of SINDyc
and MCMC. In Section 4, we discuss the results. We close the paper by concluding in Section 6.

2. Methodology

Considering the active power Pn of a prosumer exchanged with the grid at node n, Pn is a
functional of a higher order state x and the price signal p:

Ṗn = fn(x, p) (1)

We aim to estimate fn such as to obtain a parsimonious model for it.
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2.1. A Sparse Nonlinear System Identification Algorithm

The work in [11] formulated the so-called SINDyc algorithm for the identification of sparse
nonlinear models subject to forcing, based on the SINDy algorithm [13] for the identification of
autonomous nonlinear systems.

In general, we can state the nonlinear price-sensitive dynamical system as:

ẋ = f (x, p) (2)

f is consequently governed by free and forced dynamics. We may reformulate it as:

ẋ = ΞΘT(X) (3)

Hereby, Ξ are sparse model coefficients. ΘT is the model structure, that is, model terms corresponding
to Ξ. X is the Sys-ID data, that is system observations recorded from an Sys-ID experiment. As we
consider a system excited by the price-signal p, we split X into the system state x and the price signal p:

ẋ = ΞΘT(x, p) (4)

ẋ is hereby approximated using the variation over Sys-ID data x. In the simplest form, a one-step
shifted version of the input–output observations x subtracted from the original version yields the
approximations of the dynamics. The related dynamic mode decomposition (DMD) algorithm [33,34]
uses a similar approach, however for the identification of linear dynamical system models. ΘT(x, p)
denotes the model structural terms including the state x, the input p, and potentially cross-terms of
both x and p.

The choice of the model structure is one important design choice [8,9]. A straightforward
assumption is to assume ΘT(x, p) to resemble the power series up to a chosen degree. The work
in [9] outlined the drawbacks of this model structure resulting from the properties associated with
polynomials:

• Structure selection is computationally demanding, especially for high dimensional problems.
• The extrapolation capabilities of the power series are sub-optimal.
• Polynomial models suffer heavily from the curse of dimensionality.

Positive properties include [9]:

• The capability to approximate a broad group of target problems;
• Low sensitivity to noise;
• Global explanatory capabilities.

Referring to discussions on this type of model in [9], we remark that we chose this model type for
the purpose of demonstrating the application of the SINDyc algorithm in conjunction with MCMC.
Other applications may require a different model type. As recommended in [9] and in order to limit
the aforementioned drawbacks, we only considered polynomials up to third order. We here use the
model structure given in [11], a power series including cross-terms.

Ξ is obtained using SINDyc based on the sequential thresholded least-squares algorithm proposed
in [13]. See Algorithm 1. SINDyc_params are parameters passed to the SINDyc algorithm. As outlined
in [11], we have to choose the regularization weight α in order to obtain a sparse model whilst retaining
model accuracy. We here perform a naive sweep over a set of candidate weights ᾱ as suggested in [11]
while evaluating the sparsity of Ξ. We evaluate the sparsity based on the count of nonzeros and the
count of values in Ξ and compare it to a chosen sparsity threshold sparsity_threshold. Furthermore,
we evaluate the model using a model evaluation function denoted evaluation_function. The model
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evaluation function should as a fundamental task examine the stability of the model for a set of
operating points and excitation signals. It may include a set of additional evaluation tasks.

Algorithm 1: Sweep over the set of regularization coefficients ᾱ and identification of SINDyc
models. It returns Ξ when the sparsity level satisfies a chosen criterion, and at a minimum,
an evaluation function examines the stability properties of the model.

Input: SINDyc_params, sparsity_threshold, ᾱ, evaluation_function count_nonzeros,
count_values

Output: Ξ
Data: X

1 for α in ᾱ do
2 // Execute SINDyc on data

3 Ξ = SINDyc(X, SINDyc_params)
4 nnz = count_nonzeros(Ξ)
5 nval = count_values(Ξ)
6 // Evaluate sparsity

7 if (nnz/nval) < sparsity_threshold then
8 // Evaluate model performance

9 if evaluation_function(Ξ) = True then
10 return Ξ

11 else
12 continue

2.2. Probabilistic Model

We may pose (4) as a probabilistic model and state it as:

P(ẋ|m) = P(Ξ̃|m)ΘT(x, p) + ω̂ (5a)

m denotes the prior, which includes the model coefficients Ξ? obtained using SINDyc in Algorithm 1:

Ξ̂ ∼ N (Ξ?, σ2
Ξ) (5b)

ω̂ ∼ N (µω, σ2
ω) (5c)

Following the Bayesian principle, we can state the prior in a flexible manner based on available
information. Parts of the prior may be undefined. Such a lack of information becomes part of the overall
uncertainty in the model. We include weakly informative priors for these parts as recommended
in [35].

2.3. Probabilistic Model Inference

The inference process of the probabilistic model (5) is formulated in Algorithm 2.
XI is a list in which we aggregate models inferred using Algorithm 1. X̄ is a list of individual

Sys-ID experiments. For each datum X in X̄, we call Algorithm 1 and obtain a corresponding candidate
model Ξ. select_Xistar selects the MCMC candidate model Ξ? based on the collection of candidate
models XI. MCMC_function then performs MCMC using the candidate model Ξ?. MCMC_params are
parameters for the MCMC_function. Algorithm 2 returns Ξ̃, the posterior PDF of the model coefficients.
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Algorithm 2: Probabilistic model inference: using a candidate model Ξ? derived using SINDyc
in Algorithm 1, MCMC is performed on the system observations X̄.

Input: MCMC_function, MCMC_params, select_Xistar_function, SINDyc_params,
sparsity_threshold, ᾱ, evaluation_function

Output: Ξ̃
Data: X̄

1 // Setup container XI for candidate models

2 XI = list()
3 // Loop over Sys-ID experiments X̄

4 for X in X̄ do
5 // Identify sparse system models using Algorithm 1

6 Ξ = Algorithm 1(X, SINDyc_params, sparsity_threshold, ᾱ, evaluation_function)
7 // Collect candidate models

8 append(XI, Ξ)
9 // Select the MCMC prior candidate model Ξ? based on the set of candidate models XI

10 Ξ? = select_Xistar_function(XI)
11 // Perform MCMC using candidate model Ξ? and Sys-ID experiments X̄

12 Ξ̃ = MCMC_function(Ξ?, X̄, MCMC_params)
13 return Ξ̃

2.4. Excitation Model

We used the software package Stan [31] for performing MCMC. Stan requires an ODE with
modeled forcing for the inference of the dynamics subject to forcing. We therefore augmented the
system in (4) with a forcing model that approximated the excitation signal. We restricted the excitation
model to a third order polynomial as recommended in [9].

3. Results

Consider a system of two prosumers. The first prosumer is governed by nonlinear dynamics;
the second prosumer is governed by linear dynamics:

ẋ = αm

[
x2

0
x1

]
+ βp + ω (6a)

We observe the system response through the measurements y subject to white noise v as:

y = x + v (6b)

ω is the noise in the dynamics as introduced in (5). The scalar p is the price-signal sent to the
prosumers. We parameterized the system as given in Table A1. We chose a sampling rate Ts = 1s.
We considered two clusters of data c = {c0, c1}, where c0 contains nobs,c0 = 50 independent system
observations series and c1 contains nobs,c1 = 5 independent system observation series. While this is a
simple model, it should suffice to outline the modeling approaches described in the following.

As for Sys-ID in general, the choice of the excitation signal is fundamental for the quality of the
system approximation [8,9]. The excitation signal should hereby correspond to the magnitude and
frequency range in which we aim to use the model [9]. Whether the excitation signal is adequate to
extract sufficient information is to be checked in relation to the considered system and its operating
condition. The sparsity structure is one criterion to determine the success of the Sys-ID experiment.

Here, we chose a double-sinusoidal excitation signal pe applied on top of an assumed constant
signal p0 = 0.5. The constant signal excites the balanced system throughout a burn-in period, such
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that the system settles on a new approximate equilibrium prior to the start of the system identification
period:

pe =
1
4
(sin0( f0) + sin1( f1)) (7)

The criterion chosen to identify the convergence of the system to this equilibrium must be of an
approximate nature and in correspondence to the system uncertainty.

3.1. Polynomial Prediction Model

We aimed at a low order model as the simplest candidate model without drift term, such that the
system remains in equilibrium when unexcited. We chose the candidate model structure as:

ẏt = ξ1yt + ξ2 pt + ξ3y2
t + ξ4yt pt + ξ5 p2

t (8)

For the SINDyc algorithm, we chose ᾱ as the nα candidate regularization coefficients α equidistant
in the sweep bounds b. See the parameters in Table A1 and Algorithm 1.

Identifying models using Algorithm 1, we obtained the coefficient distributions for each cluster
c0 and c1 illustrated in Figure 1. The uncertainty in the dynamics αm and β led to uncertainty in the
magnitudes of the model coefficients.

Model m0 was correctly associated with nonlinear dynamics, and Model m0 was correctly
associated with linear dynamics. This only held when choosing a well-posed excitation sequence.
The convergence of the SINDyc algorithm was assured only when the identified model was sparse
in its coefficients. Consequently, the examination of the sparsity of the identified model provided
information on the success of the identification. The uncertainty in the parameters was higher for
cluster c1, in which we had access to only five system observation sequences.

Figure 1. Coefficient magnitudes for low order SINDyc models.

The SINDyc model of the first PR approximates the true system for both the identification data
and when considering an out-of-sample experiment. See Figure 2. This works in a similar manner for
Model m0 and also for the second cluster c1. Notice that the design of the out-of-sample excitation
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signal, in relation to the Sys-ID excitation signal, is an important step to assess the flexibility of the
model in describing the true system. We can visually examine the quality of the fit by comparing the
one-step prediction surfaces of both the true system and the deduced model. See Figure 3.
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Figure 2. System response and fitted model response (Y–space) excited by the excitation signal P.
Identification experiment ID and out-of-sample experiment OOS.
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Figure 3. One-step prediction comparison of the test system (blue) and fitted model (green).

3.2. Model Coefficient Distribution Inference Using MCMC

We now aimed to obtain a probabilistic dynamic system model of the first prosumer based on the
identified candidate Model m0 depicted in Figure 1.

At least a subset of the nc0 observations in cluster c0 resulted in feasible candidates models, which
may inform the prior PDF of the probabilistic model. We may neglect all zero-terms in the candidate
model structure in (8) such that the inference through MCMC used only the candidate model as stated
in (8). This reduced the computational burden in MCMC. As stated previously, MCMC can handle
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more complicated prior PDF formulations. The modeler can state more complicated priors based on
available system knowledge. For the sake of simplicity, we used Gaussian priors in the exemplary
prior PDF stated below.

3.2.1. An Exemplary Prior PDF

We may describe the observation z through the model output y with normally distributed
measurement error with variance σ2

y , corresponding to the measurement equation of the true system
stated in (6b):

y ∼ N (z, σ2
y ) (9a)

A log-normal distribution for σ2
y may be reasonable, such that the mean is log(σ2

y0). Assuming a
constant measurement noise magnitude, we could hereby choose the logarithm of the variance of the
observations in the burn-in period. Notice that for the parameter values chosen here, the Gaussian
prior model for σ2 is appropriate. However, for some prior of σ2, it can be appropriate to use the
natural conjugated prior, the inverse Gamma distribution. See [36] for examples.

σ2
y ∼ logN (log(σ2

y0), 1) (9b)

We assumed the prior for the model coefficients Ξ to be normally distributed around Ξ?
c0, the coefficients

inferred using the SINDyc algorithm:

Ξ̂ ∼ N (Ξ?
c0, σ2

Ξ) (9c)

The lack of information in the formulation of this prior we may express through statements of
weakly informative priors; see [35] for examples. Furthermore, we considered the following PPC for
the evaluation of the accuracy of the inference:

ŷN,i = N (zN,i, σ2
y ) (10)

3.2.2. Probabilistic Model

Stan solved the ODE considered here using a Runge–Kutta-45 method. For MCMC, we chose
niter iterations per chain, nchain chains, nburnin burn-in or warm-up iterations, no thinning, and a seed
specified as ς. See the parameter values in Table A1, and consider also [31] in this regard.

As the kernel density estimation bandwidth, we used Scott’s rule as given in [37]. The
approximated posterior distributions Ξ̂c0 are depicted in Figure 4a alongside the true parameter
distributions and the parameter mean inferred by SINDyc. We can observe that the inferred parametric
uncertainty was comparably reduced in cluster c0 (see Figure 4a) in comparison to cluster c1 (see
Figure 4b). The posterior PDF deviated from the true system’s parametric distributions. Hereby, the
parametric mean of the SINDyc models provided a higher precision with respect to the true system’s
parametric mean than the inferred parameters.
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(a) Cluster c0.
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Figure 4. Inferred coefficient uncertainties Ξ̂ through MCMC (posterior PDF) provided a candidate
model derived using SINDyc and nobs system observation sequences. Dotted lines mark the prior
means based on the chosen SINDyc models. The maximum of the posterior distribution (MAP) is
marked. The 95% confidence interval is marked using the shaded area.

Improving the prior optimizes the sampling space for a new MCMC sampling. This can lead to
shorter computation time for future sampling of the model. Examining the PPC illustrated in Figure 5a
reveals that the model approximated the observed output sub-optimally, yet captured the general trend
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in the data. By means of random draws from the posterior samples, we could obtain a probabilistic
model. Out-of-sample co-simulation of this model alongside the five samples of the true system is
depicted in Figure 6.

0.2 0.0 0.2 0.4 0.6 0.8
y/y

Posterior predictive y
Observed y
Posterior predictive mean y

(a) Cluster c0.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
y/y

Posterior predictive y
Observed y
Posterior predictive mean y

(b) Cluster c1.

Figure 5. Posterior predictive check of the model output prediction ŷ with 200 samples drawn from the
posterior distribution. The plot was generated using the ArviZ library [38].
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Figure 6. Out-of-sample simulation of five system realizations and the inferred Stan model (cluster c0).

4. Discussion

Activation of system flexibility through DR and PR schemes such as ICo is increasingly relevant
in relation to power system operation. See [39] for an example.

Bayesian approaches are computationally complex [26]. The combination of sparse system
identification algorithms such as the SINDyc algorithm and MCMC facilitate the inference of model
parameters alongside parameter probability estimates. As shown in the related publications [26–28],
Bayesian inference techniques may benefit from sparsity, promoting modeling approaches. The focus
on a viable candidate model and associated parameter spaces reduces the problem size. Aside from
this, parsimonious candidate model can be a desirable goal in the modeling process [13].

Similarly, as described in [27], SINDyc models may provide information on whether nonlinearities
are present in the data. This works when the algorithm is provided with informative data and a
reasonable library of candidate models. Contrary to [27], we coupled the SINDyc algorithm with
MCMC in order to obtain a prior PDF that could reduce the computational burden. Automatized
Sys-ID pipelines could benefit from such information.

We designed the excitation sequence in the Sys-ID experiment naively by evaluation of the
sparsity of the derived SINDyc models. Due to the fact that such experiments must, at least partly, take
place during regular system operation, the modeler may consider active learning techniques. Then,
the excitation sequence can be designed such that also operational requirements are accounted for.
See [40] for an example. Similarly important as the design of the Sys-ID experiment is the design of
out-of-sample simulations for evaluation purposes in order to evaluate the model against the true
system.

We chose the SINDyc models based on the evaluation of the combined parametric likelihood. The
single candidate model then provided the basis for the formulation of the prior PDF. As depicted in
Figure 4, the chosen SINDyc parametric mean values introduced a loss in precision with respect to the
true mean values. This was a realistic assumption, due to the fact that the true parametric distributions
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are unknown in the real setting. Similarly, the inferred parametric posterior PDF were sub-optimal
with respect to the true distributions.

Hereby, the parametric mean of the SINDyc models provided a higher precision with respect to
the true system’s parametric mean than the inferred parameters. In conjunction with the PPC depicted
in Figure 5, this may point towards a sub-optimal prior formulation. Furthermore, the polynomial
excitation model of third order led to a loss of precision. See Section 2.4 (excitation model).

5. Materials and Methods

The code used to generate the results presented in this paper can be obtained through the
following public repository: https://lab.compute.dtu.dk/freba/sindyc-and-mcmc-framework.

6. Conclusions

In this paper, we presented a combination of the SINDyc algorithm and MCMC in the context of
PR estimation. While SINDyc identifies sparse and potentially nonlinear dynamical system models,
MCMC enables the estimation of potentially complex posterior distributions. MCMC can hereby
use a sparse system model identified using SINDyc. Due to the fact that sampling is in this manner
performed on a constrained and well-posed sampling space, convergence in MCMC benefits from
parsimonious models, and the computational load may be reduced. SINDyc may yield such models,
provided the appropriate formulation of the system identification experiment and parameterization
of the algorithm. Probabilistic dynamical system models enable the application of SMPC, a core
ingredient when aiming to activate prosumer dynamics based on informative grounds.

For future improvements, we may replace the polynomial excitation model described in Section 2.4
with an alternative candidate model structure. Alternatively, we may design the Sys-ID experiment
such that we can represent the excitation sequence with the low-order polynomial excitation model
described herein. In any case, the objective along these lines is to achieve a high accuracy representation
of the excitation signal while maintaining a high performance of the sampling process within the
MCMC framework. Furthermore, the combination of SINDyc and MCMC should be evaluated on a
broad range of modeling problems. When aiming for automatized Sys-ID, robustness and associated
issues are to be investigated and potential solutions to be examined.
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Nomenclature

Algorithmic Symbols

count_nonzeros Count nonzeros in Ξ
count_values Count values in Ξ
evaluation_function Model evaluation function
MCMC_function Function performing MCMC
MCMC_params Parameters to MCMC_function
nnz Number of non-zeros in Ξ
nval Number of values in Ξ
select_Xistar_function Function selecting Ξ? from the set of candidate models XI
SINDyc_params Arguments passed to the SINDyc algorithm
sparsity_threshold Permissible fraction of nonzero elements in Ξ
XI List of candidate models Ξ

https://lab.compute.dtu.dk/freba/sindyc-and-mcmc-framework
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Mathematical Symbols

α Regularization coefficient
αm Free system dynamics
ᾱ Set of regularization coefficients
β Forced system dynamics
ω̂ Prior of residual error
Ξ̂ Prior of sparse model coefficients
Ξ̂? Sparse candidate model coefficients
ŷ Posterior predictive check of the system observations z
µω Prior mean of residual error ω

σω Prior dispersion of the residual error ω

σΞ Prior dispersion of candidate model coefficients Ξ
ΘT(X) Model structure
ω̃ Prior of the residual error ω

Ξ̃ Posterior distribution of sparse model coefficients
ς MCMC seed
Ξ Sparse model coefficients
ξi ith model coefficient
b Sweep bounds
c0, c1 Cluster 0, Cluster 1
m0, m1 Model 0, Model 1
f Nonlinear function
m Probabilistic model prior
N Number of observations
n Node n
nα Number of candidate regularization coefficients
nburnin Burn-in iterations (warm-up)
nchain Numbers of chains
niter Iterations per chain
nobs,c0 , nobs,c0 Cluster 0, Cluster 1
P Prosumer price response
p Price offer
pe Excitation signal
Ts Sampling rate
v Measurement noise
X Sys-ID data (system observations)
x System states
y Model output
z System observations

Abbreviations

The following abbreviations are used in this manuscript:

DR demand response
EV electric vehicle
ICo indirect control
LASSO least absolute shrinkage and selection operator
MCMC Markov-chain Monte-Carlo
MLE maximum likelihood estimation
NUTS no-u-turn sampler
ODE ordinary differential equation
PDF probability density function
PPC posterior predictive check
PR prosumer response
RES renewable energy source
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SINDy sparse system identification of nonlinear dynamics
SINDyc sparse system identification of nonlinear dynamics with control
SMPC stochastic model predictive controller
Sys-ID system identification
V2G vehicle-to-grid

Appendix A

Table A1. Scenario parameterization.

Symbol Relation Distribution

αm ∼ logN (log

[
0.2

0.1

]
, 1× 10−3)

β ∼ logN (log

[
0.07

0.2

]
, 1× 10−2)

ω ∼ N (0, 5× 10−3)

v ∼ N (0, 5× 10−2)

f0 ∼ logN (−5, 5× 10−2)

f1 ∼ logN (−3, 5× 10−1)

Symbol Relation Value

Ts = 1s

nobs,c0 = 50

nobs,c1 = 5

nα = 100

b =
[
5× 10−4, 10−1]

niter = 1000

nchain = 4

nburnin = 500

ς = 101
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