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Abstract: High reliability, independence from environmental conditions, and the compact design
of gas-insulated systems will lead to a wide application in future high voltage direct current
(HVDC) transmission systems. Reliable operation of these assets can be ensured by applying
meaningful and robust partial discharge diagnosis during development tests, acceptance tests,
or operation. Therefore, the discharge behavior must be well understood. This paper aims to
contribute to this understanding by investigating the partial discharge behavior of a distorted weakly
inhomogeneous electrode arrangement in sulfur hexafluoride (SF6) and synthetic air under high DC
voltage stress. In order to get a better understanding, the partial discharge current is measured under
the variation of the insulation gas pressure, the gas type, the electric field strength, and the voltage
polarity. Derived from this, a classification of the different discharge types is performed. As a result,
four different discharge types can be categorized depending on the experimental parameters:
discharge impulses, discharge impulses with superimposed pulseless discharges, discharge impulses
with superimposed pulseless discharges, and subsequent smaller discharges and pulseless discharges.
Concluding suggestions for partial discharge measurements under DC voltage stress are given:
recommendations for the necessary measurement time, the applied voltage and polarity, and useful
measurement techniques.
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1. Introduction

Gas-insulated systems (GIS) have been the state-of-the-art in high voltage alternating current
(HVAC) transmission grids since the 1960s [1]. These systems have major advantages compared to
air-insulated systems (AIS) like their space-saving design, their independence from environmental
conditions, and their higher reliability. These advantages are beneficial for high voltage direct current
(HVDC) transmission systems as well. Especially due to the growing importance of renewable energy
sources and their integration into the existing power grid, longer transmission lines have to be built.
This is economically feasible only by using HVDC technologies. The advantageous space-saving design
of GIS can be used, for example, to reduce the size of offshore converter-platforms, to ensure a reliable
power transmission in densely populated areas, and to allow building high voltage infrastructure close
to protected landscapes due to their low visual impact. Therefore, gas-insulated HVDC systems are
a space-saving solution for HVDC substations.

Due to the transition of the electric field, the directed movement of charge carriers, and the
accumulation of charge carriers on gas-solid interfaces, the development of gas-insulated HVDC
systems is challenging [2,3]. Reliable operation can be ensured, using partial discharge (PD)
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measurements during type tests, factory acceptance tests, on-site tests, and operation (monitoring).
For AC applications, electrical PD measurements using the phase-resolved partial discharge pattern
(PRPD) have been well known since the 1960s for various types of defects [4]. Due to the missing
phase relation, the procedures and analysis tools used under AC voltage stress cannot be applied
directly for DC equipment. Additionally, the directed movement of charge carriers, space-charges in
the gas, and accumulated charges at the gas-solid interfaces lead to a significantly different partial
discharge behavior under DC voltage stress [5–12]. One major challenge, reported in the literature, is the
occurrence of pulseless discharges, which cannot be detected using the conventional methods according
to IEC 60270 [13] and ultra-high frequency (UHF) measurements [5,10,11]. Summarizing these
challenges, the PD experts stated in the literature that a major problem during PD measurements and
analysis under DC voltage stress is the lack of experience [14]. In addition, the physical PD behavior
under DC voltage stress is not as well understood as under AC voltage stress, since space charges
can accumulate over a long time period. However, a reliable PD diagnosis requires the knowledge
of the discharge behavior. Hence, the aim of this investigation is to bridge the gap of knowledge for
one typical defect in gas-insulated systems: a protrusion. Therefore, the partial discharge current
of a fixed needle in a weakly inhomogeneous electric field is measured. The measurements reveal
four different discharge types that may occur depending on the electric field strength, gas pressure,
and voltage polarity.

The insulating gas sulfur-hexafluoride (SF6) has been used as a dielectric in gas-insulated
systems since the early 1960s. Due to the high global warming potential (GWP) of this gas and
the related political will to reduce the emission of fluorinated gases, alternative gases with a low GWP
come to the fore of manufacturers and customers [15–18]. These gases can be pure natural gases or
mixtures of natural gases, like synthetic air. Furthermore, these alternatives can be gas-mixtures with
highly electron affine components in order to improve their dielectric behavior. In this contribution,
the discharge behavior of SF6 is compared with the behavior of pressurized synthetic air as one
example for an alternative gas.

2. Physical Fundamentals

Comprehensive knowledge about the physical fundamentals of the discharge formation is
necessary, in order to understand the different discharge phenomena observed in this investigation.

A necessary requirement for the discharge inception is the presence of a starting electron. It can
be emitted from the cathode [19] or by electron detachment of gas molecules. This detachment mainly
occurs due to cosmic radiation [20,21]. The starting electron will be accelerated in the stationary
electric field. As soon as the kinetic energy, absorbed from the electric field, is high enough, ionization
due to the collision with other molecules or ions takes place. Newly generated electrons are again
accelerated in the electric field. The number of ionization processes per electron and per unit of distance
is described by the ionization coefficient α. At the same time, η electrons are attached to molecules or
ions. If more electrons are generated than attached to ions or molecules (α > η), an electron avalanche
develops. Hence, the main parameter characterizing insulating gases is the effective ionization
coefficient ᾱ = α− η. If the effective ionization coefficient becomes ᾱ > 0, the number of free electrons
in the gas increases like an avalanche. The ionization coefficient depends on the type of insulating
gas [22], mainly determined by its electron affinity. For example, the electron affinity of oxygen is
lower than that of SF6. Nitrogen has no ability to attach free electrons. Hence, the electrical strength of
synthetic air is lower than that of SF6. The effective ionization coefficient ᾱ can be calculated according
to Equation (1) for SF6 and according to Equations (2) and (3) for atmospheric air depending on the
electric field strength E and the gas pressure [21,23]. Since the dielectric strength of an insulating
gas depends on its gas density, ᾱ is related to p20 ◦C, the gas pressure at 20 ◦C, in order to specify
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this density dependence. It is assumed that the discharge behavior of pressurized synthetic air and
pressurized atmospheric air is comparable.
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According to the physics, the ionization coefficient of SF6 is considerably lower than that of
synthetic air (Figure 1). This leads to the assumption that the inception and growth of the PD
avalanches will show remarkable differences between the insulating gases. Due to the significantly
higher slope of the effective ionization coefficient of SF6 compared to air in the zero crossing (ᾱ ≥ 0),
the discharge behavior of SF6 is expected to be much stronger, dependent on small changes of the
electric field strength.
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ᾱ p

/
1

m
m
·M

Pa
−→

air
SF6

Figure 1. Effective ionization coefficient of air and SF6 in dependence of electrical field strength and
gas pressure (according to equations (1), (2), (3)).
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Figure 1. Effective ionization coefficient of air and SF6 in dependence of electrical field strength and
gas pressure (according to Equations (1)–(3)).

The charge carriers, electrons and ions, generate drift in the electric field with a certain velocity,
which is inversely proportional to the gas pressure [20]. Due to their higher mass, the mobility µion of
positive and negative ions is significantly lower than the mobility µe of electrons (Table 1).

Table 1. Mobility of ions and electrons in SF6 and air at approximately 0.1 MPa.

µe in cm2

V·s µion in cm2

V·s
SF6 ≈ 200 0.42 ... 1.0 [21,24–26]
Air ≈ 500 1.0 ... 2.5 [26–29]

The differences in the drift velocities of electrons and ions lead to a concentration of electrons in
the avalanches’ head, whereas the generated ions can be considered as remaining at their position.
If the number of electrons in the avalanches’ head exceeds the critical number of 108, the electric
field strength of the avalanche, in addition to the background field, is sufficiently high to initiate
photoionization, and thus, additional electron avalanches in the vicinity of the first discharge channel
are started. This discharge process is well known as streamer discharge [30,31]. If streamer inception
takes place, the electrical field strength exceeds the gas density dependent dielectric strength of the
insulating gas in a certain region, the so-called critical volume.
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In SF6, the discharge inception is equivalent to the streamer inception [21]. In addition to this
single streamer discharge, it is reported in the literature that one PD impulse with a high magnitude
can be followed by several impulses with a lower magnitude [32,33]. These subsequent PD events are
generated in the channel of the first streamer [32].

The charge carriers, generated by the streamers, can form a stable space charge, which significantly
influences the electric field strength in this region. If the number of charges generated is equivalent to
the number of charges drifting off from the space charge region, a constant pulseless direct current can
be measured, known as glow discharge. It is evident that a streamer discharge might be superimposed
on this glow discharge, if the space charge region becomes instable [21].

The described charge carrier movement in the electric field can be measured as a current (Figure 2).
This current consists of a fast rising electron current Ie, representing the growth of the electron
avalanche, and a slow ion current Iion, representing the ion drift. According to the literature [33,34],
the electron current is significantly higher than the ion current.
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Figure 2. Partial discharge current consisting of electron current Ie and ion current Iion [33].

To the authors’ knowledge, there is no comprehensive study of the partial discharge behavior of
a protrusion in gas-insulated systems under DC voltage stress with respect to PD current measurements.
For this reason, in this contribution, the electron current Ie and the ion current Iion are measured
depending on the polarity, the applied voltage, and the gas pressure. It is expected that a classification
of the occurring PD types can be derived from the measurements considering the current amplitudes
and the time differences between subsequent discharge impulses. This classification would provide
a basis for a meaningful interpretation of PD measurements in gas-insulated DC systems. A comparison
of the results obtained in SF6 with measurements in pressurized synthetic air will give an outlook for
future research focusing on alternative insulating gases under DC voltage stress.

3. Experimental Setup

The experimental setup was located in a completely shielded room in order to achieve a high
signal-to-noise-ratio (SNR), necessary for the measurement of low currents.

3.1. Generation of High DC Voltage with Low Ripple

Investigating the discharge physics under DC voltage stress requires a DC voltage with low
ripple. This is necessary because a ripple factor δU of a few percent can lead to a phase dependent
concentration of PD impulses in the voltage maximum and would therefore influence the PD behavior
significantly [35].

For this reason, a symmetric Greinacher voltage doubler circuit (Figure 3) was used to generate
high DC voltages [4]. It was fed with a power frequency f = 50 Hz and loaded by a current I.
In contrast to common Greinacher circuits with a ripple of δU (Equation (4)), the smoothing capacitors
Cs were charged every half-cycle, leading to a lower ripple δUsymm according to Equation (5).
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δU =
I

2 · f · Cs
(4)

δUsymm =
I

4 · f · Cs
(5)

Hence, the ripple could be reduced by a factor of two. In addition, a high smoothing capacitance
Cs was used to further reduce the voltage ripple. In contrast to usual realizations of the symmetric
Greinacher circuit [4], two high voltage transformers with a primary voltage shifted by 180◦ were used
in this investigation.

Due to the maximum reverse voltage of the rectifiers used, the maximum output voltage of
this voltage doubler circuit was limited to UDC max = ±250 kV. The measured voltage ripple was
approximately 250 V at its maximum (δUsymm ≤ 0.1%). The voltage measurement was performed
using a calibrated ohmic voltage divider with a Highvolt MU17 peak voltmeter. A resistor Rd and
an inductance Ld were placed in between the DC voltage supply and the test object Cp in order to limit
the current in case of a breakdown.
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Figure 3. Circuit diagram of a symmetric Greinacher voltage doubler circuit for the generation of high
DC voltage with low ripple.

3.2. Electrode Arrangement and Test Vessel

The high DC voltage supply was connected to the gas-insulated test vessel using a SF6-air
bushing (Figure 4a). The test vessel used was a commercially available part of a 420 kV GIS with
a sandblasted encapsulation. It allowed investigations up to an absolute gas pressure of 0.7 MPa.
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In order to model the electric field of a real gas-insulated system, a weakly inhomogeneous
electrode arrangement made of aluminum was placed inside the test vessel (Figure 4b). The gap
distance between the half-sphere and the plate could be varied between d = (0...100) mm.
Hence, the degree of homogeneity η could be varied from 0.88 to 0.37. For the investigations presented
in this paper, the gap distance was fixed at d = 60 mm. This resulted in η ≈ 0.52, which was close to
real applications [33]. In order to investigate the PD behavior of the insulating gases, a protrusion
was placed in the middle of the half-sphere. The used needles were made of 100Cr6 steel and had
a tip radius of ri ≈ 22 µm. The length of the needle was l = 5 mm. To measure the partial discharge
current IPD, the needle was separated from the grounded sphere using an insulating PTFE ring and
directly connected to an SMA adapter. The polarities mentioned in this investigation refer always to
the polarity of the protrusion.

3.3. Measurement Setup

Since the expected PD current consisted of a pulseless current with superimposed impulse
currents, the magnitude and frequency content of the whole signal were very broad. Hence, it was
reasonable to use two different measurement setups.

3.3.1. Measurement of Impulse Currents

The measurements were performed using a high bandwidth oscilloscope-type Teledyne
LeCroy WavePro 735 ZiA with an analogue bandwidth of 3.5 GHz, a maximum sample rate
of 20 GS/s (using four channels), and a memory of 128 MSa per channel to allow long-term,
high bandwidth measurements.

In order to get a deeper understanding of the partial discharge peak current ÎPD and the time
differences between subsequent impulses, a high frequency current measurement was necessary.
Hence, the needle electrode was directly connected to the oscilloscope using a low loss coaxial
cable and a terminating resistor Rmeas = 50Ω in parallel to the input impedance of the oscilloscope
used Rosci = 1 MΩ ||Cosci = 16 pF. Even though the used measurement device had a high analogue
bandwidth, the measurement circuit (Figure 5a) led to a frequency dependent measurement impedance,
especially due to the capacitance Ccable of the coaxial cable used (Figure 5b).
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Since the partial discharge current was calculated using Equation (6), the frequency dependence
of the measurement circuit was not taken into account. This led to an amplitude error in the presented
partial discharge peak currents, if their frequency content exceeded several megahertz. Due to the
unknown frequency content of the partial discharge current, this approach seemed appropriate and was
already used in other different publications [34,36]. Furthermore, one has to mention that the electrode
arrangement influenced the measured PD current as well, mainly due to the stray capacitances between
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the protruding needle, the ground/high-voltage electrode, and the encapsulation of the test vessel [37].
Because the influence of these capacitances could not be easily quantified, they were neglected in
this investigation.

Each occurring PD impulse triggered a 1 µs long sequence. The minimum time difference between
two subsequent sequences was ∆tmin = 1 µs according to the manufacturer. If a PD occurred in the
dead time between two sequence recordings, it could not be detected.

IPD =
Uosci

50Ω
(6)

Not only the partial discharge current amplitudes were investigated, but also the time differences
between subsequent impulses. Since it was expected that they could occur with a rather high
time difference of several milliseconds to seconds, the sequence mode of the oscilloscope was used
(Figure 6) [38].
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3.3.2. Measurement of Pulseless Currents

Even though the pulseless PD current could be measured with the oscilloscope as well, it was,
in terms of the expected high amplitude differences between the impulse current and the pulseless
current (Figure 2), reasonable to measure the smaller pulseless currents separately. Therefore,
a transimpedance amplifier was connected to the needle electrode instead of the oscilloscope.
Two low-pass filters with a cut-off frequency of approximately 4 Hz and two amplifiers allowed
precise measurements of the pulseless PD current with a high SNR in the range from 0.1 nA to 100 µA.
The data logger was connected via Bluetooth to the measurement computer and transmitted the mean
value of the measured direct current every second. The operational readiness of this measurement
device was already proven by other investigations [3,39].

4. Test Execution and Data Evaluation

4.1. Test Execution

In order to understand the partial discharge behavior in dependence of the electric field strength,
the investigations were performed at different voltage levels, starting from the inception voltage.
Due to the missing general accepted definition of the inception voltage [38,40], the voltage with the
first measurable partial discharge current impulse was determined as inception voltage Ui in this
investigation (cf. Section 5.1). The investigations were performed at multiples of this voltage at absolute
gas pressures of pSF6

= 0.1 MPa, 0.5 MPa and 0.7 MPa. The dew point of the SF6 used was lower than
−35 ◦C with a purity of at least 99%. The experiments in synthetic air were carried out at an absolute
gas pressure of psyn. air = 0.5 MPa. The gas consisted of 20.5% oxygen (O2) in nitrogen (N2) according
to the manufacturer. Its moisture content was less than 2.0 ppmmol.

Studying the impulse currents, the number of recorded sequences (each with a duration of 1 µs)
depended on the time difference between subsequent impulses. For the measurements at inception
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voltage, five-hundred sequences were recorded and analyzed; if the applied voltage was higher than
the inception voltage, 3000 to 4000 sequences were examined. An exception was the investigations at
positive polarities of the protrusion at inception voltage: at higher gas pressures of pSF6

= 0.5 MPa
and pSF6

= 0.7 MPa, only ten sequences could be recorded due to the long time difference between
two impulses.

The studies of the pulseless partial discharge current were carried out with a stepped voltage
rising test. At each step, the voltage was kept constant for 5 min, and the mean value of the PD current
measured within this period was evaluated.

The needle electrodes used were changed after every test execution in order to avoid the influence
of changing tip radii on the PD behavior. More precisely, one needle was used for the investigations at
one polarity and one pressure value, but different voltage levels.

4.2. Data Evaluation

In the following, the evaluation of the data acquired using the oscilloscope is discussed, to make
the presentation of the results more comprehensible. The recorded sequences with 20,000 data points
each were evaluated individually in MATLAB R© to determine the impulse current amplitude ÎPD

and the time difference between subsequent sequences ∆t (Figure 7). In this investigation, the time
differences between two sequences were a measure for the time differences between subsequent
impulses, since the length of one sequence of 1 µs was in most cases negligible with respect to the time
difference ∆t >> 1 µs. If one sequence contained more than one partial discharge impulse, this would
be evaluated separately.
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To achieve a meaningful data evaluation, the following definitions were made and applied to
every recorded sequence: A noise level was calculated with a moving average out of 1500 data points
multiplied by a factor of five. A PD current impulse needed to be larger than this calculated noise level
and higher than a defined minimum impulse amplitude ÎPD min to be evaluated as a PD event (Table 2).
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Table 2. Parameters for the data evaluation.

SF6 Synthetic Air
p/MPa | ÎPD min|/µA at ∆timp min/ns | ÎPD min|/µA at ∆timp min/ns

U i 2 ·U i 3 ·U i U i 2 ·U i 3 ·U i

positive protrusion
0.1 350 350 - * 65 - - - -
0.5 100 350 - * 15 350 350 350 15
0.7 100 - * - * 15 - - - -

negative protrusion
0.1 30 350 - * 65 - - - -
0.5 30 30 30 65 350 350 350 15
0.7 35 35 - * 65 - - - -

* No measurements possible because the measurement voltage was too close to breakdown voltage.

The parameter ÎPD min was determined depending on the measured impulse current amplitudes,
since the noise level was dependent on the chosen measurement range of the oscilloscope. If one
sequence contained more than one single impulse, the definition of a minimum time difference
between subsequent impulses in one sequence ∆timp min was necessary, to avoid the oscillations
following an impulse being evaluated as another PD impulse.

5. Results

Following, the measurement results are presented. As a summary, a classification of the occurred
partial discharge phenomena is derived that helps to improve the understanding and interpretation of
PD measurement at a protrusion under DC voltage stress. Therefore, the impulse current amplitude
ÎPD, the time difference between two subsequent sequences ∆t, and the pulseless partial discharge
current Imean were analyzed in dependence of the gas pressure and the applied voltage.

5.1. Inception Voltage (Voltage Rising Test)

In order to determine the inception of current impulses and the pulseless PD current in
dependence of the polarity of the protrusion and the gas pressure, a voltage rising test (VRT) was
performed (Figure 8). The rate of voltage increase was set to 0.5 kV · s−1.
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The measurements determined different voltages for the inception of impulse currents and
pulseless PD currents. At a negative protrusion, these voltages were very similar. Only slight differences
occurred due to measurement uncertainties and the statistical behavior of the discharge inception.
At a positive protrusion, the inception of pulseless PD currents took place at higher voltages than the
inception of current impulses. That led to the conclusion that a pulseless partial discharge current,
probably a superposition of many small electron avalanches, was superimposed on the PD impulses
and emerged in dependence of the polarity and the electric field strength.

The inception voltage of the current impulses at a positive protrusion was almost twice the
inception voltage determined for a negative protrusion. These differences could be explained with
the different supply of starting electrons in dependence of the polarity of the protrusion. Due to
field emission processes from the cathode, more electrons were present in front of the negative
protrusion [19]. The starting electrons at the positive protrusion had to be generated by collision
detachment of negative ions close to the needle electrode [38]. Another fact influencing the growth
of a PD impulse in the vicinity of a protrusion was the direction of movement of electrons and
ions. Electrons at a positive protrusion were accelerated in the direction of the protrusion, whereas
electrons at a negative protrusion were accelerated in the direction of the oppositely charged electrode.
This underlined the polarity dependencies. The changing gas pressure had no influence on the
described polarity effects.

An increased gas pressure led to an increased inception voltage for both polarities, which
corresponded to the assumptions derived in the Physical Fundamentals Section. The effective
ionization coefficient ᾱ decreased with an increasing gas pressure (Figure 1).

In the following sections, the presented results always refer to the inception of PD current impulses
for each polarity-pressure combination, which was thus determined as the inception voltage Ui in
this investigation.

5.2. Partial Discharge Impulse Current

In the following, the investigations of the PD current impulses, in particular the impulse
current amplitude ÎPD and the time difference between subsequent sequences ∆t, are described.
The investigation of the positive protrusion could only be carried out with a limited voltage,
since higher voltages were too close to the breakdown voltage with a high risk of damaging the
measurement equipment.

5.2.1. Amplitude of Partial Discharge Impulses

The amplitude of the partial discharge impulses depended on the polarity of the protrusion,
the gas pressure, and the electric field strength (Figure 9).

In principle, a higher gas pressure led to a lower amplitude of the impulse current. The amplitude
of the impulse current was in the same range for both polarities. For negative polarity of the protrusion
and high gas pressures (pSF6 ≥ 0.5 MPa), the partial discharge current amplitudes remained almost
constant. At a gas pressure of 0.1 MPa, an increased voltage led to an increase of the amplitude of the
impulse current in one order of magnitude. If the voltage was increased further up to a voltage of
U ≈ 2.6 ·Ui, no current impulses could be measured any longer, whereas the measurement with the
transimpedance amplifier was still showing a pulseless current (cf. Section 5.3). Obviously, the partial
discharge physics had changed. It could be assumed that a pulseless glow discharge built up at the
protrusion. In the investigated pressure-voltage range, this behavior could only be observed under
a gas pressure of 0.1 MPa and a negative polarity of the protrusion.

When increasing the voltage at a positive protrusion and a gas pressure of 0.5 MPa, a significant
increase of the amplitude of the impulse current could be measured.
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5.2.2. Time Difference between Subsequent Sequences

The observed time differences between subsequent sequences varied in a huge range between
a few microseconds and several minutes (Figure 10). The scatter for almost every voltage-pressure
constellation was rather high. Due to the breakdown danger, it was not possible to perform
measurements at 0.7 MPa for a positive protrusion.

In general, the time differences between subsequent sequences at a positive protrusion were
smaller than at a negative one, and a higher voltage led to a decreased time between subsequent
sequences. At a gas pressure of 0.1 MPa, a higher voltage led to a higher time difference between
subsequent impulses. The space charge in front of the protrusion became more stable, preventing
the inception of further impulses. Above 2.6 ·Ui, no impulses could be measured any longer at the
negative protrusion. As known from the measurements under Section 5.3, only a pulseless current
occurred. No statement can be given for a positive protrusion above 2 ·Ui, since the voltage could
not be increased further due to the danger of a breakdown. At a positive protrusion and a gas
pressure of 0.5 MPa, a remarkable change of the PD behavior could be observed, when increasing
the voltage from 1 · Ui to 2 · Ui: the amplitude of the impulse current increased by one order of
magnitude (cf. Figure 9), whereas the time between subsequent sequences decreased by approximately
seven orders of magnitude (Figure 10). Considering the time dependent PD current (Figure 11) at
inception voltage, only one small current impulse could be measured per sequence (Figure 11a);
whereas at 2 ·Ui, one high current impulse in the range of several milliamperes was followed by
several small current impulses with an amplitude of several hundred microamperes (Figure 11b).

Every recorded current impulse was followed by smaller impulses. The time differences ∆timp

between the first high impulse and the subsequent smaller impulses was in the range of several
hundred nanoseconds (Figure 11c); its minimum was defined according to Table 2. A higher gas
pressure led to lower time differences. At a gas pressure of 0.7 MPa, these subsequent impulses already
occurred at inception voltage, whereas at gas pressures of 0.1 MPa and 0.5 MPa, this behavior could
only be observed at twice the inception voltage. At gas pressures of 0.1 MPa, only approximately 5%
of the recorded sequences contained these subsequent impulses.

This transition from a streamer discharge to a streamer discharge with subsequent impulses
was in accordance with the literature [6,32,33,38]. The subsequent impulses were probably generated
in the discharge channel of the first discharge streamer. Due to the present space charge of the
first discharge, the critical volume decreased, leading to a smaller amplitude of the subsequent
impulses [32]. This behavior occurred mainly at a positive protrusion due to the different drift
velocities of ions and electrons (cf. Table 1), resulting in a different space charge distribution compared
to a negative protrusion.
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Figure 11. Comparison of time dependent partial discharge current and time differences ∆timp between
subsequent PD events at a positive protrusion in SF6.

Figure 11. Comparison of time dependent partial discharge current and time differences ∆timp between
subsequent PD events at a positive protrusion in SF6.

At a negative protrusion and gas pressures p ≥ 0.5 MPa, the time difference between subsequent
sequences decreased by three orders of magnitude (Figure 10), and the amplitude of the impulses
remained almost constant with increasing voltage (Figure 9). A behavior such as under positive voltage
could only be observed for less than one percent of the recorded sequences at higher gas pressures
(pSF6 ≥ 0.5 MPa). The occurrence of these subsequent impulses at a negative protrusion became more
probable with higher voltages.

5.3. Pulseless Partial Discharge Current

Measurements with the transimpedance amplifier showed the pulseless direct current share of
the discharges (Figure 12).

This current was mainly related to the movement of slow positive and negative ions, which
drifted along the electric field lines. The amplitude of the pulseless PD current was magnitudes
below the impulse current amplitudes. As described in Section 5.1, the inception of the pulseless
current was dependent on the polarity of the protrusion. At a negative protrusion, pulseless currents
and impulse currents incepted at once at the same voltage during a VRT; whereas at a positive
protrusion, the pulseless current incepted at almost twice the inception voltage of the impulse current.
An increased voltage led to a higher pulseless PD current, regardless of the polarity of the protrusion
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and the gas pressure. A higher gas pressure led to a lower pulseless partial discharge current, but the
differences at a negative protrusion were less pronounced compared to a positive protrusion.
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Figure 12. Pulseless partial discharge current dependent on the voltage, the polarity of the protrusion,
and the gas pressure (limit of the measureable current: 100 µA).

6. Discussion

The results obtained by the analysis of the partial discharge impulse current amplitude, the time
difference between subsequent discharge impulses (respectively sequences), and the pulseless partial
discharge current allowed a classification of the PD types occurring in SF6-insulated systems under
DC voltage stress.

One main factor for the determination of the discharge types was the share between pulseless
PD currents and current impulses. As expected from the literature, the pulseless currents (caused by
the slowly moving ions) were always lower than the current impulses (caused by the fast moving
electrons) (cf. Figure 2). The dependency on the applied voltage was more pronounced for the pulseless
currents (Figure 13). At a positive protrusion, the pulseless current incepted at higher voltages than the
streamer impulses.
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The pulseless current was already described by various authors for gas-insulated DC
systems [10,11,21], but so far, no detailed description of the occurrence in dependence of the electric
field strength, gas pressure, and voltage polarity in addition to the description of the impulse currents
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can be found. These pulseless discharges were caused by a permanent occurrence of avalanche
discharges in front of the protrusion, which formed a stable space charge region. The parallel elapsing
avalanche processes could not be measured separately, only the constant ion drift could be evaluated.
If this space charge region became instable or an avalanche discharge turned over to a streamer
discharge, additional current impulses could be measured. Therefore, these current impulses were
superimposed on the pulseless current. Since more discharge avalanches could build up at higher
voltages due to the increased critical volume, this space charge region and thus also the pulseless
current increased.

According to the evaluation of the data, four different discharge types could be differentiated
(Table 3).

The first type occurred at the inception voltage of the positive protrusion independently of
the gas pressure; strong PD impulses could be measured, but no pulseless current was present.
Hence, a streamer discharge generation took place at the protrusion. Due to the long time differences
between subsequent impulses, no stable space charge region could be generated, and therefore,
no pulseless discharge was superimposed on the streamer discharges.

The second one, PD current impulses superimposed on a pulseless PD current, could occur at
various voltage-pressure-variations. This meant that the charges generated by the streamer impulses
led to a stable space charge region in front of the protrusion, which affected the distribution of the
electric field strength and therefore the size of the critical volume. In this region, continuous avalanche
processes took place, and an equilibrium of charge generation and the drift of ions was reached. If this
region became unstable, a streamer discharge could occur, superimposed on the glow discharge.

The third one was special for positive protrusions. A strong first discharge impulse changed the
space charge region and therefore the electric field distribution significantly. Subsequent impulses
with a minor amplitude took place in the first discharge channel as described in Section 2.

A PD behavior without any current impulses, so-called glow discharge, could only be determined
under a gas pressure of 0.1 MPa at a negative protrusion in the investigated pressure-voltage range.
This space charge region was very stable, and therefore, the generation and drift of ions were always
in equilibrium. It could not be excluded that a pure glow discharge, as for low gas pressures, occurred
close to the breakdown voltage even at higher gas pressures since the maximum applicable DC voltage
was limited in this investigations.

Combining the described data, a classification of the determined PD types was possible, as well
as the description of the transition between different types (Figure 14).

At a positive protrusion, a continuous transition between the PD types took places. This could
be a transition between pure impulse currents to impulses superimposed on a pulseless current at
lower gas pressures (Figure 14a) or a transition to impulses with subsequent impulses superimposed
on a pulseless current for higher gas pressures (Figure 14b). At a negative protrusion in a low pressure
environment, the transition to a pulseless PD current was abrupt. No change in the PD behavior could
be observed at a negative protrusion at high gas pressures.

Probably a more precise distinction would be possible considering more data points, especially at
gas pressures of 0.3 MPa. A defined statement for 0.7 MPa was not possible due to the fact that the
breakdown occurred close to the PD inception, and therefore, no measurements were possible at higher
voltages than inception voltage in order to protect the measurement devices. However, the results
obtained so far allowed us to assume that it was similar to the results obtained at 0.5 MPa.

Even though the presented effective ionization coefficient SF6 rose with enhanced electric field
strength (Figure 1), the impulse amplitudes did not always rise in the same manner. Hence, the build-up
of space charges influenced the formation of the streamer impulses due to a changing critical volume.

Looking at the gas pressures used in technical applications (pSF6 ≈ 0.5 MPa), it was evident
that challenges arose during PD measurements under DC voltage stress. In principle, it seemed
possible to identify a protrusion in gas-insulated DC systems with the well-known measurement
principles based on IEC 60270 or by UHF measurements. it was difficult to distinguish between PD
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impulses and noise, e.g., due to the long time differences between subsequent impulses at a positive
protrusion or low impulse amplitudes at a negative protrusion. Hence, a low noise environment must
be established during PD measurements under DC, to achieve high sensitivity. Further challenges may
arise in the precise evaluation of subsequent current impulses with low time differences [9]. It may be
beneficial for a meaningful PD measurement to measure and evaluate the pulseless currents as well.

Table 3. Classification of the determined PD types and their occurrence in the investigated experimental
parameter range depending on the polarity of the protrusion, the applied voltage, and the gas pressure.

Description Schematic Occurrence
Representation Polarity Voltage Gas Pressure

¬ PD impulses
IPD

t

1
+ ≈Ui (0.1 . . . 0.7)MPa

 Pulseless PD current with
superimposed PD impulses

IPD

t

2
+/− ≥Ui (0.1 . . . 0.7)MPa

®
Pulseless PD current with
superimposed PD impulses
and small subsequent impulses

3IPD

t

+
≥2 ·Ui
≥Ui

(0.1 . . . 0.5)MPa
0.7 MPa

¯ Pulseless PD current
IPD

t

4
− &2.5 ·Ui 0.1 MPa *

* It could not be excluded that pulseless glow discharges occurred at higher pressures as well, because the
measurement range (applied voltage) was limited in this investigation.
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Figure 14. Transition between partial discharge types in dependence of the gas pressure, voltage
polarity and the applied voltage.
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7. Outlook

The necessity to reduce the global greenhouse gas emissions leads to an intensified research and
usage of alternative insulating gases with lower greenhouse potential [18,41]. One main challenge
of the application of SF6 alternatives will remain: the safe and reliable operation of gas-insulated
systems requires a decent knowledge of the partial discharge behavior in order to achieve a reliable risk
analysis out of PD measurements. Therefore, the partial discharge physics, such as pulse amplitude
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and pulse distance, was compared between SF6 and one possible alternative for medium and high
voltage equipment: synthetic air under higher gas pressures. The presented investigations were all
carried out at a gas pressure of p = 0.5 MPa. The aim of this section is to underline the applicability
of the presented experimental procedure to other insulating gases and to give an outlook for future
research. In contrast to the presented results of the impulse currents, these investigations will also
include the pulseless currents.

7.1. Inception Voltage (Voltage Rising Test)

The inception voltages of current impulses determined with a VRT as described in Section 5.1
showed the differences expected from the comparison of the effective ionization coefficients between
the two insulating gases (Figure 15). Due to the lower dielectric strength of synthetic air, its inception
voltage is lower than in SF6. The differences in between both polarities of the protrusion are more
prominent in SF6. This might be an effect of the differences in the electron affinity and the ionization
energies. Since the starting electrons at a positive protrusion must be generated by detachment
processes, a lower number of free electrons was present in the vicinity of the protrusion in SF6 compared
to synthetic air. This could be justified comparing the ionization energies of both gases [26] and the
low lifetime of free electrons in SF6 [21]. Hence, the voltage could increase further, and the differences
in the discharge inception voltage at a positive protrusion were higher comparing both gases.
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7.2. Amplitude of Partial Discharge Impulses

Comparing a single partial discharge impulse at inception voltage, it was evident that the PD
behavior was significantly different (Figure 16a). Besides the higher PD amplitude at inception voltage,
the time constants for the rise and decay of the impulses were different due to the significantly different
effective ionization coefficients (Figure 16b).

This resulted in a higher converted charge for gases with a lower ionization coefficient.
The comparison of Figure 16a,b may lead to the assumption that the rise times were dependent
on the voltage polarity, especially for synthetic air as the insulating medium. This has to be evaluated
in more detail during further investigations.
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Figure 16. Comparison of single PD impulses in SF6 and synthetic air p = 0.5 MPa.

Besides the evaluation of a single PD impulse, the comparison of the peak values is of interest,
because they can be an indicator for the detectability of PD with state-of-the-art PD measurement
techniques [9]. PD impulses at a negative protrusion in synthetic air were approximately one order of
magnitude higher than the impulses in SF6, despite the applied voltage (Figure 17). Whereas the peak
current amplitude for a negative protrusion in SF6 was roughly constant, it increased in synthetic air
with increasing electric field strength. At a positive protrusion, the peak currents increased significantly
in SF6 with increasing voltage, as already described in Section 5.2.1. At twice the inception voltage,
there was no significant difference between the impulse amplitude in SF6 and synthetic air. In contrast
to SF6, the PD impulses at a positive protrusion in synthetic air were in the same order of magnitude
as the ones at a negative protrusion. An increasing amplitude with increasing electric stress as in SF6

could not be observed. The described small subsequent current impulses in SF6 (Figure 11b) could
not be observed in synthetic air. Hence, the partial discharge physics seemed to be different, and no
change of the type of PD could be observed with varying electric stress.
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Figure 17. Mean value of partial discharge peak current and minimum/maximum in dependence of
the applied voltage and polarity at a gas pressure p = 0.5 MPa.
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Figure 18. Comparison of time differences between subsequent sequences in synthetic air and SF6

depending on the applied voltage and the polarity of the protrusion, p = 0.5 MPa.

Increasing the voltage leads to lower time differences between subsequent impulses, the415

differences between the two investigated gases is less pronounced and in the range of several416

microseconds. Considering several PD impulses within one recorded sequence (∆t <1 µs), a significant417

amount can only be observed in SF6 for positive polarity (Figure 11). This behaviour is only weakly418

developed in synthetic air and can only be observed for a few sequences at a negative protrusion at419

three times the inception voltage Ui.420

The comparison of SF6 with synthetic air at 0.5 MPa has shown crucial differences in the discharge421

behaviour. The different effective ionization coefficients, resulting from the different abilities of the422

gases to act as an electron scavanger, lead to different PD current amplitudes, time differences between423

subsequent impulses and time constants of the current impulses. This is explicitly shown by the424

comparison of single PD current impulse amplitudes (Figure 16).425

It was confirmed, that this type of investigation is not only applicable for SF6-insulated systems, but426

also for alternative insulating gases.427

Figure 17. Mean value of partial discharge peak current and minimum/maximum in dependence of
the applied voltage and polarity at a gas pressure p = 0.5 MPa.

7.3. Time Difference between Subsequent Sequences

Besides the investigated variations in the impulse current amplitudes, the time differences between
subsequent sequences were analyzed. At inception voltage, the time differences in synthetic air were
lower than the ones observed for SF6, independent of the voltage polarity (Figure 18).
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|Î P
D
|/

µA
−→

SF6 positive protrusion SF6 negative protrusion
syn. air pos. protrusion syn. air neg. protrusion
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Figure 18. Comparison of time differences between subsequent sequences in synthetic air and SF6

depending on the applied voltage and the polarity of the protrusion, p = 0.5 MPa.

Increasing the voltage led to lower time differences between subsequent impulses; the differences
between the two investigated gases were less pronounced and in the range of several microseconds.
Considering several PD impulses within one recorded sequence (∆t <1 µs), a significant amount could
only be observed in SF6 for positive polarity (Figure 11). This behavior was only weakly developed in
synthetic air and could only be observed for a few sequences at a negative protrusion at three times
the inception voltage Ui.

The comparison of SF6 with synthetic air at 0.5 MPa showed crucial differences in the discharge
behavior. The different effective ionization coefficients, resulting from the different abilities of the
gases to act as an electron scavenger, led to different PD current amplitudes, time differences between
subsequent impulses, and time constants of the current impulses. This was explicitly shown by the
comparison of single PD current impulse amplitudes (Figure 16).

It was confirmed that this type of investigation was not only applicable for SF6-insulated systems,
but also for alternative insulating gases.

8. Conclusions

Current measurements are a promising technique for the investigation of the partial discharge
behavior in gas-insulated systems under DC voltage stress. The evaluation of the measured electron
and ion current increased the understanding of discharge processes at one common PD source in
gas-insulated systems, a protrusion. The analysis of the measurement data allowed classifying four
PD types depending on the polarity of the protrusion, the electric field stress, and the pressure of the
insulating gas used. The results improved the interpretation of the measurement data gained during
tests and provided therefore a basis for a meaningful and robust PD analysis.

Challenges during partial discharge measurement in gas-insulated DC systems may arise as
a result of varying time differences between subsequent impulses, PD current amplitudes changing
over orders of magnitude, and pulseless PD currents. The time differences could be in the range
from several tens of nanoseconds to several minutes and require therefore PD measurement over
a sufficiently long time and with high bandwidth of the measurement system in order to obtain
a detailed analysis. The precise measurement of partial discharge current impulses with a low
amplitude could be beneficial for the interpretation (at the conductor or enclosure) of a defect, due to
the different behavior of positive and negative protrusion. The measurement of the pulseless PD direct
current in addition to the well-established measurements according to IEC 60270 and in the UHF range
could be used advantageously during laboratory tests to increase the knowledge about the defect.
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To obtain a meaningful PD analysis, the applied voltage during PD measurements should not
be fixed to a certain value or polarity, due to the fact that glow discharges could occur at negative
protrusions, which are not detectable with the state-of-the-art measurement techniques.

The studies complement the knowledge necessary for safe and reliable operation of gas-insulated
DC systems, since they contributed to a meaningful PD measurement and analysis for one common
PD source, a protrusion. Future research is necessary to facilitate the changeover from the currently
used insulating gas SF6 to more environmentally friendly gases like synthetic air or others.
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The following abbreviations are used in this manuscript:

AC Alternating current
AIS Air-insulated System
CIGRE Conseil International des Grands Réseaux Électriques (International Council of Large Electric Systems)
DC Direct current
GIS Gas-insulated System
GWP Global warming potential
HV High voltage
PD Partial discharge
PRPD Phase-resolved partial discharge pattern
PTFE Polytetrafluoroethylene
SF6 Sulfur-hexafluoride
SMA SubMiniature Version A
SNR Signal-to-noise ratio
UHF Ultra-high frequency
VRT Voltage rising test

References

1. CIGRE. GIS State of the Art 2008: TB 381; CIGRE WG B3.17; CIGRE: Paris, France, 2009.
2. Gremaud, R.; Doiron, C.B.; Baur, M.; Simka, P.; Teppati, V.; Hering, M.; Speck, J.; Großmann, S.; Källstrand, B.;

Johansson, K.; et al. Solid-Gas Insulation in HVDC Gas-Insulated System: Measurement, Modeling and
Experimental Validation for Reliable Operation: D1-363; CIGRE Session: Paris, France, 2016.

3. Hering, M.; Speck, J.; Großmann, S.; Riechert, U. Field Transition in Gas-insulated HVDC Systems.
IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1608–1616. [CrossRef]

4. Hauschild, W.; Lemke, E. High-Voltage Test and Measuring Techniques; Springer: Berlin/Heidelberg, Germany,
2014. [CrossRef]

5. Hering, M.; Speck, J.; Großmann, S.; Riechert, U.; Neuhold, S. Detection of Particles on the Insulator Surface in
Gas Insulated DC Systems; Highvolt Kolloquium’15; Steiner, T: Dresden, Germany, 2015.

http://dx.doi.org/10.1109/TDEI.2017.006534
http://dx.doi.org/10.1007/978-3-642-45352-6


Energies 2020, 13, 3102 20 of 21

6. Takahashi, T.; Hayakawa, N.; Yuasa, S.; Okabe, S.; Okubo, H. Space charge behavior and corona stabilization
effect in SF6 gas viewed from sequential generation of a dc partial discharge. J. Phys. D Appl. Phys. 2001,
34, 1878–1884. [CrossRef]

7. Hering, M. Überschlagverhalten von Gas-Feststoff-Isoliersystemen unter Gleichspannungsbelastung. Ph.D.
Thesis, Technische Universität Dresden, Dresden, Germany, 2016.

8. Götz, T.; Linde, T.; Simka, P.; Speck, J.; Backhaus, K.; Gabler, T.; Riechert, U.; Großmann, S. Surface discharges
on dielectric coated electrodes in gas-insulated systems under DC voltage stress. In Beiträge der Fachtagung
VDE-Hochspannungstechnik; VDE e. V.: Berlin, Germany, 2018.

9. Götz, T.; Wenger, P.; Beltle, M.; Backhaus, K.; Tenbohlen, S.; Riechert, U. Partial Discharge Analysis in
Gas-Insulated HVDC Systems Using Conventional and Non-Conventional Methods: D1-109; CIGRE Session:
Paris, France, 2020.

10. Pirker, A.; Schichler, U. HVDC GIS/GIL—PD Identification by NoDi* Pattern. In Proceedings of the
International Symposium on High Voltage Engineering (ISH), Buenos Aires, Argentinia, 27 August–1
September 2017.

11. Ouss, E.; Zavattoni, L.; Beroual, A.; Girodet, A.; Vinson, P. Measurement and analysis of Partial Discharges
in HVDC gas insulated substations. CIGRÉ Sci. Eng. 2018, 11, 62–68.

12. Ouss, E.; Beroual, A.; Girodet, A.; Ortiz, G.; Zavattoni, L.; Vu-Cong, T. Characterization of partial discharges
from a protrusion in HVDC coaxial geometry. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 148–155. [CrossRef]

13. IEC 60270:2000. High-Voltage Test Techniques—Partial Discharge Measurements. Available online: https:
//webstore.iec.ch/publication/1247 (accessed on 14 June 2020).

14. Abbasi, A.; Castellon, J.; Cavallini, A.; Fritsche, R.; Geissler, M.; Götz, T.; Hochbrückner, B.; Kharezy, M.;
Kosse, M.; Küchler, A.; et al. Interim Report of WG D1.63: Progress on Partial Discharge Detection under DC
Voltage Stress; CIGRE Joint Colloquium SCA2/SCB2/SCD1: Janpath/New Delhi, India, 2019.

15. European Parliament and of the Council. Regulation (EU) No 517/2014 of the European Parliament
and of the Council on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006.
2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014R0517
(accessed on 14 June 2020).

16. Diggelmann, T.; Tehlar, D.; Mueller, P. 170 kV Pilot Installation with a Ketone Based Insulation Gas with First
Experience from Operation in the Grid; CIGRE Session: Paris, France, 2016.

17. Kuschel, M.; Brandler, C.; Bütüner, C.; Hansen, L.; Mortensen, A.S.B.; Gaard, J. On-Site Experiences of 72.5 kV
Clean-Air GIS for Wind-Turbine on- and Offshore Application: B3-115; CIGRE Session: Paris, France, 2018.

18. CIGRE. Dry air, N2, CO2 and N2-SF6 Mixtures for Gas-Insulated Systems: TB 730; CIGRE WG D1.51; CIGRE:
Paris, France, 2018.

19. Fowler, R.H.; Nordheim, L. Electron emission in intense electric fields. In Proceedings of the Royal Society of
London; Royal Society: London, UK, 1928.

20. Kindersberger, J. The Statistical Time-Lag to Discharge Inception in SF6. Ph.D. Thesis, TU München,
München, Germany, 1987.

21. Mosch, W.; Hauschild, W. Hochspannungsisolierungen Mit Schwefelhexafluorid; VEB Verlag Technik:
Berlin, Germany, 1979.

22. Rabie, M. A Systematic Approach to Identify and Quantify Gases for Electrical Insulation. Ph.D. Thesis,
ETH Zurich, Zurich, Switzerland, 2017. [CrossRef]

23. Berger, S. Onset or breakdown voltage reduction by electrode surface roughness in air and SF6. IEEE Trans.
Power Appar. Syst. 1976, 95, 1073–1079. [CrossRef]

24. Naidu, M.S.; Prasad, A.N. Mobility and diffusion of negative ions in sulfur hexafluoride. J. Phys. D
Appl. Phys. 1970, 3, 951–956. [CrossRef]

25. Teich, T.H.; Sangi, B. Discharge Parameters for some Electronegative Gases and Emission of Radiation from
electron avalances. In Proceedings of the International Symposium on High Voltage Engineering (ISH),
Munich, Germany, 9–14 March 1972; pp. 391–395.

26. Beyer, M. Hochspannungstechnik: Theoretische und Praktische Grundlagen für die Anwendung; Springer:
Berlin/Heidelberg, Germany, 1992.

27. Townsend, J.S. Electricity in Gases; Clarendon Press: Oxford, UK, 1915.
28. Sirotinski, L.I. Hochspannungstechnik: Band 1: Teil 1: Gasentladungen; VEB Verlag Technik: Berlin, Germany, 1955.

http://dx.doi.org/10.1088/0022-3727/34/12/318
http://dx.doi.org/10.1109/TDEI.2019.008359
https://webstore.iec.ch/publication/1247
https://webstore.iec.ch/publication/1247
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014R0517
http://dx.doi.org/10.3929/ethz-b-000164918
http://dx.doi.org/10.1109/T-PAS.1976.32199
http://dx.doi.org/10.1088/0022-3727/3/6/316


Energies 2020, 13, 3102 21 of 21

29. Kuffel, E.; Zaengl, W.S.; Kuffel, J. High Voltage Engineering: Fundamentals, 2nd ed.; Newnes Elsevier:
Amsterdam, The Netherlands, 2008.

30. Raether, H. Electron Avalanches and Breakdown in Gases; Butterworths: London, UK, 1964.
31. Meek, J.M.; Craggs, J.D. Electrical Breakdown of Gases; Wiley: Chichester, UK, 1978.
32. Hayakawa, N.; Hatta, K.; Okabe, S.; Okubo, H. Streamer and leader discharge propagation characteristics

leading to breakdown in electronegative gases. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 842–849.
[CrossRef]

33. Wanninger, G. Ultrahochfrequente Teilentladungssignale in gasisolierten Schaltanlagen (GIS). Ph.D. Thesis,
TU München, München, Germany, 1998.

34. Herbst, I.; Pietsch, R. The fast and slow signal components of partial discharges in SF6 measurements of the
electron and ion contributions to PD-signal. In Proceedings of the International Symposium on Electrical
Insulation, Pittsburgh, PA, USA, 5–8 June 1994; pp. 283–287. [CrossRef]

35. Dezenzo, T.; Betz, T.; Schwarzbacher, A. The different stages of PRPD pattern for positive point to plane
corona driven by a DC voltage containing ripple. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 30–37. [CrossRef]

36. Reid, A.J.; Judd, M.D. Ultra-wide bandwidth measurement of partial discharge current pulses in SF6. J. Phys.
D Appl. Phys. 2012, 16. [CrossRef]

37. Wetzer, J.M.; van der Laan, P. Prebreakdown currents: Basic interpretation and time-resolved measurements.
IEEE Trans. Electr. Insul. 1989, 24, 297–308. [CrossRef]

38. Van Brunt, R.; Misakian, M. Mechanisms for Inception of DC and 60-Hz AC Corona in SF6. IEEE Trans.
Electr. Insul. 1982, EI-17, 106–120. [CrossRef]

39. Gabler, T.; Backhaus, K.; Großmann, S.; Fritsche, R. Dielectric modeling of oil-paper insulation systems
at high DC voltage stress using a charge-carrier-based approach. IEEE Trans. Dielectr. Electr. Insul. 2019,
26, 1549–1557. [CrossRef]

40. Pirker, A.; Schober, B.; Schichler, U. PD Monitoring in HVDC GIS/GIL. In Proceedings of the CIGRE
Symposium, Chengdu, China, 20–26 September 2019.

41. Glaubitz, P.; Stangherlin, S.; Biasse, J.M.; Meyer, F.; Dallet, M.; Prüfert, M.; Kurte, R.; Saida, T.; Uehara, K.;
Prieur, P.; et al. CIGRE Position Paper on the Application of SF6 in Transmission and Distribution Networks.
Electra 2014, 274, 34–39.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TDEI.2006.1667744
http://dx.doi.org/10.1109/ELINSL.1994.401511
http://dx.doi.org/10.1109/TDEI.2018.006670
http://dx.doi.org/10.1088/0022-3727/45/16/165203
http://dx.doi.org/10.1109/14.90288
http://dx.doi.org/10.1109/TEI.1982.298544
http://dx.doi.org/10.1109/TDEI.2019.008175
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Physical Fundamentals
	Experimental Setup
	Generation of High DC Voltage with Low Ripple
	Electrode Arrangement and Test Vessel
	Measurement Setup
	Measurement of Impulse Currents
	Measurement of Pulseless Currents


	Test Execution and Data Evaluation
	Test Execution
	Data Evaluation

	Results
	Inception Voltage (Voltage Rising Test)
	Partial Discharge Impulse Current
	Amplitude of Partial Discharge Impulses
	Time Difference between Subsequent Sequences

	Pulseless Partial Discharge Current

	Discussion
	Outlook
	Inception Voltage (Voltage Rising Test)
	Amplitude of Partial Discharge Impulses
	Time Difference between Subsequent Sequences

	Conclusions
	References

