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Abstract: Under the influence of the COVID-19 pandemic and the concurrent oil conflict between
Russia and Saudi Arabia, oil prices have exhibited unusual and sudden changes. For this reason,
the volatilities of the West Texas Intermediate (WTI), Brent and Dubai crude daily oil price data
between 29 May 2006 and 31 March 2020 are analysed. Firstly, the presence of chaotic and nonlinear
behaviour in the oil prices during the pandemic and the concurrent conflict is investigated by using
the Shanon Entropy and Lyapunov exponent tests. The tests show that the oil prices exhibit chaotic
behavior. Additionally, the current paper proposes a new hybrid modelling technique derived
from the LSTARGARCH (Logistic Smooth Transition Autoregressive Generalised Autoregressive
Conditional Heteroskedasticity) model and LSTM (long-short term memory) method to analyse the
volatility of oil prices. In the proposed LSTARGARCHLSTM method, GARCH modelling is applied
to the crude oil prices in two regimes, where regime transitions are governed with an LSTAR-type
smooth transition in both the conditional mean and the conditional variance. Separating the data
into two regimes allows the efficient LSTM forecaster to adapt to and exploit the different statistical
characteristics and ARCH and GARCH effects in each of the two regimes and yield better prediction
performance over the case of its application to all the data. A comparison of our proposed method
with the GARCH and LSTARGARCH methods for crude oil price data reveals that our proposed
method achieves improved forecasting performance over the others in terms of RMSE (Root Mean
Square Error) and MAE (Mean Absolute Error) in the face of the chaotic structure of oil prices.
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1. Introduction

The petroleum market is currently going through one of the most volatile times in its history.
The volatilities of crude oil prices are affected not only by macroeconomic and microeconomic variables
but also by the speculative activities and non-economic variables such as geopolitical tensions, the
Gulf war, and, nowadays, the coronavirus disease 2019 (COVID-19) and the conflict between Russia
and Saudi Arabia. In the recent months, uncertainty and volatility in oil prices due to COVID-19 and
the conflict between Russia and Saudi Arabia have impacted the investors’ decisions for portfolio
allocation and manufacturers’ decisions for industrial production and economy. While the COVID-19
pandemic has led to worldwide recession, it has also resulted in a drop in demand for oil. The countries
in the Middle East and North Africa (MENA) have been faced with both the COVID-19 pandemic as
well as the steep decline in oil prices. That is, the petroleum market has endured the pressure of an
increase in supply alongside a decrease in demand. In this respect, the differences in opinion between
Russia and Saudi Arabia (on 9 April, Russia and Saudi Arabia resolved their opinion differences) and
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the disagreements among OPEC and countries on petroleum production reduction had an effect on the
increase in supply.

Under the influence of COVID-19 and the conflict between Russia and Saudi Arabia, the petroleum
market faced both a negative demand shock and a negative supply shock [1]. A negative supply shock
arises from a drop in the workforce, which in the case of COVID-19 may be directly due to the workers
acquiring the disease or may be indirect due to travel restrictions, lockdown conditions or tending to
children staying at home. The supply is influenced by a drop in materials, capital and intermediate
inputs due to the disturbances in the transportation network and admistration in MENA countries [2].
Negative demand shock exhibits global and local features [3]. Since the COVID-19 pandemic has
caused recessions in all economies, the recessions, lockdown conditions, and disruptions to global value
chains have resulted in a reduction in petroleum demand. It has shuttered factories; stopped people
from travelling; increased the number of people staying at home; caused a drop in materials, capital
and intermediate inputs due to the disturbances in the transportation network and admistration; and
decreased production in many industrialised countries. That is, due to the restrictions in 187 countries
and regions, petroleum demand has nearly stopped. The International Energy Agency (IEA) [4] has
predicted that the petroleum demand will be 29 million barrels (mb/day) less in the month of April
compared to in the same month a year ago. Moreover, this level is the lowest since 1995. For the second
quarter of 2020, it is predicted that the demand will be 23.1 mb/day below the previous year’s demand.

Moreover, as mentioned above, together with the decline in petroleum demand, the petroleum
supply, which maintained its pre-pandemic level, is responsible for the drop in petroleum prices.
The petroleum storage capacities of countries have been filled for the first time in history [5]. On the
other hand, to maintain market share, some oil producers stored their excess oil at sea by leasing
tankers at high costs. As a consequence, the petroleum supply had to come down to the record low
level of 12 mb/day in May. In future prices, West Texas Intermediate (WTI) entered the negative region
and finished the day at the USD 37 per-barrel level.

Due to these unforeseen circumstances, the Middle East region is going through an unexpected
turning point. Especially, the MENA countries are going through an economic recession triggered by
the shock from COVID-19 [6], the breakdown in negotiations between the OPEC countries [5], the
oil war between Russian and Saudi Arabia, and the uncertainties about China’s economic recovery.
The economies of Saudi Arabia and Russia depend heavily on their oil revenues. Although the Russian
economy is more diversified than Saudi Arabia’s economy, both economies face similar disruptions
because oil revenues represent a very high share of their gross domestic products (GDPs). According to
Kubursi [5], while Saudi Arabia needs a USD 80 per-barrel price to balance its budget, Russia needs a
price of USD 60 to balance its government budget.

As the volatility of oil prices continues to increase, many countries and sectors will be affected.
In this context, the volatility of oil prices points to both the regime models and the presence of a
nonlinear and chaotic structure.

This paper aims to analyse the volatilities of WTI, Brent and Dubai crude oil prices between
29 May 2006 and 31 March 2020. Firstly, it explores the presence of chaotic and nonlinear behaviour in
the oil prices by Shanon Entropy (SE) and Lyapunov exponent (Le) tests, and secondly, it suggests the
Logistic Smooth Transition Autoregressive Generalised Autoregressive Conditional Heteroskedasticity
long-short term memory (LSTARGARCHLSTM) method. If the SE and (Le) tests determine chaotic
or nonlinear behavior, we propose a hybrid modelling technique developed by combining the
LSTARGARCH [7] with LSTM. The LSTARGARCH model has STAR type nonlinearity in both the
conditional mean and variance and allows the smooth transitions between the regimes to be governed
by a logistic function. To evaluate the success or accuracy of our proposed method, we compare with
GARCHLSTM and traditional methods; GARCH and LSTARGARCH. Finally, in this paper, since
forecasting performance is accepted as a measure of the success of applied methods, we compare the
forcasting performance of all the models.
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This paper contributes to the related literature on theory, methodology and econometric
applications by determining the differentiating characteristics of the volatility of the oil price in
different regimes and by helping to specify the corresponding policies for these characteristics.

The paper is organised as follows: In Section 2, the related studies are reviewed. In Section 3, the
proposed hybrid model and the methodology are described. The empirical results are presented in
Section 4. The last part of the paper presents the concluding remarks and policy recommendations.

2. Related Work

Since the shocks stemming from COVID-19 have dramatically affected countries and many
sectors, the impacts of the COVID-19 pandemic on the economy have been discussed by several
papers. Baldwin [8] explored the connection between the inequality of wealth and health and the
pandemic and argued that since for millions without higher education, financial and health difficulties
abound, the number of hospitalisations and thereby the mortality rate due to COVID-19 is likely to be
substantially higher for this group relative to that for the rest of the society. Gourinchas [9] pointed out
that flattening the pandemic curve inevitably makes the macroeconomic recession curve steeper, which
can be flattened by taking appropriate economic measures at a fiscal cost. Gopinath [10] discussed
limiting the economic fallout from the coronavirus with targeted policies. Blanchard [11] and Alesina
and Giavazzi [12] focused on ways to avoid another Euro crisis due to COVID-19. Gali [13] showed the
importance of “helicopter money”, suggested by Gali [14] to avoid recession. Wyplosz [15] presented a
solution to avoid a potential debt crisis during COVID-19. Cecchetti and Schoenholtz [16] accented the
importance of Bank Runs and Panics. Cochrane [17] explored the impact of COVID-19 on monetary
policy. Bénassy-Quéré [18] accented that the decline in oil prices will impact headline inflation and, as
occurred in the past, could impact household and corporate inflation expectations. Arezki et al. [2,3]
stressed that to limit the risk of financial instability, interest rates should be reduced and liquidity
should be injected into the banking system and accented that, in places where inflation is low, liquidity
injection and targeted cash transfers can be financed by “helicopter money” [14] that is banknotes
printed by the central banks [13].

However, these studies do not consider the impacts of COVID-19 on the volatilities of oil
prices, which has caused many issues. In our opinion, the volatility of oil prices points to both the
regime structure and the presence of nonlinear and chaotic structure. Some previous work examined
the volatility of the oil price and modelled it as a process with chaotic and nonlinear behavior.
Barone-Adesi et al. [19] suggested a semiparametric method to examine the structure of oil prices.
Adrangi et al. [20] determined the presence of low-dimensional chaotic structure in the oil prices.
Lahmiri [21], Komijani et al. [22] and He [23] are the other studies that determine the presence of chaos
in oil prices.

On the other hand, some previous studies emphasised the presence of outliers in the oil price.
The outliers may impact the estimation and identification power of the generalised autoregressive
conditional heteroskedasticity (GARCH) methods and can cause heteroscedasticity or conditional
heteroscedasticity [24,25]. Moreover, they can affect the out-of-sample forecasting performance [24,26].
To address the issue of outliers, different methods have been proposed. Ané et al. [27] tested the
performance of a method after noticing the outliers in a GARCH model by employing their proposed
method. Charles and Darné [28] detected and corrected the outliers in the GARCH models. However,
these methods do not have high forecasting performance.

Some papers combined STAR (Smooth Transition Autoregressive) and GARCH methods to reduce
the problems mentioned above. The STAR technique by Teräsvirta [29], Luukkonen et al. [30] and
Granger and Teräsvirta [31] suggest the nonlinear approach of the conditional mean based on smooth
transition between stages of autoregressive processes by using the exponential and logistic squashing
functions. Following these studies, González-Rivera [32], Hagerud [33], Dufrénot et al. [34] and
Anderson et al. [35] suggested the STARGARCH (STGARCH) model, and Ané and Ureche-Rangau [36]
suggested the Regime Switching Asymmetric Power GARCH (RS-APGARCH) model. Franses et al. [37]
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emphasised the importance of the STARGARCH methods. Lundbergh et al. [38] employed a
STARGARCH method that permits non-linearity in both the conditional variance and the conditional
mean. Lee and Degennaro [39], Chan and McAleer [40] showed the statistical properties of
STARGARCH models. Bildirici and Ersin [41] suggested the STARSTGARCH model.

Some papers used various methods based on econometric models or intelligent algorithms such
as Neural Network [42–47], genetic algorithms (GA) [48], support vector machines (SVM) [49] and
support vector regression improved with a meta-heuristic algorithm [50,51]. The other studies in the
literature adopted a decomposition-integration (EMD) method. Zhang et al. [52] and Yu et al. [53] used
the EMD method to determine the main driving power behind the volatility of oil prices and showed
that irregular events increase volatility.

Donaldson and Kamstra [42] suggested a class of Neural Network GARCH models.
Gonzalez Miranda and Burgess [43], Hamid and Iqbal [44], and Bildirici and Ersin [45] combined
the neural network method with the GARCH model to predict oil prices. Roh [47] combined the
EWMA, GARCH and EGARCH models with a feedforward neural network model and determined
that the EGARCH model with the feedforward neural network gives the best results. Kristjanpoller
and Hernández [54] compared the predictability with a GARCH model against that with a hybrid
neural network (HNN) and argued that, for forecasting volatility, HNN models are more suitable than
the GARCH models.

A few papers analysed oil price volatility by combining regime models and neural network
methods. Bildirici and Ersin [7] used the LSTARLSTGARCH family and LSTARLSTGARCHNN
family to analyse oil prices. According to results of this work, the volatility, nonlinearity and
asymmetric characteristics of oil prices were best captured by the LSTARLSTGARCHMLP family
models. Bildirici and Ersin [55] suggested the LSTARLSTGARCHRBF models for forecasting the returns
of oil prices. Their results indicated that the LSTARLSTGARCHRBF and LSTARLSTGARCHMLP
models provide significant improvements over GARCH models.

On the other hand, some papers combined LSTM and GARCH models. Wex et al. [56] and
Yu et al. [57] integrated financial news into the process of forecasting crude oil prices. Zhao et al. [58]
used LSTM for oil price forecasting. Chen et al. [59] suggested the deep learning model to forecast oil
prices. Gupta and Pandey [60] tested the volatility of oil prices by employing LSTM-based recurrent
neural networks. For forecasting oil prices, Li et al. [61] suggested the EEMD-SBL-ADD method,
which combines EEMD (ensemble empirical mode decomposition) and SBL (sparse Bayesian learning).
Huang and Wu [62] used deep multiple kernel learning (DMKL) and showed that this method
decreased the forecasting errors. Li et al. [63] suggested models based on deep learning to forecast
oil prices where text and financial features were presented as complementary features for the deep
learning models to obtain forecasts of oil prices with higher accuracy. Kim and Won [64] also proposed
a hybrid model that combines the GARCH model with LSTM (long short-term memory) to forecast
financial volatility. However, this work does not integrate deep learning with a regime switching
GARCH method.

3. Methodology

In this paper, in accordance with Franses et al. [65], Terasvirta [66], and Chan and McAleer [67],
STARGARCH type models are applied. The LSTARGARCH model supports STAR-type nonlinearity
both in the conditional mean and in the conditional variance. In this model, the conditional volatility
is based on the size and sign of the shocks on εt−1. Since the relative impacts of positive and negative
shocks with equal magnitude depend on their conditional volatility, negative and positive shocks with
similar sizes produce different effects [41,55].

Consider the following STAR model with two regimes:

yt = (φ1 +
r∑

i=1

φ1iyt−i(1− F(st−d;γ, c)) + (φ2 +
r∑

i=1

φ2iyt−iF(st−d;γ, c)) + εt (1)
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where
F(st−d;γ, c) =

1
1 + e−γ(st−d−c)

(2)

It was defined with the logistic function. F(st−d;γ, c) is the logistic transition function restricted to
allow the transition to be a function of a single variable s and its respective distance to the threshold c.

γ takes positive values. When γ→∞ , it shows the TAR (threshold autoregressive) model. On the
other hand when γ→ 0 , the transition becomes smoother. If γ = ∞ and st−d < c, then F = 0. However,
if st−d > c, then F = 1. The F function moves very quickly from 0 to 1. When the transition function is
too steep, the LSTAR model converts to a SETAR (self exciting threshold autoregressive) model with
two regimes. When γ→ 0 , F converges to a constant, and if γ = 0, F is equal to 0.5 and the LSTAR
model turns into a linear AR(p) model.

The LSTARGARCH model is a model that allows STAR-type nonlinearity in both the conditional
mean and the conditional variance. When the error terms follow a smooth transition in the GARCH
process, by allowing GARCH errors, is obtained following equation:

σ2
t =

w +

p∑
i=1

αiς
2
t−i +

r∑
i=1

βiσ
2
t−i

 (3)

The model is called STARGARCH. Since the information matrix of the STARGARCH Log-likelihood
(LL) function is block diagonal, the parameters in the conditional mean equations can be estimated
separately from the parameters in the conditional variance equations, as in the case of ARMA-GARCH.

To achieve a smooth transition in the GARCH procedure for the error terms and to obtain the
LSTARGARCH model, the following equation is used:

σ2
t =

(
w1 +

p∑
i=1

α1iς
2
t−i +

r∑
i=1

β1iσ
2
t−i

)
(1−H(ςt−i; ε, n))

+

(
w2 +

p∑
i=1

α2iς
2
t−i +

r∑
i=1

β2iσ
2
t−i

)
H(ςt−1; ε, n)

(4)

The transition function is:
H(ςt−i; ε, n) =

1
1 + e−ε(ςt−i−n)

(5)

where n is the threshold coefficient and εt is the parameter defining the speed of the transition.

The Proposed Hybrid LSTARGARCHLSTM Model

LSTM is combined with GARCH methods (Figure 1) and LSTARGARCH (Figure 2) to gain
assistance from the forecasting abilities of deep learning.

LSTM models have been proposed to exploit short- and long-term dependencies between the
predicted time series data and the feature vectors extracted from it for performing the prediction.
LSTM models were initially proposed in the seminal work of [68], which employed multiplicative
gate units for maintaining a constant error flow through the constant error carousel unit to prevent
the vanishing or blowing up of the error signals flowing backwards in time. A later variant of this
fundamental architecture employed adaptive forget gates [69] to prevent the internal state from
growing indefinitely by enabling the LSTM cell to learn to reset itself when its contents are outdated.

The equations governing the LSTM operation may be given as

mt = ft
⊙
∗mt−1 + jt

⊙
∗m̃t (6)

m̃t = tanh(Vmxt + Qmrt−1 + am) (7)

jt = σ
(
V jxt + Q jrt−1 + a j

)
(8)
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ft = σ
(
V f xt + Q f rt−1 + a f

)
(9)

ot = σ(Voxt + Qort−1 + ao) (10)

rt = ot
⊙
∗tanh(mt) (11)

where a is a bias vector, Q and V are weight matrices, the sigmoid function is denoted as σ(·), and
⊙
∗

denotes element-wise multiplication.
In the above, LSTM has a memory cell that has three gates. mt is the cell state vector. The activation

vectors of the three gates are found according to Equations (8)–(10). In these equations, the weighted
sum of input vector xt, the past output vector rt−1 and the bias vector are passed through the sigmoid
function to generate activation values in the range of 0 to 1. An activation value of one at each of these
gates causes the information at the input to that gate to completely pass through, whereas a value of
zero forces all the information at the input to be entirely filtered out. Hence, in Equation (6), the forget
gate decides on the information in the most recent cell state (mt−1) that passes to the current cell state.
Similarly, in Equation (6), the input gate jt decides on the part of the new information to be stored in
the current cell state (mt). Equation (7) computes the new information m̃t at time t as a weighted sum of
xt, rt−1, and the bias where the output of the tanh activation function ranges between −1 and 1. Finally,
the normalised output value rt in Equation (11) is determined by filtering the tanh normalised (range
−1 to 1) cell state mt by using the output gate ot activation determined in Equation (10). This process
separates the necessary information from unnecessary information to yield the output vector rt.

4. Data and Results

4.1. Data

We used Brent, Dubai and WTI crude oil price data in the current work. The volatilities of the
Brent, Dubai and WTI crude oil prices are calculated by employing the daily closing prices between
29 May 2006 and 31 March 2020. lbopt, ldopt and lwopt show the volatilities of the Brent, Dubai and
WTI crude oil prices, respectively. They were calculated as lbopt = ln(brent oil pricet/brent oil pricet−1),
ldopt = ln(Dubai oil pricet/Dubai oil pricet−1) and lwopt = ln(WTI oil pricet/WTI oil pricet−1).

In the process of the estimation of the GARCHLSTM and LSTARGARCHLSTM models, the
sample is split between training, validation and out-of-sample elements in chronological order with
respective proportions of 80%, 10% and 10%.

4.2. Results

The results were collected by the following five steps listed below:

1. Firstly, some descriptive statistics were obtained. The Augmented Dickey-Fuller (ADF) unit root
test [70,71] and Kapetanios, Shin, and Snell (KSS) unit root test [72] were applied. The ADF test is
dependent upon a linear assumption that can cause the false results. Bigman et al. [73] showed
that traditional unit root tests tends to produce “spurious regressions”. In this condition, for
confirmation, we used the KSS test.

2. Secondly, Tsay and Hsieh’s tests and the Brock–Dechert–Scheinkman (BDS) test were applied.
These tests determined the presence of nonlinear structure, but they are not sufficient to determine
the existence of chaotic behavior.

3. Thirdly, SE and Le tests were applied. Le is a convenient means to decide on the presence of
chaotic behavior.

4. The LSTARGARCHLSTM method determines ARCH and GARCH effects. To evaluate the
performance of our proposed method, we compared our proposed method with GARCHLSTM and
traditional methods: GARCH and LSTARGARCH. For this purpose, GARCH and LSTARGARCH,
and GARCHLSTM models were estimated and the most succesful model was determined.

5. In the final step, the forecast accuracies of all of the models were determined.
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4.2.1. Some Descriptive Statistics and Tsay and Hsieh’s Tests

In Table 1, several statistics of the data are shown. Since the data exhibit excess kurtosis, they cannot
be modelled by a normal distribution. The normality assumption is rejected by the Jarque–Bera [74]
(JB) normality test. The results show that nonnormality is observed and that normality is rejected.

On the other hand, in Table 1, the main problem appears to be excess kurtosis but not
excess skewness.

The ADF and KSS unit root tests suggest the stationarity of the data at the level. The KSS test
implies that the data are nonlinear and stationary.

Table 1. Descriptive statistics and unit root tests. lbopt, ldopt and lwopt are the volatilities of the
Brent, Dubai and WTI crude oil prices, respectively. ARCH shows the Engle’s [75] ARCH test statistic.
White [76] shows White’s heteroscedasticity test statistic, RESET show the RESET statistic, and this test
adds the second power of the fitted value as an additional regressor.

Lbopt Ldopt Lwopt

Kurtosis 17.583 21.69 18.763
Skewness −1.0417 −1.5635 −0.45

JB 346.64 282.65 208.5756
ARCH effect 17.89 27.67 19.25

White 14.36 13.73 10.88
RESET 13.58 10.72 2.18

Unit Root Tests

- Level Level Level

ADF −56.86 −15.069 −68.44
KSS −54.25 −11.38 −53.58

Decision I(0) I(0) I(0)

4.2.2. BDS Test, Tsay Tests and Hsieh’s Coefficients Results

The BDS test (for detailed knowledge, see Brock et.al. [77]) was developed to test whether the
data generating process of a series is deterministic (chaotic) or not [78]. The BDS test does not have
a simple interpretation because the result of this test determines whether the stochastic process has
chaos or nonlinearity [79].

The BDS test can be used to determine the presence of nonlinearity in the time series. Hsieh [80]
calculate the following BDS test statistic: Let Cm(e) be the fraction of the maximum norm of deviations of
points in a time window of size m from points in a shifted time window of size m less than e. Under the
null hypothesis of the time series xt, and for fixed m and e, Cm(e) ∼ [C1(e)]

m, the BDS test statistic is the
difference between Cm(e) and [C1(e)]

m normalised by its standard deviation and asymptotically has the
standard normal distribution. When the null hypothesis is rejected, nonlinear dynamics can be said to
exist in the time series.The power of the test depends critically on the choice of e.

In Table 2, the BDS test determined that the lbopt, ldopt and lwopt variables indicate evidence of
chaotic structure or nonlinear stochastic processes.

Table 2. Brock–Dechert–Scheinkman (BDS) test results.

Z Statistics

Dimension Lbopt Ldopt Lwopt

2 34.40350 35.9270 18.999077
3 35.62271 38.6123 22.72316
4 38.02877 41.3846 24.84834
5 41.58379 44.5027 26.97560
6 46.53435 49.7965 28.99879
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The Hsieh’s [81] coefficients are obtained in Table 3. Some coefficients are high. Although the
Hsieh’s coefficients are not aimed at testing models that are nonlinear in variance, the high coefficient
values indicate some autoregressive conditional heteroscedastic (ARCH) effects and other kinds of
nonlinearities (such as GARCH-in-Mean effects).

Table 3. Tsay test and Hsieh’s coefficients. rij’s are Hsieh’s [81] third-order moment coefficients. Hsieh’s [81]

third-order moment coefficients were obtained as
[∑

xtxt−ixt− j/T
]
/
[∑

x2
t /T

]1.5
. Only coefficients for r(1, 1)

and r(1, 2) were given.

Hsieh’s Coefficients Tsay’s Nonlinearity Test Statistic

rij are Hsich’s Third-Order Moment Coefficients for Lags i and j Tsay’s Nonlinearity Test Statistic

Lbopt Ldopt Lwopt Lbopt Ldopt Lwopt

r(1) r(2) r(1) r(2) r(1) r(2) 133.41 100.58 102.001
0.1 −0.42 −0.35 0.12 −0.124 0.45 - - -

Similarly, as shown in Table 3, the Tsay nonlinearity test determined that the linear form is
misspecified for the op (oil price) variables. The RESET and Tsay nonlinearity test statistics do suggest
that the (linear) functional form is misspecified for the variables.

4.2.3. Lyapunov Exponent and Kolmogorov Entropy Tests

The chaotic level of the time series can be measured with Le. Le is used to measure the average
divergence from or convergence to the initial point of a dynamical system. If the Le has a large value, it
indicates high sensivity to initial conditions. While a positive Lyapunov coefficient typically signifies
chaotic structure, a negative coefficient typically shows convergence to initial conditions [21,82].
The positive value of Le indicates the presence of chaotic structure in the oil prices. Table 4 shows the
results. Additionally, Adrangi and Chatrath [20], Bildirici and Sonustun [82], and Lahmiri [21] also
determined the existence of chaotic structure for oil prices.

Table 4. Lyapunov exponent and Shannon entropy results 1.

Lyapunov Exponent Method Shannon Entropy Method

Lbopt Ldopt Lwopt Lbopt Ldopt Lwopt

0.9504 0.9071 0.8481 0.9617 0.983 0.9121

1 Shannon entropy(SE) is defined as SE(x) = −
n∑

i=1
pi log(pi) where pi is the probability mass of the ith discrete level

such that
∑
i

pi = 1 [83]. The R software DChaos package for calculating Le and R Software Entropy package for

calculating SE are employed.

SE is applied to measure the randomness degree in the data. The SE is 0.9121 for lwopt.
Entropy may be understood as the degree of the distortion of the market information reflected in the
price system. Positive values of the entropy accent that the oil price information can still be used to
understand the oil market dynamics. For example, since the reciprocal of the entropy for Brent is
1/0.9617, the corresponding time scale of an effective and rational forecast for that entropy value must
be within ~11 days. He [23] found 36 days by using the Kolmogorov entropy, and Bildirici [84] found
68 days.

4.2.4. Results with the GARCH, LSTARGARCH, LSTARGARCHLSTM and GARCHLSTM Models

Firstly, the results with the basic GARCH model and LSTARGARCH model are presented in Table 5.
Statistical inference for assessing the empirical validity of the two regime switching process was carried
out by using nonstandard Likelihood Ratio (LR) test [85]. However, these tests have some problems
in the context of the LSTARGARCH method, since LSTARGARCH models support LSTAR-type
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nonlinearity in the conditional mean with GARCH-type heteroscedasticity in the conditional variance.
We continue with LL test. There are two results: (1) the forms of the LL functions are obtained by the
choice of the transition functions and (2) in the models, it can be possible to change the forms of the LL
functions by transforming the parameters.

Table 5. Baseline models. LogL: Log-likelihood, ARCH(p): pth order ARCH–LM test, AIC: Akaike
information criterion, SIC: Schwarz information criterion, HQ: Hannan–Quinn information criterion.

Lwopt Lbopt Ldopt

- GARCH LSTARGARCH GARCH LSTARGARCH GARCH LSTARGARCH

- Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2

Cst(M)
0.0214
(2.13)
(0.0) 1

00633
(3428)
(00) 1

0116
(576)
(00) 1

00215
(187)
(00) 1

0015
(456)
(00) 1

000520
(625)
(00) 1

0.0754
(1.94)
(0.0) 1

0.0004
(2.17)
(0.0) 1

0.05377
(7.61)
(0.0) 1

Cst(V)
0.255
(1.91)
(0.0) 1

1109
(488)
(00) 1

0287
(836)
(00) 1

0312
(193)
(00) 1

0338
(263)
(00) 1

0089
(558)
(00) 1

0.02905
(2.05)
(0.0) 1

0.178
(1.93)
(0.0) 1

0.205
(1.94)
(0.0) 1

ARCH
0.19

(3.61)
(0.0) 1

0128
(8689)
(00) 1

0089
(1427)
(00) 1

0189
(278)
(00) 1

00287
(385)
(00) 1

01052
(1246)
(00) 1

0.19899
(2.67)
(0.0) 1

0.201
(7.25)
(0.0) 1

0.112
(2.27)
(0.0) 1

GARCH
0.67

(4.78)
(0.0) 1

0722
(686)
(00) 1

0903
(516)
(00) 1

0611
(1887)
(00) 1

09401
(8136)
(00) 1

08795
(1056)
(00) 1

0.61922
(4.051)
(0.0) 1

0.769
(2.105)
(0.0) 1

0.872
(9.26)
(0.0) 1

LogL 10536.28 271389 118421 316852 112345 388873

AIC: 10.353 −3913 77224 −33126 84167 −44956

SIC: 10.042 −389 77154 −32997 84869 −44836

HQ: 10.054 −385 77199 −33078 83940 −44612

ARCH
(1–2): 0.035 0097 0056 0042 0083 0064

ARCH
(1–5): 0.039 0095 0058 0041 0078 0062

1 shows p–values.

Table 5 gives the results determined by traditional methods. LSTARGARCH models were
employed to analyse the non–linearity in the conditional variance and in the conditional mean.
When the two groups of results with the GARCH and LSTARGARCH models in Table 5 are compared,
several conclusions can be derived. In the GARCH model, the sum of the ARCH and GARCH
coefficients is in the range 0.8–0.9. The the sum of the coefficients of ARCH and GARCH is <1 but
close to 1 for the LSTARGARCH method.

The results of LSTARGARCH model show significant improvements over the GARCH model.
The Log-likelihood values are considerably smaller for LSTARGARCH method, and the Schwarz
information criterion (SIC) and Akaike information criterion (AIC) are significantly lower. As shown
by the results in Table 5, when the variance is not constant, the LSTARGARCH model can provide
improvements in modelling.

4.2.5. The Architecture of the GARCH–LSTM and LSTARGARCH–LSTM Models

We will give the architecture of models with LSTM in Table 6. LSTM has been implemented in
the Keras framework. The LSTM model is estimated with optimisation conducted simultaneously
in the training and test samples. The optimisation is stopped at the epoch in which the test sample
Mean Absolute Error (MAE) starts to increase while the training sample MAE continues to decrease
(early stopping). The weight decay is also applied in the output and hidden layers to reduce
overfitting. The LSTM network has been trained for 50 epochs by using approximately 80% of the
data. Several models employing different numbers of layers of LSTM in a stack architecture have been
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evaluated by using the MAE measure on the validation error. The best model with the lowest MAE
consisted of three LSTM layers (excluding the fully connected output layer). The selected methods are
utilised for out-of-sample forecasting.

The determined models are used to forecast out-of-sample.

Table 6. Generalised Autoregressive Conditional Heteroskedasticity long-short term memory
(GARCHLSTM) and Logistic Smooth Transition Autoregressive (LSTAR) GARCHLSTM.

Lbopt Ldopt Lwopt

GARCHLSTM LSTARGARC
HLSTM GARCHLSTM LSTARGARC

HLSTM GARCHLSTM LSTARGARC
HLSTM

Training rho 1 0.89 0.92 0.88 0.93 0.91 0.95

Test rho 0.88 0.90 0.87 0.92 0.90 0.91

Training
RMSE 0.24 0.04 0.21 0.08 0.33 0.03

Training MAE 0.23 0.03 0.20 0.07 0.31 0.03

Test RMSE 0.22 0.022 0.1 0.07 0.29 0.06

Test MAE 0.21 0.022 0.09 0.06 0.289 0.059
1 Rho represents the training and test sample correlation coefficient, MAE and RMSE are the Mean Absolute Error
and the Root Mean Squared Error, respectively.

In our model, we use a stack of three LSTM layers followed by a fully connected layer at the
output. A choice for the window size of 32 limits the support for the learning to the most recent
32 samples. The network is trained using an optimisation algorithm that adapts the parameter learning
rate to both the first and second moments of the gradients to minimise the loss function. It can be
shown as in Figures 1 and 2.
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4.2.6. The Results of the GARCHLSTM and LSTARGARCHLSTM Method

For comparative purposes, the results obtained by GARCHLSTM and our proposed methods
are reported in Table 7. Our proposed method shows improvements over the LSTARGARCH model.
The Log-likelihood value is decreased, and the SIC and AIC of our proposed method are lower than
those of the LSTARGARCH model. Similarly, the results show improvements of the GARCHLSTM
model in the GARCH models. The Log-likelihood values are decreased, and the SIC and AIC values
are lower.

Table 7. GARCHLSTM and LSTARGARCHLSTM. LogL: Log-likelihood, ARCH(p): pth order
ARCH–LM test.

Lwopt Lbopt Ldopt

- GARCH
LSTM LSTARGARCHLSTM GARCH

LSTM LSTARGARCHLSTM GARCH
LSTM LSTARGARCHLSTM

- - Regime 1 Regime 2 - Regime 1 Regime 2 - Regime 1 Regime 2

Cst(M)
00618
(256)
(00) 1

0986
(212)
(00) 1

0651
(474)
(00) 1

025
(281)
(00) 1

0156
(276)
(00) 1

0554
(288)
(00) 1

0173
(262)
(00) 1

0263
(281)
(00) 1

0361
(453)
(00) 1

Cst(V)
0985
(265)
(00) 1

0431
(226)
(00) 1

0562
(382)
(00) 1

0861
(288)
(00) 1

0297
(263)
(00) 1

0441
(376)
(00) 1

0565
(288)
(00) 1

0428
(287)
(00) 1

0397
(432)
(00) 1

ARCH
0207
(316)
(00) 1

0102
(977)
(00) 1

0023
(229)
(00) 1

0127
(458)
(00) 1

0111
(803)
(00) 1

0095
(297)
(00) 1

0198
(448)
(00) 1

0118
(675)
(00) 1

0037
(236)
(00) 1

GARCH
0721
(571)
(00) 1

0881
(558)
(00) 1

0962
(356)
(00) 1

0811
(631)
(00) 1

0878
(558)
(00) 1

0901
(356)
(00) 1

0781
(756)
(00) 1

0844
(287)
(00) 1

0942
(522)
(00) 1

LogL 2849.2 2038.21 2669.3 1984.18 2986.2 1989.75

AIC: 2.981 −1.413 2.661 −1.513 2.875 −1.897

SIC: 2.816 −1.391 2.514 −1.489 2.867 −1.791

HQ: 2.807 −1.388 2.507 −1.417 2.821 −1.745

ARCH
(1–2): 0.123 0.089 0.107 0.076 0.109 0.081

ARCH
(1–5): 0.124 0.090 0.114 0.071 0.112 0.082

1 shows p–values.

For the GARCHLSTM method and our proposed method, the stability conditions were realised.
The Hannan–Quinn information criterion (HQ), SIC and AIC are are lower than for the GARCHLSTM.
Moreover, after permitting the GARCH methods to follow LSTAR non–linearity, the dynamics are
outstandingly different in terms of the estimated parameters.

5. Forecast Results

The forecast results are given under two subtitles: In–sample Forecast Results and Out of Sample
Forecast Results.

5.1. In–Sample Forecast Results

In the in-sample forecast, the predictive capabilities of the models developed using observed data
are formally evaluated to find out the effectiveness of the algorithms in reproducing data. The results
show that our proposed method offers important advances in in-sample forecast accuracy (Table 8).
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Table 8. In-step forecast results.

- GARCH GARCHLSTM LSTARGARCH LSTARGARCHLSTM

lbopt
RMSE 0.995 0.088 0.04 0.001
MAE 0.84 0.072 0.027 0.0009

ldopt
RMSE 0.937 0.097 0.029 0.005
MAE 0.79 0.079 0.014 0.0039

lwopt
RMSE 0.49 0.034 0.0291 0.006
MAE 0.35 0.022 0.0216 0.0055

In Table 7, forecasting performance results are presented. When the models are appraised in
terms of the RMSE criterion, our proposed method has the highest forecasting power followed by
the LSTARGARCH method. In terms of the RMSE criterion, the our proposed method has the best
generalisation capability followed by the LSTARGARCH method.

5.2. Out-of-Sample Forecast Results

The models are obtained to explore their 1, 10 and 20 day-ahead forecast accuracies, shown in
Table 9 (denoted as T + 1, T + 10 and T + 20). Accordingly, the out-of-sample 1, 10 and 20 days ahead
forecasts with our proposed methods exhibited the lowest RMSE and MAE followed by those from the
LSTARGARCH, GARCHLSTM and GARCH models.

Table 9. Out of sample forecast results 1, 10 and 20 days ahead.

Lbopt

GARCH LSTARGARCH

- T + 1 T + 10 T + 20 T + 1 T + 10 T + 20
RMSE 0.5126 0.538 0.547 0.0107 0.0213 0.038
MAE 0.5028 0.536 0.51 0.0106 0.0209 0.0375

GARCHLSTM LSTARGARCHLSTM

RMSE 0.052 0.0459 0.01438 0.0031 0.0038 0.0051
MAE 0.049 0.0448 0.01399 0.0029 0.0036 0.0049

ldopt

GARCH LSTARGARCH

RMSE 0.5187 0.4896 0.626 0.01125 0.0308 0.0397
MAE 0.5098 0.4891 0.621 0.01117 0.0299 0.0394

GARCHLSTM LSTARGARCHLSTM

RMSE 0.059 0.051 0.0495 0.005 0.006 0.0068
MAE 0.058 0.0501 0.0471 0.0038 0.0043 0.0052

lwopt

GARCH LSTARGARCH

RMSE 0.4472 0.4526 0.5066 0.0131 0.0313 0.034
MAE 0.4463 0.4511 0.5012 0.0122 0.0310 0.032

GARCHLSTM LSTARGARCHLSTM

RMSE 0.041 0.039 0.0385 0.0022 0.0024 0.0025
MAE 0.040 0.037 0.0381 0.0021 0.0022 0.0024

For example, for the WTI data, there is an order of magnitude improvement in the 10 and 20 days
ahead forecast RMSE’s with the LSTARGARCH models when the models are augmented with the
LSTM architecture. The RMSEs of our proposed methods for the WTI data in 1, 10 and 20 days are
calculated as 0.0021, 0.0022 and 0.0025.
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5.3. To Test for Forecast Accuracy

The Wilcoxon signed-rank (WS) and Diebold–Mariano (DM) tests were applied to confirm the
equivalence of forecast accuracy [86]. The DM test is as follows:

DM =
d√

2πf̂d(0)/T
(12)

where d = 1
T

T∑
t=1

(g(u1,t) − g(u2,t)) and f̂d(0) is a consistent estimate of fd(0).

The results of these tests are presented in Table 10. The p-values for the DM test are given below
the diagonal, and the p-values of the WS test are given above the diagonal. The H0 hypothesis of these
tests assumes that the models have the same level of accuracy. For most cases, since the p-value is
<0.05, the H0 hypothesis is rejected. For both tests, the p-value is >0.05 only for the RMSE comparison
of the GARCH and GARCHLSTM models. Hence, these two models are comparable in terms of
RMSE performance.

Table 10. Wilcoxon signed-rank and Diebold–Mariano results.

WS TEST

RMSEGARCH RMSEGARCHLSTM RMSELSTARGARCH RMSELSTARGARCHLSTM

D
M

Te
st

RMSEGARCH - 0.00 0.00 0.00
lbopt RMSEGARCHLSTM 0.00 - 0.00 0.00

RMSELSTARGARCH 0.00 0.00 - 0.00
RMSELSTARGARCHLSTM 0.00 0.00 0.00 -

RMSEGARCH - 0.00 0.00 0.00
ldopt RMSEGARCHLSTM 0.00 - 0.00 0.00

RMSELSTARGARCH 0.00 0.00 - 0.00
RMSELSTARGARCHLSTM 0.00 0.00 0.00 -

RMSEGARCH - 0.00 0.00 0.00
lwopt RMSEGARCHLSTM 0.00 - 0.00 0.00

RMSELSTARGARCH 0.00 0.00 - 0.00
RMSELSTARGARCHLSTM 0.00 0.00 0.00 -

6. Conclusions

This paper suggested a hybrid model for analysing oil price volatility between 29 May 2006 and
31 March 2020 on WTI, Brent and Dubai crude oil price datasets. Since under the influence of the
COVID-19 pandemic and oil conflict between Russia and Saudi Arabia, the oil price has exhibited
unusual changes, under the presence of chaotic structure of the oil price, analysis cannot be performed
by traditional methods. The GARCH and LSTARGARCH methods and their extensions GARCHLSTM
and LSTARGARCHLSTM based on deep learning were comparatively evaluated. The GARCH model
may not achieve high forecasting performance under the presence of nonlinear or chaotic movement,
since it considers the data period as a whole. Among these models, the LSTARGARCHLSTM model
exhibited significantly better results in terms of out-of-sample accuracy than the others in the face of
the chaotic structure of the oil price.

The LSTARGARCHLSTM model presents important improvements for time series estimation by
dividing the data into regimes, and analysing each regime within itself with the effects of ARCH and
GARCH. Specifically, the different GARCH and ARCH coefficients obtained in each of the negative
and positive shocks show different ARCH and GARCH effects in each of the regimes and an obligation
to set different policies in each of the regimes. According to our results, the impacts and the volatility
of the oil shocks associated with COVID-19 must be evaluated by our proposed method.

According to the ARCH and GARCH coefficients of the LSTARGARCHLSTM methods, the oil
price has ARCH and GARCH effects. That is, the oil supply and demand shocks associated with
COVID-19 are likely to be short–lived, but their effects on many sectors and countries are persistent.



Energies 2020, 13, 2980 14 of 18

Oil demand and supply will get back to their pre-pandemic levels at a speed based on the
length and depth of the disruption over time. Governments must develop policies to eliminate
the adverse consequences of the supply and demand shocks caused by COVID-19. On the other
hand, the COVID-19 pandemic will cause different results in oil-importing and -exporting countries.
For oil-importing countries, the persistence of oil prices is important for determing policies for targeting
inflation. Under the pressure on the prices of precious metals like gold and palladium, they can
encounter problems related to policies of targeting inflation. The expectations have adverse effect and
can produce unexpected results.

For oil-exporting countries, it is essential for Russia and OPEC countries to conduct policies to
make the oil prices return to the levels before COVID-19, since oil revenues constitute a significant
portion of the gross domestic products of these countries.

As accented by [2,3], in some oil-exporting and -importing countries, government coffers make
the fight in containing the spread of COVID-19 and its economic and social impacts more difficult.
Financial gaps in MENA countries as well as the high sovereign-risk premiums of many countries in
the world present difficulties for additional foreign borrowing on private markets. For oil-importing
and -exporting countries, helicopter money can be used as a recommended policy. However, fixed
exchange rates in some countries may make it difficult for them to use helicopter money, since money
printing is at odds with maintenance of the peg. As a result, in our opinion, if the oil prices do not
return to the levels before the pandemic, oil-exporting countries will endure heavy losses.
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