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Abstract: This paper is focused on the channel modeling techniques for implementation of
narrowband power line communication (NB-PLC) over medium voltage (MV) network for the
purpose of advanced metering infrastructure (AMI). Three different types of models, based on
deterministic method, statistical method, and network parameters based method are investigated
in detail. Transmission line (TL) theory model is used to express the MV network as a two-port
network to examine characteristics of sending and receiving NB-PLC signals. Multipath signal
propagation model is used to incorporate the effect of multipath signals to determine the NB-PLC
transfer function. A Simulink model is proposed which considers the values of MV network to
examine the characteristics of NB-PLC signals. Frequency selectivity is also introduced in the
impedances to compare variations and characteristics with constant impedances based MV network.
A state-of-the-art mechanism for the modeling of capacitive coupling device, and impedances of low
voltage (LV) and MV networks is developed. Moreover, a comparative analysis of TL theory and
multipath signal propagation models with the proposed Simulink model is presented to validate the
performance and accuracy of proposed model. This research work will pave the way to improve the
efficiency of next-generation NB-PLC technologies.

Keywords: AMI; TL; SG; NB-PLC

1. Introduction

A huge challenge faced by the 21st century grid is a large amount of greenhouse gases such as
NOx and COyx due to the utilization of fossil fuels in power plants. This dependency of power
systems on fossil fuels needs to be reduced to meet the challenges faced by 21st century grid.
The aging of power system infrastructure in most of the countries is another present-day open
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issue [1,2]. The next generation power grid that can cater to these issues is known as smart grid (5G).
SG can be regarded as a cyber-physical system that is fully equipped with advanced information and
communication technologies (ICT) to efficiently analyze the real-time performance of power grid which
will improve the monitoring system, operation, and maintenance of power generation, transmission,
and distribution systems. The 21st century ICT can provide various services to SG such as demand
side management, demand response, and advanced metering infrastructure (AMI), which will not
only facilitate the consumers to act as prosumers but will also reduce the grid reaction time against the
power line faults and grid outages. In power line communications (PLC), use of the already existing
infrastructure of power systems with cost-effectiveness has gained massive attention from the research
community and industry due to the avoidance to install a new costly communication infrastructure.
In the present scenario, PLC is certainly an obvious choice to provide SG services [3,4]. The advances
and timely updated standardization process of PLC have addressed most of the concerns raised by
skeptics. AMI gives an opportunity to the customers to effectively interact with the utilities for real-time
electricity pricing and better services with the help of two-way communication. In addition, AMI
reduces the power losses and power theft along with remote connect/disconnect of smart meters [5,6].
Despite many advantages of PLC, it still has to go through few inevitable challenges in which the
unpredictable channel characteristics of PLC are on top, which makes it very difficult to model the PLC
channel. Moreover, the response of PLC channel varies with the variations in the parametric values
of PLC channels such as time instant, load/access impedances, and temperature effect. However,
its cost-effectiveness and already existing nationwide infrastructure compels researchers and industries
to opt for the other choices of communication technologies, i.e., wireless communications [7-9].

PLC is classified into three types: ultra narrowband PLC (UNB-PLC) ranging 0.3-3 kHz,
narrowband PLC (NB-PLC) with frequency range 3-500 kHz, and broadband PLC (BB-PLC) with
frequency range 1.8-250 MHz. This paper uses the NB-PLC frequencies for the investigation of medium
voltage (MV) channel characteristics with the help of three different types of techniques. One of
the more prominent advantages of NB-PLC is presenting a low attenuation profile at narrowband
frequencies (under 500 kHz) as compared to higher frequencies, especially greater than 1 MHz due to
capacitive coupling induced between the earth/ground and power conductor/cable of transmission
and distribution system [1,10,11]. Such lower attenuations of NB-PLC are helpful in transmitting the
AMI data over longer distances, making it a more suitable choice of ICT in SG. The NB-PLC frequency
bands are further segregated into four types of European standard CENELEC EN 50065 to provide
a better quality of services: (a) CENELEC-A band is operated in 9-95 kHz to provide services by
power utilities so that execution of sophisticated monitoring and control of power system can be done;
(b) CENELEC-B band is operated in 95-125 kHz and which can be used for any kind application;
(c) CENELEC-C band is operated in 125-140 kHz and is dedicated to in-home networking; and (d)
CENELEC-D band is operated in 140-148.5 kHz and can be used for alarm and security services.
The CENELEC B band and CENELEC D band are unrestricted bands for customers.

The most suitable technology to incorporate the NB-PLC is OFDM, for which international
standards such as PRIME, G3-PLC, and IEEE1901.2 are available. PRIME was the first effort made,
in 2007, towards the standardization process of next generation PLC technologies with the help of
DSO European region development fund (ERDF). The G3-PLC was an initiation of an alliance of
12 companies in 2011 whose main sponsorship was given by ERDFE. IEEE Communication Society
has also standardized the OFDM based NB-PLC system due to high level of interest shown by
industries [12-14]. NB-PLC technologies also present low data rate (LDR) and high data rate (HDR)
NB-PLC services. A few kbps data rate is offered by single carrier NB-PLC techniques, whereas,
for HDR services, having an ability to transmit a large amount of data up to 100s of kbps can be achieved
by multicarrier modulation techniques. The NB-PLC technologies operated at LDR incorporates the
standards ISO/IEC (14908-3, 14543-3-5), IEC (61334-3-1, 61334-5), CEA-600.31, etc.
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1.1. Mian Contribution

This paper proposes a sophisticated channel modeling technique for the investigation of
narrowband frequencies (3-500 kHz) over MV network. Three different types of channel modeling
techniques are presented in this paper for the comparative analyses and to examine the performance of
proposed Simulink model: (1) Transmission line (TL) theory model, which is a deterministic modeling
approach, is used in which constant and frequency selective (FS) low voltage LV and MV networks are
taken into account. (2) Multipath signal propagation model based on statistical approach is used to
examine the characteristics of NB-PLC signals by considering the effect of multipath signals. (3) The
proposed Simulink model incorporates the values of network parameters that is to be investigated.
Impedances are modeled by three types of impedance modeling techniques, formulated by the
combination of series and parallel resonant circuits. A comparative analysis of obtained transfer
functions is presented to validate the accuracy of proposed Simulink model. This research work
facilitates the electric supply companies and researchers to examine the NB-PLC performance over
MV network by simply incorporating the parameters of network under evaluation, instead of carrying
out extensive and time taking field measurements. The analysis of MV NB-PLC network helps
to assess the feasibility for the implementation of advanced metering infrastructure (AMI) using
NB-PLC technologies.

1.2. Paper Structure

The paper is divided into seven sections. Section 2 discuss the related work and literature on PLC
channels and their modeling techniques. Section 3 gives an overview on the characteristics of MV
NB-PLC network. Section 4 characterizes the MV NB-PLC network by focusing on TL parameters
such as resistance, conductance, inductance, capacitance, and characteristics impedance. Resistance
variations law and impedance modeling is examined in depth by discussing their results. Section 5
elaborates various channel modeling techniques and proposed a Simulink model to compute the
transfer function of MV network to analyze the performance of NB-PLC. Section 6 discusses and
compares the results obtained from TL theory and multipath signal propagation models with Simulink
model. This is followed by the conclusions in Section 7.

2. Related Work

Stefano Galli, a leading researcher in the field of deterministic PLC channel modeling, has made
valuable contributions in the area of indoor PLC channels [14,15]. In his model, Galli addressed
indoor PLC problems, using transmission lines theory, primarily focusing on model decomposition
and multiconductors. The transmission lines theory analyzed propagation interaction of two coupled
circuits and dominant modes: differential and pair modes. The differential propagation of signals is
investigated by the differential mode while the pair mode’s excitation and propagation are studied by
the companion model. In [16], the author emphasized that, on the one hand, the best way to achieve
a comprehensive and efficient PLC is to use the differential and companion models as a cascaded
two-port network by employing transmission matrix techniques, while, on the other hand, neglecting
the mode coupling and companion circuit leads to an incomplete circuit model that is unsuitable for
signal propagation of PLC. He eventually came up with a single lumped network that has the ability
to replace distributed parameters of circuits. He claimed experimentally and mathematically that,
regardless of its topology, the transfer functions for indoor PLC remain the same. He also provided
experimental evidence to show that the resonant modes and reflections can be isolated depending on
their specific topologies [14].

Time-varying properties of the power line vary due to the following two factors [17]: (1) the
layout of topology; and (2) the switching of devices and appliances installed indoors. These continuous
varying impedances coupled with instantaneous amplitude of the mains voltage give rise to a
periodically time-varying channel response. In [18,19], the authors mainly benefited from Galli’s
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methodology with the only exception of using a different conductor scheme. This PLC model thus
employed two-conductor and multi-conductor concepts. Andrea M. Tonello employed a random
topology technique using statistical bottom-up approach to study PLC channel modeling, whereby
he produced transfer function by utilizing computational efficiencies [20]. First, Tonello studied
European in-home network topology by applying statistical methods. Second, he determined transfer
function between any pair of outlets of a given topology in a unique way. Later, to study PLC channel
characteristics statistically, he also developed a simulator to configure a small set of parameters for
theoretical frameworks [21,22].

The authors of [23] conducted a comprehensive field trial over MV overhead power lines in
which signal passes through a MV/LV transformer bridge. A simulation model to examine the PLC
characteristics was also modeled. A low voltage, high frequency PLC signal was injected into the
MV bus bar to cross the transformer bridge and received at LV side of transformer. The suggested
PLC model was an effective tool to simulate the MV network by focusing on MV power line channel
modeling. Field measurements were performed on Favignana Island on a core-shield type conductor
configuration for the PLC communication over it. The measured and simulated results were compared
to validate the performance of simulated model [23,24]. A line-shielded MV network with power
transformers, couplers, transmitter, and receiver system was tested for diverse range of line lengths.
Zimmermann [9] was among the first researchers to incorporate the physical effects of PLC channel by
considering the multipath signals, losses in cable, and time delays when the PLC signal propagates
throughout the length of power line. A complex transfer function of PLC channel was statistically
investigated in depth to access the feasibility of PLC systems. The proposed multipath signal
propagation model uses the parameters of power line; however, it provides a complex frequency
response to study the PLC channels characteristics. The model employed the frequency range between
500 kHz and 20 MHz, providing the transfer function, although it is not completely familiar with the
exact values of network parameters. This PLC signal of this model is an accumulation of all propagated
signals in all possible paths while traveling towards the destination [10-12]. The identification of
transfer functions is necessary and based on measured values. Table 1 summarizes the contributions
of authors for various types of PLC models. For the characterization of power line channels, modeling
of their parameters is very important. Detailed discussion on power line parameters for the purpose
of channel modeling can be found in [25-27]. In [25], the voltage—current approach is applied to
determine access impedance. The shunt resistance Ry, is used as a parameter to measure the current.
Impedance modeling is expressed as,

. 1
Zoj = Zmp — (R+ jwL + ]‘*’T) )
where 1¢ impedance at reference point B is denoted by Z, x, which can be calculated by measured
values of impedance Z,, «, that is 1¢ impedance at reference point A.

Za,37ph = Zm,prh - Z37phase/calibrution (2)

where the 3¢ coupling impedance at reference point B is denoted by Z, 3, determined by measured
three-phase impedance Z,, 3 at A reference point. The calibration impedance that determines the
coupling network impedance is denoted by Z3_ yuase/caibration- The calculation to obtain the access
impedance theoretically can be achieved by parallel combination of 1¢ impedances located at each
phase by,

1
Za,3—ph—theomtical - 1 T 3)
Zn,l Za,Z Z/z,3
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Canete et al. [27] proposed an indoor PLC channel model. Three different types of load
impedances i.e., FS, constant and time varying were taken into account. The FS impedance are

modeled by,
R

e - ) o
1+/Q>5 — &)
where R, Q, and wy represent the resonant resistance, quality factor, and resonance angular

frequency, respectively.
The time-varying impedances are modeled by,

4)

Zw

2n

Zt = Za(w) + Zg(w)]sin( T

t+¢);0<t<Tp @)

where Z4, Zp, and ¢ are offset impedance, amplitude variation, and phase, respectively.

Table 1. Summary of research work contributions in various types of PLC models.

Type of PLC Model Main Contributors Key Features of Proposed Work Ref.

e Multiconductor transmission line theory
approach for coupled circuits

o Analyzed the behavior of PLC for
differential and pair mode circuits

e Proposed a cascaded two port network
model technique for efficient PLC

Stefano Galli et al. [14-16]

Deterministic PLC

Channel Models e Modeled the transfer function of PLC channel

o Derived the single phase PLC channel with
interconnection by incorporating the various

Justinian Anatory etal.  loads at different branches [17-19]
e Proposed model is validated with Transients
Program—Electromagnetic Transients Program
(ATP-EMTP)

o Multipath model
. o Caters the attenuation caused due to reflections
Zimmermann et al. . [9,10]
and power line
Statistical PLC o Incorporated delays due to length of line

Channel Models

e Proposed a bottom-up PLC channel simulator
o Derived in-home PLC channel model for Europe
Andrea M. Tonello et al. e Sophisticated computation method for channel [20-22]
transfer function
o ABCD matrix based method is also proposed

o Catered the issues involved in NB-PLC channel
measurements
Antonio Cataliotti, et al. e Proposed the suitable procedural techniques for [23,28-30]
modeling and characterization of power system
components within the frequency of interest

Measured PLC
Channel Models

e Impedance modeling for low voltage indoor
Canete et al. PLC network [27]
e Proposed a simulator
o Frequency selectivity is added in resistance,
conductance and impedances
o Compared the transfer functions obtained from
constant impedances with frequency selective impedances
¢ Simulation and measurements for the channel modeling
of LV NB-PLC system

Parametric PLC
Channel Models

Bilal Masood et al. [6,13,14,31,32]

3. Channel Modeling of NB-PLC for AMI in Medium Voltage Network

One of the challenges faced by NB-PLC-based AMI system is the inimical characteristics of
MV channel [28-30,33,34]. A model of NB-PLC system for the purpose of AMI is depicted in
Figure 1. The performance of NB-PLC-based AMI system is poorly influenced by various factors
such as multipaths, time dispersion, reflections, propagation and time delay, and FS. When the
signal is propagated in MV channel, it has to go through issues such as phase shift replication, delay;,
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and attenuation. The root mean square technique can be used to cater the time dispersion issues during
measurement process. Few problems such as dispersion and time selectivity are common in both types
of channels, i.e., wireless and NB-PLC. Furthermore, consideration of additive white Gaussian noise
cannot be taken as a reference to completely understand the attributes of NB-PLC channel [16,35,36].
There is an utmost need to devise a criterion for the modeling of MV NB-PLC channels that can serve
to examine the NB-PLC system for various types of noises. PLC systems are usually affected by two
types of noises, i.e., background noise and impulsive noise, as shown in Figure 2 [10]. Their further
classifications are: (a) impulsive noise is a combination of apriodic impulsive noise with asynchronous
or synchronous impulsive noise; and (b) background noise consists of colored noise and narrowband
noise. In this paper, a Simulink model is proposed for the characterization and modeling of MV
NB-PLC channels for the purpose of AMI. The real-time overhead MV transmission lines are used
in the proposed model Simulink model. A CCD helps to inject the NB-PLC signal in the MV power
line, the working principle of which is discussed in Section 5.3.1. A comparison of transfer functions
computed from Simulink model are compared with TL theory (constant and FS) and multipath signal
propagation model to validate the accuracy of proposed Simulink model. Characterization of MV
NB-PLC network is discussed in the subsequent section.

PETEY
LT XX

Transformer

SV Network gp gp @p @ ﬁp
TEYT.
MV/LV

Transformer

Signal Injection
in MV Network

i
[

HV/IMV
Transformer qﬁ @ @ @ @
MV/LV $ éﬁ éﬁ éﬂ $
Transformer
| 11 |
Medium Voltage Low Voltage
Network Network

Figure 1. NB-PLC model for MV network.
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Figure 2. Noise scenario in power line communication system.
4. Characterization of Medium Voltage NB-PLC Network

This section deals with the modeling of MV transmission line. The electrical parameters of actual
transmission lines are tabulated in Table 2. The conductor types Ant BS 215 and Lynex BS 215 are used
for LV and MV network with ampacity up to 175 and 384 A, respectively. Ant has an all aluminium
conductor (AAC) type, whereas Lynex has aluminium conductors steel reinforced (ACSR) type with
a steel reinforcement to increase the tensile strength due to its weight. The characteristics of any
transmission line can be analyzed by its distributed parameters such as resistance R, conductance G,
capacitance C, and inductance L. These parameters in the case of overhead transmission lines can be

determined as [23],
1 [rfu
R = - \/ - Q] 6)

G = 27t fCtand[S] 7)

e
c— m[ym] ®)
L= %cosh’l(%)[H/m] )

where ¢, i, 5, D, and ¢ are permittivity of free space, permeability of free space, depth factor, diameter
of conductor, and conductivity of material, respectively. The frequency of inters in this paper ranges
3-500 kHz. However, the characteristic impedance Z¢ and propagation constant 7y of transmission line
can be calculated as,

Zc = /(R +jwL) /(G + juC) (10)

¥ =a+jp=/(R+jwL)(G +jwC) (11)

where attenuation constant is denoted by &, whereas 8 denotes the phase factor and w represents the
angular frequency.



Energies 2020, 13, 3098 8 of 19

Table 2. Electrical parameters of conductors.

Nominal/ No./Nominal Approximate Overall Nominal DC .
Conductor . . . . . Current Rating L C

Section Area  Diameter of Wires Diameter Resistance at 20 C
Type/Standard

Aluminium  Steel
2

mm’ (No./mm) (NoJmm) ™™ O/km Amps uH/m  pF/m
Ant-BS 215 52.8 7/3.10 - 9.30 0.54190 175 0.93 12.6
Wolf BS 215 212.10 30/2.59 7/25 18.13 0.1828 351 1.22 9.45
Lynex BS 215 226.2 30/2.79 7/2.7 19.53 0.1576 384 1.20 9.58
Panther BS 215  261.5 30/3.0 7/3 21.0 0.1363 420 1.15 9.8

4.1. Resistance Variations Law

Resistance variations law is used to characterize the variations in transmission line’s resistance
with respect to change in frequency [23]. Frequency selectivity of resistance using resistance variations
law can be calculated as,

R(f) = Arf*+ Brf +Cr (12)

where the values of Ag, Bg and Cg are 2.5 x 10719mQ/(m*kHz?), 1.5 x 1072 mQ/m*kHz and
3 mQ)/m, respectively. Figure 3 compares the resistance variations with respect to increase in frequency
obtained from Equation (6) and resistance variation law. The plotted results depict that variations in
the values of resistance calculated from resistance variations law are close to the FS resistance values
that validate the simulation results. Since the MV network under evaluation incorporates overhead
transmission lines where the separation medium between two lines is free space, the conductance is
assumed to be zero.

6 T T T T T T T T — /7
{ -'®- Resistance Variations Law jy
5 —®- Frequency Selective ./
] s 7
S
R vy
o 4- Rt | -
£ i
S~ A ¢/
% 3- "“., T
= )
o 1 s 2
vl
2- /:;'-""' 7
{1 &
1;" T T T T T T T T T
0 100 200 300 400 500
Frequency (kHz)

Figure 3. Comparison of FS resistance with the resistance obtained from resistance variations law.

4.2. Modeling of Impedances for Medium Voltage NB-PLC Network

Impedance modeling plays a vital role in NB-PLC systems that behave as hurdles for injected
signals in power lines. Line impedances with lower values can cause a high level of attenuation to
the transmitted signal, carrying high frequency with a small magnitude of injected signal. In practical
situation, it becomes a challenge for field engineers to inject a signal in MV NB-PLC channels which
have impedance values lower than 0.5 (). It is also important to note that access impedances
are FS which vary with the change in frequency. In [25-27], a comprehensive discussion on the



Energies 2020, 13, 3098 9 of 19

characterization and modeling can be found. Chu et al. [25] gave an overview of the LV network in the
context of examining the access impedances. However, by distributing the noise over frequency range
50-500 kHz, characteristics of LV access impedances are investigated in [26].

It is worth mentioning that TL theory-based transfer functions in this paper comprise of two types:

e Constant LV and MV Networks: The constant LV and MV network includes the fixed values of
transmission lines and access impedances parameters.

e FSLV and MV Network: The FS parameters includes the values of transmission lines and access
impedances that varies with an increase of frequency of NB-PLC signal.

Three types of impedance modeling methods are used in this paper, as illustrated in Figure 4.
The reason behind choosing the combination of parallel and series resonant circuits is critical access
impedances connected to LV and MV power line channels carry the resonant behavior that can be
achieved by such combination of circuits [6]. This paper incorporates Types 1, 2, and 3 for the purpose
of impedance modeling in the TL theory method and Simulink model. The formulation of parallel and
series combination of two resonant circuits is given as,

_ 1 +j27l’RsC5 + (j27ff)2L5C5

Zs(f) s (13)

_ Rp+j2nfLp
14 j2nRpCp + (jzn’f)szCp

where the subscript S denotes the series circuits and subscript P represents the parallel circuits.

Zp(f) (14)

Rs LS Cs

Figure 4. Modeling of access impedances by resonant circuits: (a) Type 1; (b) Type 2; and (c) Type 3.

4.2.1. Type 1 Circuit

By using Equations (13) and (14), Type 1 circuit is modeled by the combination of two RLC
resonant circuits connected in series and parallel given as,

_ Zs(f)Zp(f)
Znp(f) = m (15)
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4.2.2. Type 2 Circuit

The Type 2 circuit is a combination of three resonant circuits in which two series and one parallel
combination of RLC elements are included given as,

_ _Zalf)Zs:(f)
Zr3(f) - ZSl(f) +Z52(f) + ZP(f) (16)

4.2.3. Type 3 Circuit

The simplest case for analysis could be a series or parallel resonant circuit that is expressed in
Type 3.

4.2.4. Input Impedance of MV Network

The Z;;, (equivalent input impedance) of MV network is determined as,

o Zye + Zepetanh(ypelpt)
¢ Zept + thtanh(ybtlbt

Ziy =2 (17)
where Zj; denotes the bridge tap impedance connected with LV and MV networks, Z.;; is bridge tap
characteristic impedance, I;; represents the bridge tap length, and 1, is a propagation constant of
bridge tap.

4.3. Discussion of Results on Impedance Variations of NB-PLC Network

Figure 5 elaborates the characteristics of impedance variations in NB-PLC network by
incorporating both constant and FS types of impedances. The purpose of investigating both impedance
types is to analyze whether the impedances vary more in the case of FS as compared to constant and
then to compare their transfer functions for NB-PLC channel by TL theory model (constant and FS)
and Simulink model in the next subsection.

80 r r T r v r r v
——LV Network (Constant) 16004 —V/P Impedance (Constant MV)

- 704 1 _
-E E 1200
Q 601 iy
@ [+/]
g 2
S 504 S 800+
k-] k]
g g
E 407 E 400/

30 T T T T r r r r

100 200 300 400 500 100 200 300 400 500
Frequency (kHz) Frequency (kHz)
(a) (b)

60 ——LV Network (FS) 4 16004 ———|/P Impedance (FS MV)
E E
5 %0 1§ 1200
Py Py
s 40 S 800
] T
3 3
o 30 Qo J
£ £ 400

20 T T T T T T T T

100 200 300 400 500 100 200 300 400 500
Frequency (kHz) Frequency (kHz)

(c) (d)
Figure 5. Impedance variations of LV and MV Networks: (a) constant LV network; (b) input impedance
of constant MV network; (c) frequency selective LV network; and (d) input impedance of frequency
selective MV network.
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4.3.1. Discussion on Constant NB-PLC Network Impedances

Figure 5a,b illustrates the impedance variations by considering the constant impedances.
The constant LV network connected with MV /LV transformer is shown in Figure 5a, whereas Figure 5b
depicts the input impedance of complete MV network while considering the constant LV network.
It is noteworthy that the impedance values of loads connected to main channels such as LV network
connected to MV (main NB-PLC channel) vary within 35-65 ().

4.3.2. Discussion on Frequency Selective LV and MV Network Impedances

Figure 5c¢,d illustrates the impedance variations by considering the FS impedances. The FS LV
network connected with MV /LV transformer is shown in Figure 5c, whereas Figure 5d depicts the
input impedance of complete MV network while considering the FS LV network. When comparing
the plots obtained by using constant impedances with FS impedances, it can be seen that the FS
impedances-based plots show more variations in the magnitudes as compared to constant impedances
based plots. In the later sections of this paper, the effect of constant and FS impedances on transfer
functions is discussed as well as compared with the proposed Simulink model.

5. Methodologies to Determine NB-PLC Transfer Functions

5.1. Transmission Line Theory

The TL theory model is incorporated to determine the MV power line channel transfer function.
According to TL theory, power network can be expressed by the ABCD matrix that formulates a
relation between sending end current I; and voltage V1 with the receiving end current I, and voltage
V, given as,

Vi
I

Vs

L (18)

| cosh(yl)  Zcsinh(vyl)
N Z%sinh(’yl) cosh(vI)

The subsections T (series impedance as a two port network), T; (power lines as a two port
network), T, (parallel impedance as a two port network), and T3 (power lines as a two port network)
shown in Figure 6 can be given ABCD matrices form as,

oz
To = 01 ] (19)
| cosh(yili)  Zepsinh(y1lh)
n= L}”sinh(%ll) cosh(y1ly) (20)
1 0
Zin
| cosh(yala)  Zepsinh(v2lz)
5= Lglzsmh(’hlz) cosh(212) @)

where v1, Z.1, 72, and Zj, represent the propagation constants and characteristic impedances of
sub-networks, whereas Z;,, is input impedance. All of above ABCD matrices are multiplied with each
other by chain rule, i.e., a generalized expression for i cascaded sections is given as,

T =

i

N
T; (23)
=1
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Zs @ T @ @

Figure 6. Equivalent transmission network of transmission line with single connection of bridge tap [1].
Finally, transfer function is determined by,

Zy
H = 20i
0810 47, + B+ CZ.Zs + DZs

(24)

where Zg and Z;, are source and load impedances.

5.2. Multipath Signal Propagation Model

The signal propagation model that is based on the signals transmitted and reflected from multiple
paths uses the line of sight path for all instants of times [9]. When the signal propagates from transmitter
to receiver, a few extra signals, which are known as multipaths, are superimposed and thus added,
which is a leading cause of reflections and echos that need to be rectified. The resultant of such
scenario is FS fading that degrades the quality of NB-PLC system. Transfer function determined in
Zimmermann model is given as,

n .
H(f) = Y |gi(f)le#sitNe(otm fdi =2 (25)
i=1

where attenuation, delay, and weighting factor are denoted by e~ (%+@1.f )i, e=127fT and | gi(f)]e?sitf),
respectively. It can be examined by the above-mentioned equation that, when a signal propagates,
its attenuation increases with an increase of the length of conductor. Moreover, the response of system
reflects the low pass characteristics on NB-PLC frequency range, i.e., 3-500 kHz. The characteristics
of NB-PLC signals in regard to reflection and propagation are linked with the weighting factor
gi. Signal characteristics can be analyzed in general, frequency dependent, and complex form by
multipath signal propagation model. This model suggests that N multipaths are added when the
signal propagates towards the receiver side and vice versa. The simplified expression of transfer
function is expressed as,

H(F) = ). gie~ootans e 2T (26)

i=1

The parametric values of multipaths are tabulated in Table 3.

Table 3. Parameters of multipath signal propagation model.

Parametric Values of Attenuation

k=1 ag=0 a9 =78%10"19S/m

Path Parameters

i gi di/m i 8i d,’/m
1 070 750 3 -020 200
2 035 1000 4 0.06 225
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5.3. Proposed Simulink Model for Medium Voltage NB-PLC Network

In this section, the proposed Simulink model for the channel modeling and characterization
of MV NB-PLC, as shown in Figure 7, is discussed. The model is developed by incorporating the
various parametric values of MV network taken from electric supply companies in Pakistan, and is
mainly comprised of three MV /LV transformers supplied from three-phase source. The suggested
Simulink model contains the components of power system, designed to be operated at low power
system frequency, i.e., 50 Hz. However, it is significantly important to notice the role of transmitter
and receiver blocks containing the CCD, as shown in Figures 7 and 8. Signal generator transmits the
high frequency signal and injects in MV power line with the help of CCD thus the NB-PLC signal
is imposed on 50 Hz power system. All three transformers have voltages of 11 kV at MV side and
400 V at LV side, where LV network has 230 V; _y and 400 V; _;. The power rating of first transformer
is 150 kVA with supply to the LV network of 140 kW. The second transformer is rated at 250 kVA
supplying 245 kW to LV network. The third transformer is rated at 200 kVA supplying 190 kW power
to the LV network. The lengths of transmission line between source and 250 and 150 kVA transformers
are 1150 m and 950 m, respectively, while there is a comparatively shorter, 110 m length between
source and 200 kVA transformer. In this model, the distributed parameter lines which are commonly
used by electric supply companies in Pakistan are incorporated. These lines follow British Standard
215 with conductor type Wolf, Ant, and Panther. Table 2 tabulates the various values of parameters
such as diameter, ampacity, resistance, capacitance, and inductance. The power transformers used in
the simulation model are three phase, two winding transformers operating on power system frequency
of 50 Hz. Inductance and resistance are 0.50 H and 5 Q) for winding 1, respectively, and 0.1 H and
0.85 Q) for winding 2, respectively. The magnetization inductance L, and resistance R;, of power
transformers are 550 H and 2 M(), respectively, and X/R ratio is 7.

NB-PLC signal is injected and received with the help of CCD, at the same phase A of 250 kVA
transformer in MV power line i.e., at the MV side of transformer. The role of CCD is explained in
the next subsection. The distance between transmitted and received signal is 1150 m. It is worth
noticing that NB-PLC signal can be injected and received in a similar way on the phases B and C.
Furthermore, after a careful literature review, FS load of LV network is modeled as RLC load [1,26].
The ratios of active and reactive powers utilized in RLC loads of LV network, connected to MV network,
are tabulated in Table 4.
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Figure 7. Proposed Simulink Model for MV NB-PLC channel modeling and characterization.
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Figure 8. Circuit of MV phase to ground CCD.

Table 4. Active Power (W) and Reactive Power (VAR) ratios of LV network’s RLC loads connected to

MYV network.
Active and Reactive Power Ratios of Connected RLC Load of LV Network
Supplying Transformers Reactive Power
Active Power (kW)
Qc (+VAR) Q1 (—VAR)
150 kVA 140 25 85
200 kVA 190 30 75
250 kVA 245 20 90

5.3.1. Capacitive Coupling Device

A CCD is modeled to inject the signal in the MV power line for possible NB-PLC for AMI,
without which the signal cannot be transmitted through an MV power line [36]. Figure 8 elucidates the
schematic diagram of phase to ground CCD for MV network. A 1-V signal is generated with the help
of a signal generator to the input of a parallel RLC circuit and further through isolation transformer
tuned for the frequency range 3-500 kHz. The signal passes from a 50-Hz filter before giving input to
the MV power line. CCD is grounded with a resistance of 850 (). The values of various parameters
used in CCD are tabulated in Table 5. The same CCD is used at the receiving end of MV NB-PLC
system and on the transmitter side. Figure 9 illustrates the transfer function of CCD. The plotted
results of CCD depicts the variations in attenuation between 10 dB and —2 dB.

Table 5. Capacitive coupling device parameters.

Isolation Transformer RLC Branch Parameters MYV Series Ls Cs Parameters

Magnetization Resistance,
RpyQ

85 425 1:1 45 180 20 75 90

Inductance, Ly [uH] Turn Ratio RI[kQ] L[pgH] CInFl Lg[uH] Cs nF
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Figure 9. Simulated response of CCD.
6. Results and Discussion of MV NB-PLC Channel Transfer Functions

This paper proposes the channel modeling techniques for MV NB-PLC for AMI by comparing
TL theory (with constant and FS impedances), multipath signal propagation model, and proposed
Simulink model. This part of the paper discusses and compares the results of transfer functions
determined from all suggested techniques.

6.1. Transmission Line Theory Based Transfer Functions

Figure 10a,b illustrates the transfer function results obtained from TL theory model by using
constant and FS impedances of NB-PLC network, respectively. The attenuation profile of constant
impedances-based transfer function is between —15 and —40 dB, whereas FS impedances-based
transfer function varies between —11 and —48 dB. The FS impedances-based transfer function presents
more peaks and dips as compared to constant impedances-based transfer function, e.g., peaks can be
seen at 100, 250, and 355 kHz and dips can be noticed at 75, 200, and 275 kHz as well as a deep dip at
480 kHz.

T T T T ] o T T T T 1 ]

15 1 —=— Constant Network —&— FS Network

Gain (dB)

0 100k 200k 300k 400k 500k

Frequency (Hz)
(a)

T
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LU L
0 100k 200k 300k 400k 500k
Frequency (Hz)

(c)

0

— T T T T T T
100k 200k 300k 400k 500k

Frequency (Hz)
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— T T 7
—w— Simulink Model

0

100k 200k 300k 400k 500k
Frequency (Hz)
(d)

Figure 10. Transfer functions obtained from: (a) TL theory with constant network; (b) TL theory
with frequency selective network; (c), ultipath signal propagation model; and (d) the proposed

Simulink Model.
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6.2. Multipath Signal Propagation Model Based Transfer Function

Figure 10c shows the transfer function result obtained by implementing multipath signal
propagation model on NB-PLC network. The attenuation profile is varying between —11 and —44 dB,
illustrating peaks at 110, 220, and 370 kHz and dips at 80-90, 200, 260, and 480 kHz.

6.3. Proposed Simulink Model Based Transfer Function

Figure 10d presents the transfer function plot obtained by using the proposed Simulink model.
The attenuation profile of transfer function is varying between —11 and —45 dB, illustrating peaks at
110, 220, and 350 kHz and dips at 75, 170, 250, and 480 kHz.

It is clear from the plotted transfer function results that transfer function profile calculated from
the proposed Simulink model follows the trend of transfer functions computed from FS-based TL
theory and multipath signal propagation model, thus validating the performance of Simulink model.
It is also noteworthy that constant impedances-based TL theory transfer function is comparatively
more linear and does not give complete information about transfer function profile. However, FS-based
transfer function computed by TL theory is more precise and follows the transfer function trends of
multipath signal propagation and Simulink models.

6.4. Box Plot Analysis for Attenuation Profiles

A detail of attenuation profiles of transfer functions obtained from TL theory (constant and FS)
model, multipath signal propagation model, and proposed Simulink model are segregated in different
quartiles in the box plots shown in Figure 11. The frequency range of interest is 3-500 kHz for NB-PLC
network. The box plot consists of a type of plot able to visually reveal some basic statistics of an
attenuation dataset by depicting the minimum values, maximum values, and trend of attenuation gains
and drops. It is clear from the box plot analysis that attenuation profiles of all techniques are in good
agreement with each other, except the attenuation profile obtained from constant impedances-based
TL theory model. It is particularly significant to note that Simulink model provides an exhaustive set
of information with wider means and extended quartiles.
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Figure 11. Summary of NB-PLC channels’ transfer functions.
7. Conclusions

This paper presents the state of the art for NB-PLC channel modeling techniques for MV network
by utilizing three different types of models for efficient channel modeling and characterization for
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MYV NB-PLC network. The first technique is based on TL theory by considering the constant and FS
parameters of transmission lines and load impedances. FS is introduced in the MV power lines to get a
better estimate of channel conditions, leading to a scenario that is more closer to reality. The variations
in the resistance values by adding frequency selectivity in it are compared with Resistance Variations
law whose results are quite similar to each other. A statistical multipath signal propagation model
is used that incorporates the effect of multipaths and reflections to compute the transfer function.
After a careful investigation about the behavior of LV network, impedances are modeled and their
corresponding plots with respect to increase in frequency are discussed. The third technique comprises
of a Simulink model, developed by using real time parameters of power network. The CCD is
modeled to inject the NB-PLC signal in MV network of Simulink model. The transfer functions of
all techniques such as TL theory (constant and FS impedances) model, multipath signal propagation
model, and proposed Simulink model are compared with each other. It is evident from the plotted
transfer function results that FS transfer function of TL theory model and multipath signal propagation
model are in good agreement and have similar trends of attenuation profiles with the transfer function
computed from proposed Simulink model. In practical NB-PLC systems, network parameters and
impedances do not remain constant but keep on changing for different values of frequencies. Therefore,
close agreement of transfer function results of Simulink model with FS-based TL theory model and
multipath signal propagation model validate the accuracy of Simulink model. The presented model in
this paper can prove to be a useful simulation tool to estimate any MV NB-PLC channel conditions by
simply changing the parametric values as per requirements and conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

AAC All aluminium conductor

ACSR Aluminium conductors steel reinforced
AMI Advanced metering infrastructure
CCD Capacitive coupling device

FS Frequency selective

HDR High data rate

LDR Low data rate

LV low voltage

MV Medium voltage

NB-PLC Narrowband power line communications
PLC Power line communication

SG Smart grid

TL Transmission line
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