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Abstract: Urban complex (UC) is the main place of citizens’ life and work. The construction of
an UC often needs to expand the capacity of the power equipment. This paper proposes to use
electric vehicles (EVs) in an UC to reduce the power load of the UC during peak periods, so that
lower capacity power equipment can be used to reduce the construction costs of the UC and the
transformation of electrical facilities. In order to find the relationship between parking and power
load in the UC, the UC is decomposed into different functional areas for research. Then, we build a
parking information database for clustering and calculation. Divide the load peak into adjustment
intervals of equal duration. The EVs parked in the UC for each regulation interval (RI) are grouped
according to parking characteristics. Establish an objective function with the minimum load variance
during peak hours. The discharge capacity of each group in each RI is obtained and distributed
to each EV to realize peak load reduction of UC. Finally, the results of case analysis show that the
strategy can reduce the peak load effectively thus save the cost of UC construction.
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1. Introduction

The consumption of fossil fuels has brought about serious ecological issues such as global
warming and air pollution. The promotion of electric vehicles (EVs) can effectively solve these
problems. Therefore, many countries have promulgated various policies to support the development
of EVs. It can be predicted that the number of EVs will increase rapidly in the future. The large-scale
popularization of EVs will require huge demand for electricity. As electricity consumers, uncontrolled
charging of many EVs may cause unsafe operations in the power grid, but EVs can also be used as
mobile energy storage for load regulation. Hence, proper control of EVs’ charging and discharging
will have an important impact on the construction and operation of the power grid. As the busiest
place for people and cars gathering in the city, the urban complex (UC) has high electricity demand.
The construction of UCs will cause the reconstruction and expansion of the surrounding distribution
power grid. It will cost lots of money for reconstruction and expansion of the power grid. To solve this
problem, we will mainly study EVs with the function of participating in the load regulation of UC.

There are many studies on charging load mode of EVs at present. In order to establish the
charging load model of EV cluster in charging stations and residential areas, a queuing theory modeling
method was employed in [1]. Based on the National Household Travel Survey (NHTS) database of the
United States Department of Transportation in 2009, the statistical rules of EV trips, ending time and
driving distance are studied and analyzed. On this basis, the probable charging model of EVs was
completed in [2]. Considering the price and tax rate, fuel price, policy support and charging safety of
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EVs, a forecasting method based on an agent model was proposed and used to predict the development
scale of EVs in Iceland from 2012 to 2030 in [3]. A statistical analysis of the 24-hour travel of EVs was
carried out, and the load curve of charging at home was calculated in [4]. An Autoregressive Integrated
Moving Average model (ARIMA) method for demand forecasts of conventional electrical load and
charging demand of EVs’ parking lots was presented in [5], and the parameters of the ARIMA model
should be tuned so that the mean square error of the forecaster could be minimized. Researchers in [6]
pointed out that in the United Kingdom, EVs with 10% permeability would lead to a 17.9% increase in
peak power demand per day, and a 35.8% increase if permeability reaches 20%.

The strategies of peak-shaving and valley-filling are one of the research focuses. A time-sharing
charging control strategy for EVs based on the predicted load curve is presented in [7]. By increasing
the tariff during the peak load period and reducing the tariff during low load period, users can choose to
charge during low load period to realize peak shift [8]. Researchers in [9–11] established the simulation
model of EV participating in load frequency adjustment and study its mechanism and control effect.
They demonstrated the feasibility of EV participating in grid frequency regulation. When the grid
frequency is high, controlling a large number of EVs charging promotes the frequency of the grid to
decline; and when the grid frequency is low, controlling a large number of EVs discharge promotes
the frequency of power grid to rise. Scholars simulate and calculate the potential benefits of 250 EVs
participating in grid regulation in New England. The calculation results show that when EV only
provides downward FM service (the EV only charges), each EV can bring about an annual revenue
of $700–900. When the EV provides both upward and downward FM service (EVs both charge and
discharge), each EV can annually generate revenue of $1250 to $1400 for its users [12].

The authors in [13] proposed a stochastic unit commitment for isolated power systems in which
the risk of high operating costs is limited using the conditional value-at-risk risk measure. A unit
commitment formulation that accounts for the requirements of spinning reserves was presented
in [14]. A procedure to determine the optimal design of an isolated system with a high penetration
of renewable energy sources was proposed in [15]. Several electric vehicle charging algorithms were
proposed explicitly considering their negative impacts on the transmission and distribution grids
in [16]. An agent-based coordinated dispatch strategy for electric vehicles and renewable units at
distribution level was presented in [17]. A reserve contract optimization model designed for electric
vehicles with vehicle-to-grid capability was proposed in [18]. The authors in [19] investigated the
optimal planning of the Nordic transmission system in 2050 for a 100% electric vehicle penetration.

Researchers in [20] found that V2G strategy effectively reduced contamination emissions and cut
down the investment of variable load plants. Researchers in [21] also considered that the participation
of V2G into power systems could reduce peak power generation costs. The authors in [22] believed
that V2G application of heavy-duty electric vehicles was not only possible but also necessary for more
profits while electric buses without V2G revenue would not be cost-effective compared with traditional
diesel buses. The results in [23] showed that electric trucks could generate an additional enormous
income for owners if they provided V2G regulation service. The authors in [24] proposed a two-stage
approximate dynamic programming framework for the optimal charging strategy in a commercial
building parking lot and simulates a number of scenarios where the vehicle arrival behavior is modeled
as a Poisson process.

The coordination of EVs and distributed energy sources is another research focus. When there
are enough intelligent generators, power electronic devices and interactive chargers in the power
grid, EVs can be used as energy storage devices and standby power supply in case of accidental
power outages [25–28]. EVs can help integrate intermittent renewable energy such as wind and solar
energy into the grid more efficiently. V2G system can provide more help for grid operators, including
reactive power support, active power regulation, and load balancing through peak shaving and valley
filling, current harmonic filtering. These systems can provide auxiliary services such as frequency
control and rotating reserve, which can significantly improve the efficiency, stability and reliability of
power grid [29–32]. According to the Demand Side Management (DSM) method, the charging and
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discharging status of EVs will change with the load, which can not only improve the reliability of
power grid operation, but also reduce the impact on power grid if a large number of EVs are connected
to the power grid [33]. A strategy to optimize the control of EV group, not only considering the cost of
EV users, but also considering the benefits of EVs accessing the grid to participate in auxiliary peak
shaving, frequency modulation and standby [34,35]. EV clusters and a double-level optimal strategy
are used according to different priorities in [36], and a real-time optimal strategy from EV clusters to
individuals is completed.

We can find that most of studies have considered that EVs should charge or discharge at the
charging station. In fact, users prefer to charge near home because the charging stations are always
located in remote places. The smart city is a new urban construction concept. This means the integration
of urban function and services to optimize efficiency of urban management and services. It will
improve the quality of citizens’ life. The UC is generally located in busy areas with business, office,
residential functions and so on. This aligns with the smart cities concept. Many people live near the
UC. Obviously, it is a better choice for users to charge and discharge in the UC. It is convenient for
people if we build the garage of an UC as a charging and discharging power station. This design can
not only meet the charging needs of users, but also let EVs participate in the load regulation of the UC.
Therefore, EVs participating in the load regulation of UC can facilitate the safe and stable operation
of the power grid and efficient utilization of power resources in a smart city. This is conducive to
establishing the power supply systems of smart cities. However, there are few studies about EVs
participating in load regulation of an UC. The vehicle behavior of UCs is very complex. There are many
cars of malls, consumers, white-collar workers and residents in an UC, so the relationship between the
load characteristics and parking characteristics of different functional areas is obtained by studying
the different function areas of an UC in our research. Then, the EVs are clustered into a controllable
group and an uncontrollable group. Each group will be regarded as a whole to participate in the load
regulation of the UC. In order to make more EVs with different parking times participate in the load
regulation, we divide the peak load period into many small time periods defined as the regulation
interval (RI). In this way, if the parking time of some vehicles can cover a certain RI, the vehicles can
participate in the load regulation of this RI. We set the objective function which minimize the mean
square deviation of load and get the total discharge power of each group in each RI and allocate it
to each vehicle. Last, the case study proved that the EVs can reduce the peak load of UC effectively.
In summary, the main contributions of our research are:

(1) The random charging load model of EVs is established according to the daily travel habits of
residents. The influence of the EVs’ number and charging power on the charging load is analyzed.
It is confirmed that large-scale EV use with random charging will produce a serious charging
load, which will influence the safe operation of the power grid.

(2) The construction of UCs is becoming more and more popular among real estate developers.
There are few studies about EVs participating in load regulation of UCs. The research carried
out in this paper can reduce the peak load of UCs and improve the security of local power
grid operation.

(3) It is proposed to divide the UC into different functional areas. Then, we get the relationships
between load ratio and parking ratio of these different functional areas. The vehicles parked in
the UC are divided into three groups according to the functional areas of the UC. The problem is
simplified by this way.

(4) We propose a load shaving strategy involving three types according to their controllability, and the
objective function was established to minimize load variance during the peak period of the UC.
A case study was done to verify the strategy. The result proves that the strategy proposed in the
paper can effectively reduce the peak load through appropriate parameter matching, which is
safe to the operation of the power grid.
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The rest of the paper is organized as follows: Section 2 describes the problem faced by EV charging.
The calculation model of random charging load of EVs is established according to the user’s habit.
Then, the relationship between load and parking of the UC is studied. The relationship between
load ratio and parking ratio can be obtained by decomposing the UC into different functional areas.
In Section 3, the EV discharging strategies in UCs are illustrated and thoroughly described. In Section 4,
the effectiveness of the strategy is verified by case study, and the influence of permeability and length
of regulation interval on peak shaving is analyzed. Finally, the conclusions are presented in Section 5.

2. Model Description

With the increase of EVs, the concentrated charging of EVs may cause power shortages in local
areas. The charge power of EVs during peak load periods will increase the burden of the distribution
power network. Since the existing local distribution networks and facilities did not consider the charge
demand of EVs during the construction period, they need to invest a lot of money to expand and
transform the local distribution power grid for EV charging.

This section will study the influence of stochastic charge on power grid, load characteristics of
the UC, the parking patterns in the UC and model the stochastic charge load of EVs. Based on this,
our research further proposes a parking garage which can be used in an UC. This parking garage will
be built as a charge center with the function of both parking and charge/discharge for EVs. Through
the cooperation of flexible charge/discharge strategies, it can solve the problems of grid planning lag
in the construction of UCs and the dangers of power grid operation which caused by the stochastic
charge of EVs. In this paper, we will propose a discharge strategy for the peak load period.

2.1. Load Model of Stochastic Charging

With the expanded development of EVs, the number of EVs will reach a new scale. Their charging
demands will increase significantly. The charge load generation by EVs will represent and ever
increasing proportion of the power grid electricity consumption if the number of EVs is increasing.
In addition, the charge behavior of EVs users is clustered. The peak load of the power grid will increase
dramatically. It is necessary to increase the capacity of the power network to satisfy the demand of EV
charging in the future. Therefore, for construction and operation of the power grid, it is particularly
important to establish a model of the EVs’ charging load.

The factors affecting the charging load can be summarized as battery capacity, charge power and
users’ behavior. The power battery capacity determines the users’ charging frequency. The larger
battery capacity means the lower the charging frequency. The charge power is related to the charge
time. The greater charge power means the shorter charge time. At the same time, the charge power will
influence the peak charge load. Compared with the objective factors mentioned above, users’ behavior
is the key factor affecting the charging load. The user behaviors have an impact on charging load
mainly includes two aspects: the start charge time and State Of Charge (SOC). Concentration of the
user’s initial charging time will cause the greater the charging load. SOC reflects the user’s current
battery capacity consumption. If the battery capacity is small, the users generally charge every day.
With the increase of the battery capacity of EV, the users’ charge frequency will decrease. Our research
will consider these factors and establish a power demand model of EV in one day.

According to the National Household Travel Survey 2001 of American, the daily routine mileage s
obeys the log-normal distribution [4]:

f (s) =
1

√
2πsδD

exp[−
(lns− µD)

2

2δ2
D

] (1)

where, µD is the expectation of probability density function, δD is the standard deviation.
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Assume the SOC is full at the first travel in a day. The remain SOCend after the last travel is:

SOCend = 1− k · s (2)

where, k is the SOC consumption per kilometer.
The peak time of off-duty travel of private EVs is typically 17:00–19:00 [4]. Assuming that

the starting charge time is the last return time of the trip, combined with the survey results of the
United States Department of Transportation on American household vehicles, the final return time of
the vehicle is a normal distribution. In Equation (3), t is the final return time of the vehicle, and its
probability density function is as follows:

fs(t) =


1

δs
√

2π
exp[− (t−µs)

2

2δs
2 ], (µs − 12) < t < 24

1
δs
√

2π
exp[− (t+24−µs)

2

2δs
2 ], 0 < t ≤ (µs − 12)

(3)

where µs is the expectation of probability density function, δs is the standard deviation.
The charge power of EVs is related to the characteristics of batteries. The classical three-stage

charge mode is usually adopted in the charge process of lithium batteries: pre-charge stage, constant
current charge stage and constant voltage charge stage. In the pre-charge stage, lithium batteries are
activated to a certain state by a small current, which is usually about 10% of the constant current stage.
Constant current charge stage is the main stage of charging. When the battery voltage is higher than
2 V, the activity of the lithium-ion battery is fully activated and the internal resistance is smaller. It can
accept a high current charge. Generally, this period is used to charge the battery capacity to about 80%.
When the voltage of the lithium battery reaches the predetermined value, the third stage of constant
voltage charge is carried out. The current gradually decreases until it drops to 0. The period of first
stage and third stage are short, so the charge power can be regarded as a constant.

The charge time tc can be calculated according to SOCend and charge power.

tc =
(1− SOCend) ·W

Pcη
(4)

where Pc is the charge power; η is the charge efficiency, chosen as 0.90 [37], W is the battery capacity of
the EVs. Table 1 shows the top 10 most popular EV types in 2019 in China [38]. The battery capacity of
the top 10 most popular EVs in China is generally above 40 kWh, except for some mini-cars. According
to the data in Table 1, the battery capacity is more than 40 kWh after weighting the market share.
With the development of electric vehicle technology, the battery capacity will be larger and larger in the
future. In order to simplify the calculation process, the average capacity of power batteries is chosen as
W = 40 kWh in our research.

Table 1. Battery capacity and market share of the top10 most popular EV types in 2019 of China.

Type Battery Capacity (kWh) Market Share

BAIC EU 53.6 13.3%
BYD Yuan EV 40 7.4%

Baojun EV 24 7.2%
Chery eQ 23.6 4.7%

BYD Tang DM 82.8 4.1%
BYD E5 60.48 3.9%

GAC Aion S 49.4 3.9%
Roewe Ei5 52.5 3.7%
GWM R1 28.5 3.4%

Emgrand EV 52 3.4%
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According to the travel characteristics, the Monte Carlo method is used to simulate the charging
load of EVs. Firstly, we assume the total number of EV is N. For the n-th EV, the daily routine mileage
of vehicles sn and the final return time of the vehicle tn is randomly generated by Equations (1) and (3).
Then, the charge time tn

c can be calculated by Equation (4). The charging load Pn
c will last from tn to

tn + tn
c for the n-th EV. By adding up the charging load of each vehicle in each period T we get the total

charging load P(T). Algorithm 1 in Table 2 is the calculation process of stochastic charging load of EVs.

Table 2. Calculation process of stochastic charging load of EVs.

Algorithm 1 Calculation process of stochastic charging load of EVs.

Input probability density function of daily routine mileage and final return time
output Random charging load P(t) of EVs.
Step1 Generate sn and tn by the Monte Carlo method
Step2 Calculate the charge time tn

c
Step3 When n ≤ N

Add the Pn
c to the P(T) from tn to tn + tn

c
Step4 Output the random charging load of EVs

According to the calculation process, the stochastic charge load of EVs is established. We take a
residential area with 1000 households as an example to calculate the stochastic charge load. Supposing
there are 1000 parking spaces, of which 250 parking spaces can provide charging services. We set
the charge power as P = 10 kW, and explore the influence of EV number on charge load. As can be
observed from the Figure 1, the peak charge load concentrate between 19:00 and 22:00, and with the
increase of EV number, the charge load will increase rapidly. When 250 EVs are charged, the peak
charge load exceeds 1000 kW. This is a large valve for 1000 residential households.
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Figure 1. Uncontrolled charge load with different number of EVs when the charge power is 10 kW.

Then, we set the number of EV is N = 100, and find the influence of charge power on charge load.
As can be observed from Figure 2 the peak charge load will decrease with the decrease of charge power.
It can reduce the charge load impact on power grid effectively. At the same time, the charge time will
last long if the charge power decrease. So, if the charge power is too low, the charge period will be
too long to satisfy the usage for next time. With the development of battery technology, the battery
capacity will be larger and larger. The requirement of charge power will also be greater and greater.
There is no point by reducing charge power simply.
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2.2. Characteristic of UC Load

As shown in Figure 3, an UC is a group of buildings with at least three of a series of functions
such as shopping, entertainment, office space, accommodation, residential living and so on. Its area
can reach more than hundreds of thousands of square meters or even millions of square meters. It is a
multi-functional, efficient and convenient synthetic assembly, which is formed to realize the complete
operation system of work and life in smart city. It can provide people with a colorful life. More and
more people like to live in or near the UC. Real estate companies will also build more UCs to meet
people’s needs. However, in order to recoup funds as soon as possible, real estate companies need to
take as little time as possible to construct an UC. There is a large demand for electricity, as a result,
the original power planning of the region may not meet the needs of the UC.
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There are differences between different functional areas of UC in work and rest time. Therefore,
the load characteristics of UC are closely related to its functions. Our research divides UC into three
types of individual buildings based on the function and running time of UC: commercial type, office
type and residential type. Then, the real data of different types is analyzed to get the load and parking
characteristics of the different types.

Because the power load of different UC is different in different days, our research uses the load
ratio to analyze the load characters at different times of the day, and randomly selects three different
types of single buildings on the working day for analysis.

The load ratio αT can be calculated by:

αT =
PT

con
Pmax (5)

Figure 4 shows the load ratio curves at different times for the residential type of building. In the
residential type, the load increases significantly from 8:00 a.m., with the peak occurring between 19:00
and 23:00 a.m. This is closely related to residents’ living habits. Residents start a new day after waking
up at about 8:00 am. Most people will leave home to work during the daytime, but some unemployed
residents stay at home for their own business during the daytime on the power load remains at a low
level before the other residents come back. Residents will return to the home after work at about 18:00.
Then, the demand for electricity will increase. There will then be a peak of electricity consumption
until the residents rest at night.
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Figure 4. Load ratio curves of residential type buildings at different days.

Figure 5 shows the load ratio curve of office type buildings at different times. It is obvious that the
peak load period of office type is mainly concentrated between 9:00 a.m. and 18:00 p.m. The rest of the
time load the load is relatively low. The peak load period basically coincides with companies’ working
hours. The load ratio is relatively stable in peak and valley sections, respectively. The employees’
demand for electricity is mainly concentrated on lighting, air conditioning and the consumption of
office equipment such as computers during working hours. The demand for electricity is stable. During
non-working hours, there is almost nobody in the office, and only a small amount of power is needed,
such as emergency channel lighting.
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Figure 5. Load ratio curve of office type buildings at different days.

Figure 6 shows the load ratio curves at different times in commercial type buildings. The peak
load period of this type mainly concentrated between 9:00 a.m. and 22:00 p.m. which coincides with
the usual business hours in the business district. During business hours in business districts, shopping
malls, entertainment facilities and restaurants need a large amount of electricity. When business areas
are closed, there will be little electricity demand. Therefore, the peak and trough periods of the load
ratio curves are obviously the same as the office type.
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Figure 6. Load ratio curves of commercial type buildings at different days.

The typical load ratio curves of the different types are shown combined in Figure 7. The load
ratio is obviously closely related to the activity hours of the different types of building. Especially in
commercial and office type buildings, the peak load period is concentrated during business hours.
The load ratio of the rest of the time is much lower than the peak period, which is not conducive to the
operation of the power grid.



Energies 2020, 13, 2939 10 of 23Energies 2020, 13, x FOR PEER REVIEW 10 of 24 

 

 

Figure 7. Typical load ratio curve of different building function types. 

The overall load ratio 
T

UC  can be calculated by the following expression: 

UC

UC

T
T

UC max

P

P
   (6) 

where 
UC

TP  is the power load at time T, 
UC

maxP is the maximum power load in the day. 

The overall load ratio of the UC is determined by the load ratio and maximum load of the 

building types, therefore, the proportion of different building types directly affects the overall load 

ratio. Developers’ positioning to build UCs will determine the load ratio curve of the UC. Figure 8 

shows the overall load ratio of a city complex. From Figure 8, it can be observed that the peak load 

period of the UC is still relatively concentrated, and the peak-valley difference is large.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time(h)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

day1

day2

day3

day4

day5

day6

day7

day8

day9

day10

day11

day12

L
o
a

d
 R

a
ti

o

 

Figure 8. Load ratio curve of UCs at different days. 
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The overall load ratio αT
UC can be calculated by the following expression:

αT
UC =

PT
UC

Pmax
UC

(6)

where PT
UC is the power load at time T, Pmax

UC is the maximum power load in the day.
The overall load ratio of the UC is determined by the load ratio and maximum load of the

building types, therefore, the proportion of different building types directly affects the overall load
ratio. Developers’ positioning to build UCs will determine the load ratio curve of the UC. Figure 8
shows the overall load ratio of a city complex. From Figure 8, it can be observed that the peak load
period of the UC is still relatively concentrated, and the peak-valley difference is large.
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2.3. Parking Behavior of UC

The parking characteristics of commercial type, office type and residential type building in an
UC are quite different. The peak parking time and parking turnover ratio are different in different
UC building functional types. In order to analyze the parking characteristics more conveniently
and accurately, we should find out the rules relating different parking characteristics and load
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characteristics [39]. There are three types of UC, so the parking ratios under these three types of UC
are discussed separately.

The parking ratio αpark is defined as the ratio of the number of parking lots to the number of
parking spaces provided by the garage per period.

αpark =
Nt

Nmax
(7)

where Nt is the number of parking lots available at time t and Nmax is the total number of parking
spaces in the garage

Figure 9 is a typical residential type parking ratio curve. The parking ratio of residential type
buildings mainly depends on the habits of residents. Some residents drive to work during the day.
After work, these residents drive home. Therefore, the probability of parking during the day is
relatively low, while the ratio of parking at night is higher. Some families have more than one car,
and some cars are used for other temporary trips besides work. These cars will be parked in the garage
for long time during a day. Therefore, the parking ratio in residential areas is always high.
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Figure 10. Typical parking ratio curve of office type at different days. 

Figure 9. Typical parking ratio curves of residential type buildings at different days.

Figure 10 is a typical parking ratio curve of an office type building. Employees drive from home
to work and leave their cars in the garage. Some of the employees go home for a rest or out for lunch,
so there is a slight drop in parking at noon. The utilization ratio of the garage maintains at a high level
during the working hours, and utilization ratio of the garage is very low during other periods.

Energies 2020, 13, x FOR PEER REVIEW 11 of 24 

 

characteristics [39]. There are three types of UC, so the parking ratios under these three types of UC 

are discussed separately. 

The parking ratio αpark is defined as the ratio of the number of parking lots to the number of 

parking spaces provided by the garage per period. 

park

max

= tN

N
  (7) 

where Nt is the number of parking lots available at time t and Nmax is the total number of parking 

spaces in the garage 

Figure 9 is a typical residential type parking ratio curve. The parking ratio of residential type 

buildings mainly depends on the habits of residents. Some residents drive to work during the day. 

After work, these residents drive home. Therefore, the probability of parking during the day is 

relatively low, while the ratio of parking at night is higher. Some families have more than one car, 

and some cars are used for other temporary trips besides work. These cars will be parked in the 

garage for long time during a day. Therefore, the parking ratio in residential areas is always high. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

day1

day2

day3

day4

day5

day6

day7

day8

day9

day10

day11

day12

P
a
r
k

in
g
 R

a
ti

o

Time(h)  

Figure 9. Typical parking ratio curves of residential type buildings at different days. 

Figure 10 is a typical parking ratio curve of an office type building. Employees drive from home 

to work and leave their cars in the garage. Some of the employees go home for a rest or out for lunch, 

so there is a slight drop in parking at noon. The utilization ratio of the garage maintains at a high 

level during the working hours, and utilization ratio of the garage is very low during other periods. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

day1

day2

day3

day4

day5

day6

day7

day8

day9

day10

day11

day12

P
a
r
k

in
g
 R

a
ti

o

Time(h)  

Figure 10. Typical parking ratio curve of office type at different days. Figure 10. Typical parking ratio curve of office type at different days.



Energies 2020, 13, 2939 12 of 23

Figure 11 shows typical parking ratio curves of a commercial type building. The parking
characteristics of commercial format are related to many factors, such as pedestrian flow, position and
development of the UC. At the early opening period of the UC, the parking demand is low because of
the low business ratio. With the increase of business, the demand for parking spaces also increases.
Overall, the parking ratio during opening hours is much higher than at other times. The parking ratio
is at a very low level in other times, especially in the early morning.
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We can observe that there is a strong correlation between the load characteristics and parking
characteristics of office business and commercial business type buildings. The calculation and analysis
of the load ratio and its corresponding parking ratio are carried out. The correlation coefficients of
different dates are obtained in Table 3. There is a strong positive correlation between the load ratio and
parking ratio of office type and commercial type buildings. Although the correlation coefficients of
residential type buildings are low, the parking ratio of residential type buildings remains at a high
level. Therefore, our research takes advantage of EVs as mobile energy storage terminals, and the
correlation between parking ratio and load ratio of an UC, and presents the strategy of peak-shaving
during the peak load time of the UC.

Table 3. Correlation between the load ratio and parking ratio of different function types.

Date Commercial Office Residential

Day1 0.93026 0.960493 −0.32142
Day2 0.958525 0.95422 −0.31743
Day3 0.951995 0.95055 −0.27929
Day4 0.937235 0.953497 −0.14804
Day5 0.95543 0.953404 −0.32844
Day6 0.949204 0.957675 −0.16634
Day7 0.953815 0.950329 −0.34091
Day8 0.943993 0.951152 −0.16013
Day9 0.955598 0.95061 −0.27576
Day10 0.932579 0.953988 −0.27335
Day11 0.928337 0.944777 −0.32217
Day12 0.931294 0.946525 −0.31062
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3. Math Description and Control Strategy

According to the analysis presented in the previous section, the market entry of large-scale UCs
basically breaks the upper limit of the original urban grid planning. This will cause power shortages
and equipment failures in some areas. The construction speed of large-scale UCs is usually very fast.
Even if the grid projects that need supporting construction are synchronously set up to carry out
preliminary work, they cannot be completed and put into operation when a large UC is put into use.
It is often necessary to adopt emergency distribution network projects to complete the temporary
transition of the power supply scheme. Large-scale UCs have high electricity consumption and large
daily load peak-valley differences. If they blindly invest in power grid construction according to the
maximum load requirements, it will inevitably lead to unnecessary waste of resources. In order to meet
the multi-functional needs of the UC, we should support the construction and use of large garages
to meet the parking demands of consumers. With the development of EVs, more and more EVs will
replace petroleum fuel vehicles. Random charging of these EVs will also have a huge impact on the
power grid, greatly increasing the risk of power grid accidents. In our research, the advantages of EVs
as mobile energy storage terminals are put forward. According to the load and parking characteristics
of the UC, a large UC garage can be used to control the charging of EVs in an orderly way, making them
participate in the UC load control and solving the potential safety problems caused by the disorderly
charging of EVs. The large daily load peak-valley differences of the UC cause the problem of excessive
distribution network equipment resources [40], as well as the problem of lagging behind the planning
of the power grid due to the large number of UCs.

In order to control the task conveniently and reduce the operation time and size of the necessary
control center, our research proposes a two-tier real-time control strategy based on the EV user layer
and the grid load decision-making layer. The lower layer divides the EVs into groups according to the
load characteristics and parking characteristics of the UC, and then integrates the state information of
the EVs in each group. We calculate the maximum electricity that can participate in the regulation in
each regulation interval of each group. Due to the randomness of the behavior of EVs, the dynamic
callable power of the first regulation period is updated continuously according to the changes in the
number of EVs. The integration state information of each group calculated by the user layer will be
send to the grid layer. The power grid decision-making level determines the power size of each group
by formulating a dynamic target load curve according to the dynamic callable EV power of each group
in each period. Thus, the load of the UC can be reduced to fill valleys and peaks. The upper decision is
fed back to the lower. The lower level determines the charge power of each vehicle according to the
power required by each group.

Aiming at EVs participating in load regulation of UC, our research puts forward the following
main ideas:

(a) The users’ willingness to participate in UC load control will be affected by battery status, periods
of initial parking and other factors. Therefore, UC managers can specify price strategies to
attract more users to participate in load control. Many scholars have studied the price strategy
of V2G, and our research does not elaborate on this topic. When the user agrees to participate
in load control, the load control center will collect the relevant data of the EVs to formulate a
control strategy.

(b) The start parking period of EVs is random, and the parking requirement in the UC is large.
If the new parked EV data is imported when each vehicle stops, the EV charging strategy will
be changing constantly, which makes the strategy infeasible. Therefore, our research divides
the peak period into equal time intervals. At the end of the last adjustment interval (K − 1),
the control strategy of the next interval (K) is worked out. When EVs are parking in the T-interval,
they will not participate in the load regulation of the K-interval. The EVs parking in T-interval
will participate in the strategy formulation of the next RI (K + 1). This method can avoid the
strategy from changing too frequently.
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(c) According to the analysis of different function types of UC, there are some typical parking
characteristics of business type buildings such as short parking periods, high turnover ratio and
large parking quantities. Although the total battery capacity which can participate in the strategy
formulation is very large, most of them can’t be controlled flexibly. They can only participate
in the load control in their short parking period. As for office buildings, most of the parking
periods are as long as the working hours, and the turnover ratio is low. That means they can
be controlled flexibly. The parking ratio in residential type buildings is always at a high level.
Therefore, the parking EVs of residential type can be controlled flexibly, so we use a large number
of EVs in commercial type buildings for inflexible control, and EVs in office and residential type
buildings for further flexible control.

(d) The number of parking EVs in the UC is large. In order to reduce the computational load of
the control center, our research clusters the EVs in the UC according to the previous analysis.
Parking EVs in commercial areas is mainly for consumers, whose initial parking time is random.
We take them as a group. In order to ensure the availability if a suitable numbers of EVs that
can participate in load regulation flexibly, we formulate preferential policies to attract and sign
agreements with users with long parking time and low frequency in office type and residential
type buildings. According to the parking period, those EVs in the UC are divided into office EV
group and residential EV group. According to the parking characteristics, the EVs are divided
into groups, and the group is taken as a whole to participate in the formulation of the strategy
and get the total discharge power of each group in each RI. Then, the discharge of each group is
allocated to each EV.

3.1. Regulation Interval And EV Model

According to Figure 8 and previous study on the load characteristics of UC, the peak load
regulation period will be 9:00–22:00, so the peak load of the UC lasts 13 hours a day. The scheduling
cycle is divided into several regulation intervals ∆t on average. Therefore, the number of RI in the
peak load hour is:

K =
13
∆t

(8)

The discharge strategy does not change in each regulation period. If ∆t is too small, the strategy
changes quickly. The computation will be so complex that there is no enough time to work out the
strategy. If ∆t is too long, the uncertainties of EV will increase during the regulation period, and less
EV satisfy the ∆t parking period conditions [41]. The number of EVs that can participate in dispatching
decreases, which affects the total battery capacity provided for the UC.

When the EV parks in the garage, the control center will collect the state information represented
by Γ

Γ = [IDEV Tarrive Tleave SOCarrive SOCleave L] (9)

where IDEV is the car number of an EV; Tarrive is the time when the car arrives at the UC; Tleave is the
time for leaving the UC; SOCarrive is remaining SOC of EVs parking at k-interval; SOCleave is the SOC
when a user leaves the garage; L represents which functional areas the EV belong and whether the car
participates in discharge control.

When the EV is parked in the garage, the garage dispatching system will collect the status
information of the vehicle. At the same time, the user’s willingness to participate in load regulation is
sought [42]. Users willing to participate in load regulation will be required to input the earliest time
they plan to leave the garage and the minimum target power when the user leaves.

According to the state information of the car, the parking period Tpark(n) and the maximum
capacity SOCcon(n) providing for UC of the n-th EV can be obtained by using Equations (10) and (11):

Tpark(n) = Tleave − Tarrive (10)
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SOCcon(n) = SOCarrive − SOCleave (11)

As shown in Figure 12. Tavai(n) is the regulation interval which the n-th EV can participate in.
It can be calculated as follows:

Tavai(n) = Tleave − Tarrive (12)

where, Tleave means the beginning time of the control period interval not greater than Tleave, and Tarrive
means the end time of the control period interval not less than Tarrive.
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The garage parking information matrix of the k-th interval Λk can be obtained from the parking
state information of vehicles and for the further application:

Λk =


Γ1

1 Γ1
2 · · ·

Γ2
1

. . .
... Γk

i

 (13)

3.2. Clustering of EVs

EVs are divided into three groups based on the analysis of Section 2:
(1) The first type is the EVs parked in residential type of UC buildings and contracted with the

control center. The vehicles will park in the garage most of the time, which always keeps a high parking
ratio in the garage. These cars are parked in garages most of the day and have shorter travel times plus
shorter distances. They can be observed as a dynamic balanced whole part. They can participate in
load regulation during the peak load period. By signing a contract with the owner, the control center
can get the total amount of electricity of EVs in advance and take them as a whole part. We define
those EVs as Group A.

The control center gets the target SOC of each user set by the contract and calculates the controllable
electricity. Then, the maximum total controllable electricity of Group A in a day is obtained by adding
up that of each EV. Considering that some EVs will leave temporarily during peak load period,
we define SAtotal as the controllable electricity of group A participating in regulation in one day which
can be obtained by multiplying a coefficient on the total electricity:

SAtotal = η ·
∑

C(n) · (SOCAstart(n) − SOCAtarget(n)) (14)

where, C(n) is the battery capacity of the n-th EV; SOCAstart(n) is the n-th EV’s SOC of starting parking
and SOCAtarget(n) is the target SOC set by the EV owner.

(2) The second type is the EVs parked in office type buildings and contracted with the control
center. The parking period of these contracted EVs is the same as the working hours. Therefore,
the time for these vehicles to participate in load regulation is working hours. These vehicles are
classified as Group B. In the paper, the regulation period of Group B is 9:00–18:00. Before 9:00 a.m.,
the cars will be parked in the garage. We define SBtotal as the total electricity involved in the regulation
according to the target SOC set by the users:

SBtotal = η ·
∑

C(n) · (SOCBstart(n) − SOCBtarget(n)) (15)
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(3) The third type is the EVs parked in commercial type building garages. The starting parking
time and parking period of these vehicles are related to the purpose of consumers going to the UC.
The number of cars parked is large, but we cannot estimate the number of cars parked in each RI
accurately. When the vehicle stops in the (K-1)-interval, the control center will inquire about the owners’
willingness to participate in load regulation. For the vehicles involved in the regulation, the electricity
of each vehicle in K-interval is calculated according to Equations (8) and (11), and we define SCk

total
as the total controllable electricity of Group C in the k-th RI which can be obtained by adding up the
electricity of each vehicle parked in the k-th RI:

SCk
total = η ·

∑
C(n) · (SOCCstart(n) − SOCCtarget(n)) (16)

3.3. Objective Function And Constraints

The electricity of group C has been determined in each RI and cannot be controlled. The controllable
total electric quantity of group A and group B during peak load periods need to be determined as
well. We define that Pk represents the conventional load after subtracting the discharge power in the
k-th interval. Pk

A and Pk
B represent the total discharge capacity of group A and group B in the k-th

interval. They can be decided by the objective function Equation (17) which minimizes the mean
square deviation of load [43].

F = min
1

22/∆t− k

K∑
k

(Pk
− Pk

B − Pk
A)

2
(17)

The discharge power of each EV participating in load regulation should be within the threshold
power allowed in the garage. The total amount of discharge electricity in each RI of each vehicle is not
greater than the total controllable electricity. At the same time, the electric quantity of each vehicle in
each RI is not greater than the total electricity, that is:

PAk(n), PBk(n) ≤ Pmax
22/∆t∑

k=1+9/∆t
∆t · PAk(n) ≤ SA(n)

NA∑
n=1

22/∆t∑
k=1+9/∆t

∆t · PAk(n) ≤ SAtotal

18/∆t∑
k=1+9/∆t

∆t · PBk(n) ≤ SB(n)

NB∑
n=1

18/∆t∑
k=1+9/∆t

∆t · PBk(n) ≤ SBtotal

(18)

where Pmax is the threshold power allowed in the garage; NA is the number of EVs in Group A; PAk(n) is
n-th EV’s discharge power in the k-th RI of Group A; SA(n) is the n-th EV’s total controllable electricity
in Group A; NB is the number of EVs in Group B; PBk(n) is the n-th EV’s discharge power in the k-th RI
of Group B and SB(n) is the n-th EV’s total controllable electricity in Group B.

3.4. Discharge Power of Each EV

After getting the total discharge electricity of Group A and Group B in each RI, the discharge
electricity will be allocated to each EV. When the EV’s power is less than the average value of discharge,
the vehicle will discharge all the electricity during the RI. The discharge power of the other EVs is the
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average power of the vehicles excluded from the EVs whose power is less than the average value [44].
Taking group A as an example, the average discharge power PAk

ave in the k-th RI is:

PAk
ave =

SAk
total

∆t ·Nk
A

(19)

where SAk
total is the total electricity in Group A that will discharge in the k-th RI, Nk

A is the number of
Group A EVs in the k-th RI.

We define that SAk
total(n) is the controllable electricity of the n-th EV in the k-th RI and PAk(n) is

the discharge power of the n-th EV in the k-th RI.
If:

SAk
con(n) < ∆t · PAk

ave (20)

then:

PAk(n) =
SAk

con(n)
∆t

(21)

otherwise:

PAk(n) =
SAk

total −
∑

SAk′
con(n)

∆t · (Nk
A −Nk′

A )
(22)

where SAk′
con(n) is the controllable electricity of Group A in the k-th RI excluding the EVs whose power

is less than PAk
ave and Nk′

A is the number of EVs whose power is less than PAk
ave.

The discharge power allocation of Group B (PBk(n)) is the same as that of Group A, so it will not
be discussed repeatedly in our research.

In order to maximize the available electricity in Group C to participate in the regulation, the EVs
in Group C will feed back to the UC with the maximum discharge power until the EV leaves or the
remaining SOC reaches the target.

We define PCk(n) as the discharge power of the n-th EV in group C in the k-th RI. It can be
calculated by the following expression:

PCk(n) =
SCk

con(n)
∆t

(23)

If:
PCk(n) ≥ Pmax (24)

then, the discharge power is decided by Pmax:

PCk(n) = Pmax (25)

Based on the above mathematical description, the load regulation strategy can be briefly
summarized as follows. Firstly, we divide peak load period into several regulation intervals ∆t
on average, and get the garage parking information matrix Λk, and then, we calculate the parking
period Tpark(n) and the maximum capacity SOCcon(n) of each EV. Secondly, EVs are divided into three
groups and the total controllable electricity SAtotal and SBtotal and uncontrollable electricity SCk

total in
each RI can be calculated by Λk. Thirdly, we set the total discharge power of group A and group B in
each RI (Pk

A and Pk
B) as the decision variables, and then, set the objective function as Equation (17) and

constraints as Equation (18). Finally, calculate the discharge powers PAk(n), PBk(n) and PCk(n) of each
EV in the different groups in each RI.
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4. Case Analysis

4.1. Case Statement

Our study chooses an UC as the research object, which integrates the functions of commercial retail,
business offices, hotel catering, comprehensive entertainment facilities and apartment housing as a whole
thing. It covers an area of 360,000 square meters and consists of a commercial building, four residential
buildings and an office building. The parking space can hold 2000 vehicles, and 500 vehicles can be
charged and discharged here now. The typical conventional daily load of the UC is shown as Figure 13.
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At present, the proportion of EVs is still very low compared with traditional vehicles. We assume
that 50 office EVs agree to establish a contract to participate in the load regulation during working
hours and 50 household EVs participate as well. The number of EVs entering the commercial type area
is 4000 a day. The parking characteristics of Group C are randomly generated by using the typical
parking ratio fitting curve of commercial type buildings analyzed in Section 2. Suppose the initial SOC
of each EV starting discharging in the garage meets a normal distribution N (0.65, 0.05).

4.2. Influence of The Permeability

The scale of Group C is large, so the permeability of EVs is an important factor affecting the
efficiency of the strategy. We assuming that the length of the RI is set to be 30 min, and we change the
different permeabilities for Group C. When there is no group A and group B involved in the regulation,
the impact of EVs participating in UC load regulation with different peak load permeabilities is
shown in Figure 14. It can be observed from the figure that peak load decreases with the increase of
permeability of EVs. EVs in Group C can relieve the peak load pressure. However, group C loads
cannot be regulated. As shown in Figure 14, load reduction is obvious in the evening when the parking
time of group C is concentrated. However, the effect of load regulation is poor at noon when the
number of vehicles in group C is small. It is the reason why peak load decreases about to 9.43%
when the permeability reaches 100%.

The effects of load regulation are obviously improved as shown in Figure 15 when group A and
group B EVs participate. Group A and Group B EVs can discharge more power if the load is high and
discharge less or no power if the power load is low. When the permeability reaches 100%, the peak
load decreases by 14.25%, and the peak load becomes more stable.
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The load of UCs can be reduced effectively by increasing the permeability of EVs, although the
permeability of EVs is still very low at present, and the peak load reduction is limited. However,
with the increase of EVs’ popularity and permeability, this strategy will play an important role in
improving the load situation of UCs. It is very effective to reduce the peak load of UC by this strategy.

4.3. Influence of The Regulation Interval

Another influence on the effect of load regulation strategy is the length of RI. If the RI is too long,
the parking period in the garage of EVs cannot meet the length of RI. The number of EVs of Group C
participating in load regulation will be reduced greatly. If the length of RI is too short, the frequency of
the strategy formulation will increase, which will increase the operational burden of the control center.

Assuming that the permeability of Group C is 40%, we set the RI as 15, 30 and 60 min, and explore
the influence of different interval lengths when only group C EVs participate in load balancing.
The simulation results are shown in Figure 16. When the RI is too long (60 min), the number of EVs
that can satisfy the RI is very small, and it has little effect on load regulation. When the regulation
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time is shortened to 15 min, load regulation strategy works well. The peak load decreases about
9.44%, which is same as the situation (RI = 30 min, permeability = 40%, without Group A and B EVs).
The shorter interval makes more EVs participate in the discharge, so that more electricity from Group
C EVs can participate in the regulation.
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As shown in Figure 17, when group A and group B EVs participate in load regulation, the peak
load is further reduced by 14.6%. The numbers of EVs of group A and B that participate in load
regulation is relatively small compared with Group C ones. However, they still play an important role
in peak load reduction and load fluctuation reduction. From the simulation results, this strategy can
effectively reduce the peak load. Therefore, in the construction of an UC, less money will be spent
in the transformation of the local distribution system and the operation of the local power grid will
be safer.
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However, when the length of the interval is short enough, the number of EVs that can participate
in the discharge will not change anymore. Shortening the interval length will no longer optimize the
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load curve regulation of the UC, but will increase the operational load of the control center. Therefore,
it is important to adopt an appropriate RI length in any load regulation strategy. The actual position and
operational location of UC are different, so the parking characteristics of cars are different, which means
the best RI length is different. It is necessary to determine the optimum RI length by analyzing the
actual parking characteristics.

5. Conclusions

During the construction of an UC, due to the huge power consumption during peak periods,
the capacity of power distribution equipment is high, and it is often necessary to transform the nearby
power facilities, which will increase construction and maintenance costs. The popularity of EVs can
improve the environment, but the stochastic large-scale charging of cars may pose a threat to the
regional grid [45]. In view of the above problems, a strategy for EVs participating in load regulation
of a UC was proposed. The stochastic charging load of EVs was modeled according to the users’
habits. It was verified that the peaks of charging load and conventional loads will be superimposed.
This situation may have a bad influence on the operation of the power grid. Because it is difficult to
put forward a load regulation strategy if an UC is regarded as a whole, we divide UCs into different
functional areas. The relationship between parking ratio and load ratio was obtained after dividing
UCs into different functional areas. There are large numbers of vehicles in the commercial functional
areas with high mobility (Group C), and vehicles in office and functional areas with low mobility
(Group A and B). Then, we formulate the load regulation strategy: we divide the peak load period
into several equal RIs, and establish a the parking information database. The EVs in group C of each
RI will feed back to UC with maximum discharging power. The objective function was established
to minimize load variance during the peak period of the UC, and the discharge power of Group A
and B EVS of each RI was calculated by an objective function. Finally, the case analysis proved that
the strategy in our research can effectively reduce the load of the UC during the peak load period.
The results show that with the increase of the permeability, the number of EVs participating in load
regulation also increases, which means more electricity from EVs is fed back to the UC to make the peak
load smaller. Shortening the RI can make more vehicles from group C participate in load regulation
and also improve the effect of load regulation. In the future, the strategy of charging EVs in UCs during
valley load period will be studied to reduce the peak-valley load difference of the UC and improve the
energy utilization structure of the UC. Considering that EVs can be used as mobile power sources,
the characteristics of vehicles parked in the UC are analyzed in depth.
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