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Abstract: Over the last years, power systems around the globe experienced deep changes in their
operation, mainly induced by the widespread of Intermittent Renewable Energy Sources (IRES).
These changes involved a review of market and operational rules, in the direction of a stronger
integration. At European level, this integration is in progress, driven by the new European guidelines
and network codes, which deal with multiple issues, from market design to operational security.
In this framework, the project TERRE (Trans European Replacement Reserve Exchange) is aimed at
the realization of a European central platform, called LIBRA, for the exchange of balancing resources
and, in particular, for the activation of the procured Replacement Reserve (RR) resources. The Italian
Transmission System Operator (TSO), TERNA, is a participant of the project and it is testing new
methodologies for the sizing of RR and its required activation throughout the TERRE process. The aim
of the new methodologies is to find areas of potential improvement in the sizing of RR requirements
and activation, which open up the possibility for a reduction of the procurement cost, without
endangering the security of the power system. This paper describes a new RR sizing methodology,
proposed by TERNA, which is based on a persistence method, showing its results on real data and
highlighting key advantages and potential limitations of this approach. In order to overcome these
limitations, a literature review on alternative approaches has been carried out, identifying nowcasting
techniques as a relevant alternative for the very short term forecast horizon. These one could be
further investigated and tested in the future, using the proposed persistence method as a benchmark.

Keywords: frequency control; regulation; electricity market; reserve; power system; transmission grid

1. Introduction

Over the last few years, power systems around the globe experienced deep changes in their
operation, mainly induced by the widespread of Intermittent Renewable Energy Sources (IRES).
At European level, this revolution is currently involving a necessary review of market and operational
rules, in the direction of a stronger integration among the European countries [1–4]. This integration is
in progress and based on the measures reported in the new European guidelines and network codes,
which deal with multiple issues, from market design to operational security [5].

In this framework, the European Electricity Balancing Guideline [6] published on December
2017, has the aim of creating an integrated electricity market, where European TSO can exchange
balancing resources, introducing a set of standardized balancing products. Dedicated European
platforms for their exchange are under development within the framework of several European
projects, for example, TERRE (Trans European Replacement Reserve Exchange) [7], MARI (Manual
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Activation Reserve Initiative) [8], PICASSO (Platform for the International Coordination of Automated
Frequency Restoration and Stable System Operation) [9] and IGCC (International Grid Control
Cooperation) [10]. In particular, TERRE project is aimed at the realization of a European central
platform, called LIBRA, for the exchange of balancing sources related to the activation of the procured
Replacement Reserve (RR), needed to cope with expected unbalances in the upcoming delivery hour.
The Italian Transmission System Operator (TSO), TERNA, is a participant of the project and it is
testing new methodologies for the sizing of RR and its required activation throughout the TERRE
process, trying to find areas of potential improvement, which opens up the possibility for a reduction
of the procurement cost, without endangering the security of the power system. Hence, a new set
of standardized products, as well as the new balancing platforms, has to be fully integrated in the
framework of the Italian ancillary service market (called “Mercato per il Servizio di Dispacciamento,
MSD”) [11].

The present paper deals with the results obtained through some tests of new methodologies,
pointing out the advantages that can be reached. First, the work shows the current reserves dimensioning
and procuring rules, adopted by TERNA and how they can match with the standardized European
products. The integration of the Italian ancillary service market with the TERRE project is then
described. Finally, areas of potential development are identified in order to further improve the
efficiency of the reserves sizing and procurement processes, aiming at minimizing system costs and,
at the same time, coping with high system security standards.

The paper is organized in five Sections. Section 2 deals with the Italian electricity market, whose
organization is summarized. Section 3 describes the Italian frequency control service mechanism,
linking it to the ancillary service market and it introduces the project TERRE. Section 4 is dedicated to
the RR sizing methodologies to be adopted in the Italian Ancillary Service Market and reports the main
results. Section 5 is dedicated to hour-ahead RR activation demand sizing strategies to be adopted in
the framework of the TERRE project. Section 6 includes the conclusions.

2. Italian Electricity Market

2.1. General Overview

The Italian electricity market was born in 1999 with the Legislative Decree no. 79 [12], for the
transposition at National level of the EU Directive 96/92/EC [13], later updated by the EU Directive
2003/54/EC [14] and Directive 2009/72/EC [15]. It is organized in a Spot Electricity Market (named
in Italian, Mercato a Pronti dell’Energia, MPE) and a Forward Electricity Market (named in Italian,
Mercato a Termine dell’energia, MTE) [16]. The Spot Electricity Market includes primary energy
markets and ancillary services markets, in particular:

• A Day-Ahead Market (DAM), called in Italian Mercato del Giorno Prima (MGP), as a first stage of
the energy market;

• An Intra-Day Market, called in Italian Mercato Infragiornaliero (MI), as a second stage of the
energy market;

• An Ancillary Services Market, called in Italian Mercato del Servizio di Dispacciamento (MSD).

Figure 1 shows the structure of the Italian Electricity Market, providing the right match between
the general definitions and the Italian name of each market session.

In the MGP and MI, that is, in the energy markets, producers and end-users buy and sell wholesale
electricity quantities for the delivery day. The energy markets are managed by the Italian Market
Operator, named Gestore dei Mercati Energetici (GME). In fact, according to EU CACM [17], GME is
the Italian NEMO (Nominated Electricity Market Operator) for the day ahead and intraday markets.
Both the energy markets are centralized non-discriminatory auctions—the rule for the definition of the
final price for the bids accepted is the “clearing price.”
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In the MSD and in the MB, that is, in ancillary services markets, the Italian TSO, named TERNA,
gets all the means that it needs to operate the national power system, coping with all the relevant
security constraints. It consists of centralized discriminatory auction—the adopted pricing rule is
based on a “pay as bid” mechanism. TERNA operates in this market to obtain resources for solving
congestions, procuring frequency reserves and ensuring the real-time balance of the power system.

Last, the MTE is a Forward Energy Market, where the exchange of energy is based on bilateral
contracts between two market operators at freely negotiable prices.

2.2. Italian Energy Markets Details

The Italian Day-Ahead Market (MGP) is the place where the exchange of hourly supply offers
and demand bids take place for the next day. All the market operators can join the MGP, with bids that
can be simple or multiple, that is, consisting of one or more price-quantity pairs [€/MWh-MWh/h].
The Italian NEMO (GME) manages and selects offers and bids maximizing social welfare, taking into
account the transmission limits between bidding zones, notified by the Italian TSO, TERNA. Accepted
supply offers are paid at the Zonal Clearing Price. Accepted demand bids are paid at the National
Single Price (named in Italian Prezzo Unico Nazionale, PUN). Accepted offers/bids fix the injection and
withdrawal schedules of every offer point and for each hour of the following day. The participation at
MGP is not mandatory.

The Italian Intra-Day Market (MI) is the place where the trading of hourly supply offers and
demand bids take place for the next day, modifying injection and withdrawal schedules resulting from
the MGP. It includes seven sessions and enables market participants to adapt their schedules in order
to cope with technical restrictions of their conventional power plants, as well as to reflect their most
updated forecast for IRES and demand.

The Italian NEMO, GME, matches offers and bids of MI, according to a merit order criterion,
considering the residual cross-zonal capacities (after the MPG). Accepted offers and bids are paid at the
zonal clearing price (a proper non-arbitrage fee is applied to consumption schedules in order to mitigate
arbitrage opportunities induced by the PUN application in the day-ahead market). Accepted offers
and bids alter the initial schedules (coming from MGP), defining updated injection and withdrawal
schedules. The participation at MI is also not mandatory.

The Italian NEMO join the Price Coupling of Regions (PCR) project [18], aimed to develop an
integrated European day-ahead market algorithm, which simultaneously accepts supply and demand
bids, computes energy prices and implicitly allocates cross-zonal capacities over all the coupled
European region.
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2.3. Italian Ancillary Market Details

The Italian ancillary service market (MSD) is the place where the trading of supply offers and
demand bids in respect of ancillary services is managed by the Italian TSO, TERNA. In this market, the
Italian TSO selects resources, for solving congestions, procuring frequency reserve and ensuring the
real time balance of the power system. The MSD is organized in two stages:

- A planning stage (Ex-Ante MSD in Italian), where TERNA accepts offers and bids for relieving
congestions and creating adequate reserve margins;

- A real-time Balancing Market (Mercato del Bilanciamento, MB, in Italian), where TERNA accepts
offers and bid in real time for balancing the system and for relieving congestions.

In both the markets, the demand is expressed by the TSO, while the units authorized to participate
in these markets, submit (incremental and decremental) bids.

The participation at MSD is possible only for some units qualified for supplying ancillary services
and for them it is mandatory. Each generating units with an installed capacity higher than 10 MVA and
technically able to modulate effectively and predictably its production (“Relevant Units”), are forced
to participate in this markets. Instead, enabled but not forced to participate are the generating units
with an installed capacity lower than 10 MVA, the demand units, the generating units powered by
IRES—several pilot projects are ongoing relating to the participation in MSD of non-relevant production
and demand units, which can be enabled to MSD on an aggregate basis, forming Virtual Enabled Units
(“Unità Virtuali Abilitate, UVA”) [19].

Offers and bids accepted according to an economic merit order criterion, considering the necessity
for safeguarding the right system operation, are valued at the offered price (“pay as bid” criterion).
The outcomes of these markets determine the final injection and withdrawal schedules of each offer
point and each time interval (against which imbalances are evaluated).

3. Frequency Control Service and Ancillary Service Market

3.1. General Overview

At European level, the power system frequency control is organized in three hierarchical levels,
called primary, secondary and tertiary control, with a different involvement of resources (reserve of
power), including mainly the synchronous generators connected to the grid [20–22].

The primary frequency control is automatic and based on the primary reserve, guaranteed by
the synchronous generators connected to the electric grid and running, that have to vary the power
supplied, to restore the energy balance and to bring the frequency to a value closer to the nominal
one (50Hz). Primary reserve and regulation is currently not traded in MSD but it is a mandatory
requirement for all relevant units.

The secondary control is automatic and based on the secondary reserve provided by generators
connected to the grid—they have to vary their power supply in order to restore the nominal value of
the frequency. The service must be completely delivered within 180 s, so only some generators can
provide it. At European level the secondary reserve is called automatic Frequency Restoration Reserve
(aFRR), defined as the active power reserves, available to re-establish the frequency to the rated value
and, for synchronous areas comprising more than one Load-Frequency Control (LFC) area, to bring
back the power balance to the scheduled value.

In fact, FFR includes operating reserves with an activation time typically between 30 s and up to
15 min and it is divided into two types:

- automatic Frequency Restoration Reserve (aFRR), activated automatically and in a
continuous manner;

- manual FRR (mFFR), manually activated by TSO and having, typically, a longer full activation time.
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The tertiary frequency control is based on a set of different tertiary reserves, which are active
power reserves used for restoring the necessary FRR as well as to cope with forecast uncertainties
and/or unexpected events. There are two types of tertiary control reserve:

- Spinning tertiary control reserve, fully delivered within 15 min, in order to restore the secondary
reserve. It can be activated manually and it corresponds to the European manual Frequency
Restoration Reserve (mFRR).

- Replacement tertiary control reserve, fully delivered within 120 min and necessary to restore the
tertiary reserve against shifts in demand, injection from IRES, long-lasting faults of power plants.
It corresponds to the European Replacement Reserve (RR).

In Table 1 the Italian and the European definitions of reserve are matched.

Table 1. Correspondence between the Italian and European definitions of reserve.

Italian Definitions European Definitions

Secondary reserve automatic Frequency Restoration Reserve (aFRR)

Spinning tertiary control reserve manual Frequency Restoration Reserve (mFRR)

Replacement tertiary control reserve Replacement Reserve (RR)

A key element, peculiar of the Italian electricity market design, is that tertiary reserves (mFRR
and RR) are procured only on spot bases in the Ancillary Service Market, which is run after the
DAM clearing [23]. This approach requires tailored reserve dimensioning and procurement strategies.
In addition, since RR is not a mandatory product according to the European Regulation [6], a very wide
range of procurement strategies (where applied) are adopted in Europe for its procurement [24,25].

3.2. Italian Replacement Reserve (RR) Sizing and TERRE Project

The Replacement Reserve (RR) is divided into upward and downward RR, where the first one
corresponds to an increasing in injection or a reduction in withdrawals, the second one corresponds to
a reduction in injection or an increasing in withdrawals.

The Italian upward RR is sized to face:

- the unplanned unavailability of the thermal production unit having the highest injection schedule
in the area (increased by the amount of the upward secondary and tertiary reserve allocated on it),

- the demand and IRES forecast errors, assessed for a probability level of 99.7% and assuming the
independence of these errors,

- the unplanned loss of all the thermal production units in testing.

Instead, the Italian downward RR is sized to face:

- the unscheduled unavailability of the pumping storage unit having the highest withdrawal
schedule (increased by the amount of downward secondary and tertiary reserve allocated on it),

- the demand and IRES forecast errors, assessed for a probability level of 99.7% and assuming the
independence of these errors,

TERRE (Trans European Replacement Reserve Exchange) project is aimed at the realization of a
European central platform, called LIBRA, for the exchange of balancing sources for the activation of
the procured Replacement Reserve (RR) (Figure 2) [26]. The offers will be ordered according to their
price, defining a Common Merit Order (CMO) list and they will be activated based on the economic
merit and remunerated at the marginal price (Figure 3) [26].
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Figure 3 shows the time steps in the process of selection of the resources:
The offers will be submitted simultaneously to the ones for the real-time Italian balancing

market phase. It means that TERNA will be able to balance the system, using at the same time two
resources—the resources from LIBRA (defining their need, in a time between H-60’ and H-45’ and
activating them at the time H-30’) and the resources from the Italian balancing market (defining their
need at the time H-30’ and activating them at the time H-15’). A different offer structure is adopted in
the two processes—at national level the offers have 3 upward/downward steps, while TERRE offers
will have only one upward/downward step.

4. Identification and Test of a New Methodology for Sizing RR Requirements

Related to the RR sizing, areas of potential improvement have been identified and proposed as
an alternative methodology, which opens up the possibility to a reduction of the procurement cost,
without endangering the security of the electric system.

4.1. New Sizing Methodology for RR Requirements

A new methodology for sizing the RR has been proposed in relation to the forecast error
component. An assessment of the actual forecast errors, occurred in the years 2017 and 2018, identified
a non-normality in the distributions of the errors for load, wind and photovoltaic production forecasts
(in terms of hourly average power infeed). Consequently, the ranges currently adopted for sizing the
RR does not exactly correspond to the expected reliability standard of 99.7%, due to the presence of
wider tails. Figure 4 shows the (wind) forecast error distribution registered by TERNA in 2017 and
2018, compared to a normal distribution—a sizing methodology that assumes a normal distribution
could underestimate the expected level of risk (or lead to an oversizing).
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Figure 4. Comparison of normal and non-normal distribution, referred to the wind production error
distribution. The red dashed line depicts the normal distribution, along with vertical lines for the −3 to
+3 sigma values. The blue line is obtained with a Gaussian Kernel Density Estimator.

In a first stage, in order to obtain a better representation of the error distribution (for the whole
Italian power system as well as for each bidding zone), the univariate Bayesian Gaussian Mixture
Model (BGMM) has been adopted [27]. This method aims at modeling the error distribution as a linear
combination of a finite number of Gaussian distributions with unknown parameters and, for the extent
of our knowledge, it is the first time that it has been applied to this problem. Means, variances and
weights of the Gaussians are determined adopting the Expectation-Maximization (EM) algorithm.
The model found a three Gaussian decomposition suitable for load and wind forecast error modelling,
while four Gaussians are needed for properly modelling solar forecast error. Figure 5 shows the load
forecast error decomposition for the whole Italian power system. The final distribution (“Gaussian
Mixture”) is shown, as well as its components (Gaussian 1, 2, 3 and, where used, 4) and compared with
a single Gaussian distribution. The resulting BGMM distribution allows to better compute the amount
of upward and downward reserve needed to cover the 99.7% reliability standard.
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Figure 5. Forecast error distribution for Italy and decomposition adopting Bayesian Gaussian Mixture
Model (BGMM) for load (a) and solar (b).

Figure 6 shows the difference between the BGMM distribution and a classical normal distribution
approximating actual forecast error for national load—the largest differences occur in the tails, where the
BGMM model better appreciates the long tails of the actual distribution of the forecast error. The blue
line is the difference computed as (BGMM-CM)/CM, while the red bars simply show the actual forecast
error distribution (using an arbitrary y-axis), as a reference for better appreciating the impact of
the difference. This is relevant because the 99.7% reliability standard adopted for dimensioning RR
requirements is hugely affected by the tails representation.
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Figure 6. Difference between a normal distribution approximating National load forecast error and the
3-Gaussians BGMM model (BGMM) shown in Figure 5a.

In a second phase, a data driven analysis has been made to understand if the error clusters,
identified by the BGMM, were related to specific quantities, exogenous variables or operating conditions.
An excellent regressor for the forecasting load error is the expected ramp value, defined as the difference
between the load at hour h + 1 and the load at hour h—in Figure 7a a scatter plot of 2017 and 2018
data is shown (hourly ramp value on x-axis and forecast error on y-axis) together with their linear
regression. Here the main parameters of the regression:
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• Slope: 0.1392 MW/MW/h, with a p-value lower than 5% and a standard error of 0.0030;
• Intercept: −196.6 MW.
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Figure 7. Load forecast error distribution at National level as function of the expected load ramp (a).
Weights of the three Gaussians adopted for representing the forecast error distribution, as a function of
the hourly load ramp (b).

Hence, weights of the Gaussians used for representing load forecast errors can be expressed as
function of the hourly load ramp—results are shown in Figure 7b.

Therefore, the analysis has confirmed the possibility to adopt dynamic formulations of the forecast
errors, allowing sizing the reserve requirement based on expected operating conditions.

Another aspect studied is the potential correlation between the errors of different variables
involved in the same market zone, initially assumed as independent. The study has been performed
with a bivariate BGMM and revealed the existence of correlations between the load forecast error
and the photovoltaic production forecast error for some bidding zones and for some particular
clusters. Figure 8 shows bivariate BGMM distributions approximating forecast error for Sicily bidding
zone—results suggest to classify samples in 4 clusters, where the link between solar and load forecast
error is different (the purple class, with a horizontal BGMM distribution clearly represents night hours).
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Instead, the wind production forecasting error has not revealed a significant statistical correlation with
the other two variables.Energies 2020, 13, x FOR PEER REVIEW 10 of 20 
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The adoption of the new method and of the correlations between the variables could bring an
optimization in the procurement of services, allowing sizing the requirement of reserve, in order to
guarantee the security of the system with a level of effective risk of 99.7% and avoiding over/under
procurements. In particular, instead of assuming independent errors for all the variables, for each
relevant cluster of system conditions (and according to the available forecast), the reserve for coping with
the 99.7% risk could be dimensioned using the most appropriate (bivariate or univariate) distributions.

4.2. Comparison between Methods Existing

A comparison between the new and the currently applied methods has been carried out for six
days of the year 2019. The reserve value obtained from the application of the two methodologies have
been grouped for the whole Italian system hourly. Figure 9 shows the comparison between the hourly
average values obtained applying the bivariate Bayesian Gaussian Mixture Model (blue lines) and
the values obtained applying the classic methodology (orange lines), both for the upward and for the
downward errors.

It is clear that, at a national level, there are not significant differences. Zooming in the analysis
in reference to the Italian market bidding zones (formally established in [28]), the results change.
For example, in reference to the North and Sardinia zones, the new methodology is providing higher
values of downward reserve requirements in the North zone, while it is showing a strong dependency
on the time interval in the Sardinia zone (highlighting a strong dependency from the solar profile).
Figure 10 refers to the upward error for Sardinia zone and downward error for North zone, hour by
hour, where each hour represents the average of values of the six days in the same hour.
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downward error for North zone, hour by hour.

In order to test the economic impact of the new methodology, additional simulations have been
carried out for computing the difference in terms of reserve procurement costs for the six days under
assessment (one working day and one Sunday of 3 different months of the year)—the official algorithm
and tools actually adopted for clearing the Ancillary Service Market has been used, fixing all the other
input data except for the RR requirements. Figure 11a shows that there are no significant market cost
differences when switching to the new RR requirements defined according to the BGMM approach.
However, considering that RR requirements are implemented in form of soft constraints, a potential
deficit of resources for the procurement of downward reserve in the North zone could appear (with a
relevant penalty in the objective function), as shown in Figure 11b, where the percentage of the coverage
of the requirement for the RR in the North zone for the six reference days are represented. Therefore,
through the application of the new methodology, the higher value of downward reserve requirement
in the North zone is difficult to be fulfilled (given the current set of available resources), highlighting a
lack of downward reserve for coping with the 99.7% reliability standard (only an extraordinary use of
pumped-storage could mitigate this issue).
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Figure 11. Comparison between ancillary service markets costs (a). Percentage of the coverage of the
requirement for the Replacement Reserve (RR) in the North zone for the six reference days (a percentage
lower than 100% means that in some hours the submitted RR requirements cannot be fulfilled with
available offers submitted to the Ancillary Service Market) (b).

5. Hour-Ahead RR Activation Demand Sizing

5.1. Test of a Persistence Method

As shown in Figure 3, the national TSOs, as TERNA in Italy, have to size the RR that they need
and then, close-to-real-time, activate these resources in order to balance the system in the framework
of their national balancing schemes or submitting the request to the LIBRA platform for each hour.
Since the TERRE process is running in advance to the Italian balancing market for a given delivery
period, it is important for TERNA to anticipate balancing actions in this framework (having this
platform an higher liquidity compared to the national market) but paying attention to minimize the
risk of counteractions required in real-time (due to an over/under activation occurred on LIBRA).
Hence, the expected net imbalance between generation and load schedules and actual data shall be
predicted between 60 min and 45 min before the start of the delivery hour. For achieving this goal, in
the early stage of implementation, the RR activation demand sizing approach adopted by TERNA is
going to be based on a persistence method, similar to the one adopted currently in the Italian real-time
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balancing market, that is, assuming that the forecasting error at hour h is equal to the forecasting error
at hour h-2 (the last for which all the actual data are available). In fact, as stated in most of the available
literature [29–32], the persistence approach is hard to beat in the so called ultra/very short-term forecast
time horizons (e.g., less than 1 h-ahead) while most-advanced predictive models, that could provide
better performances on the 1 h time horizons, require extensive training and testing since the selection
of the most suitable model is widely recognized as a data driven exercise.

Mathematically the calculation of the RR activation demand to be sent to LIBRA will be based on
the formula (1) and flow-chart shown in Figure 12. Since the analysis has been carried out with the
data relating to the year 2018, actual values were available, so it was possible to calculate the expected
error made in assuming that the forecasting error at hour h is equal to that one at hour h-2 (2).

RRh =
(
ED f

h − ED f
h−2

)
−

(
EG f

h − EGa
h−2

)
−

(
I f
h − Ia

h−2

)
(1)

ErrRRh = EDa
h −

(
EG f

h + I f
h + RRh

)
, (2)

where:

• ED f
h : forecasted energy demand for the hour h;

• ED f
h−2: forecasted energy demand for the hour h − 2;

• EG f
h : forecasted energy generation for the hour h.

• EGa
h−2 : actual energy generation for the hour h − 2.

• I f
h : forecasted energy import for the hour h.

• Ia
h−2 : actual energy import for the hour h − 2.
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Figure 12. Data flow and sources for the RR activation demand computation.

Applying this method, the results obtained are summarized at National and at bidding zone level,
in terms of minimum, maximum, average value and standard deviation of the RR required and error
in Table 2.

In order to check the compatibility of the proposed method for dimensioning RR activation and
the current RR procured in the Ancillary Service Market, the hourly RR activation demand estimated
for 2018 and the hourly RR actually procured in 2018 are compared in Figure 13. Looking at the
incremental activation (Figure 13) the authors found that only in one case the procured RR was not
sufficient to cover the expected demand, meaning that in this hour available resources from neighboring
countries would be procured on the LIBRA platform. The fact that this is a very rare event is quite
important, because Italy is typically and importing Country and import capacity could be not available
for balancing in real-time (because fully allocated in the previous market sessions).
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Table 2. Minimum, maximum, average value and standard deviation of RR and error.

RR (MW)

Minimum Maximum Average value Std. Dev.

ITA −6750 4553 −1168 1135

ZONE 1 −2681 1293 −43 240

ZONE 2 −3304 1600 −356 472

ZONE 3 −4148 3448 −345 773

ZONE 4 −1041 680 −35 137

ZONE 5 −1334 1257 −22 188

ZONE 6 −2887 4440 −367 687

Error (MW)

Minimum Maximum Average value Std. Dev.

ITA −4862 3738 −63 928

ZONE 1 −1569 2581 −10 209

ZONE 2 −1621 3413 123 336

ZONE 3 −3681 2999 122 657

ZONE 4 −907 587 −10 93

ZONE 5 −1046 865 −83 197

ZONE 6 −4811 1653 −206 439

Energies 2020, 13, x FOR PEER REVIEW 14 of 20 

 

Table 2. Minimum, maximum, average value and standard deviation of RR and error. 

 
RR (MW) 

Minimum Maximum Average value Std. Dev. 

ITA −6750 4553 −1168 1135 

ZONE 1 −2681 1293 −43 240 

ZONE 2 −3304 1600 −356 472 

ZONE 3 −4148 3448 −345 773 

ZONE 4 −1041 680 −35 137 

ZONE 5 −1334 1257 −22 188 

ZONE 6 −2887 4440 −367 687 

  Error (MW) 

 Minimum Maximum Average value Std. Dev. 

ITA −4862 3738 −63 928 

ZONE 1 −1569 2581 −10 209 

ZONE 2 −1621 3413 123 336 

ZONE 3 −3681 2999 122 657 

ZONE 4 −907 587 −10 93 

ZONE 5 −1046 865 −83 197 

ZONE 6 −4811 1653 −206 439 

In order to check the compatibility of the proposed method for dimensioning RR activation and 

the current RR procured in the Ancillary Service Market, the hourly RR activation demand estimated 

for 2018 and the hourly RR actually procured in 2018 are compared in Figure 13. Looking at the 

incremental activation (Figure 13) the authors found that only in one case the procured RR was not 

sufficient to cover the expected demand, meaning that in this hour available resources from 

neighboring countries would be procured on the LIBRA platform. The fact that this is a very rare 

event is quite important, because Italy is typically and importing Country and import capacity could 

be not available for balancing in real-time (because fully allocated in the previous market sessions). 

At the opposite, looking at the downward side, the number of cases where the expected 

activation is higher than the actually procured downward RR reserve is not sufficient increases up to 

18%. In this case, selecting downward quantities in other countries and consequently reducing the 

import flow (which is an achievable action in all the timeframes), will solve the issue. 

 

(a) 

-2000

-1000

0

1000

2000

3000

4000

5000

6000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
es

id
u

al
 U

p
w

ar
d

 R
R

 [M
W

]

Energies 2020, 13, x FOR PEER REVIEW 15 of 20 

 

 

(b) 

Figure 13. Duration curves of the estimated residual RR. In (a) residual upward RR, in (b) residual 

downward RR are shown. 

Finally, plotting estimated error in the RR activation demand against the demand itself (Figure 

14), it comes out clear that the persistence method tends to amplify the balancing activation, 

especially in extreme cases. This tendency highlights that: 

 expected lack of resources identified above are not critical issues for the actual balancing of the 

system; 

 potential improvements should be investigated in order to avoid over activations to be 

counteracted in the successive real-time balancing stage. 

 

Figure 14. Forecast error of the RR activation demand estimated with a persistence method against 

the estimated RR activation demand. 

5.2. Identification of Alternative Techniques to be Investigated for Error Reduction 

In order to obtain an optimization of RR resources activation, it has been investigated the 

availability of innovative predictive techniques able to reduce the forecasting error, since a correct 

forecast would lead to an increase in the quality of the power supply and to a reduction of the 

procurements cost. A literature review [32]–[40] highlighted that so called nowcasting techniques 

could improve forecast accuracy in the time horizon from 1 to few hours in advance. These 

methodologies combine real-time measurements on the current state of the system (e.g., measured 

irradiance, wind speed, satellite imagines, radar data, etc.) with machine learning predictive 

algorithm on the short term horizon. 

Several papers compare the forecast accuracy of different predictive techniques using 

persistence method as benchmark [30, 32, 40]. For the scope of this study, the authors found [32] as 

-6000

-4000

-2000

0

2000

4000

6000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
es

id
u

al
 D

o
w

n
w

ar
d

 R
R

 [
M

W
]

Figure 13. Duration curves of the estimated residual RR. In (a) residual upward RR, in (b) residual
downward RR are shown.
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At the opposite, looking at the downward side, the number of cases where the expected activation
is higher than the actually procured downward RR reserve is not sufficient increases up to 18%. In this
case, selecting downward quantities in other countries and consequently reducing the import flow
(which is an achievable action in all the timeframes), will solve the issue.

Finally, plotting estimated error in the RR activation demand against the demand itself (Figure 14),
it comes out clear that the persistence method tends to amplify the balancing activation, especially in
extreme cases. This tendency highlights that:

• expected lack of resources identified above are not critical issues for the actual balancing of
the system;

• potential improvements should be investigated in order to avoid over activations to be counteracted
in the successive real-time balancing stage.
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Figure 14. Forecast error of the RR activation demand estimated with a persistence method against the
estimated RR activation demand.

5.2. Identification of Alternative Techniques to be Investigated for Error Reduction

In order to obtain an optimization of RR resources activation, it has been investigated the
availability of innovative predictive techniques able to reduce the forecasting error, since a correct
forecast would lead to an increase in the quality of the power supply and to a reduction of the
procurements cost. A literature review [32–40] highlighted that so called nowcasting techniques could
improve forecast accuracy in the time horizon from 1 to few hours in advance. These methodologies
combine real-time measurements on the current state of the system (e.g., measured irradiance, wind
speed, satellite imagines, radar data, etc.) with machine learning predictive algorithm on the short
term horizon.

Several papers compare the forecast accuracy of different predictive techniques using persistence
method as benchmark [30,32,40]. For the scope of this study, the authors found [32] as the most relevant
one, because it assesses the forecast accuracy for very-short lead times (the ones they are interested in).
In particular, in [32] the statistical methods Artificial Neural Networks (ANN) and Auto-Regressive
Moving Average (ARMA) were compared with two downscaling approaches for wind speed and wind
energy, one using the explanatory variables deriving from the Numerical Weather Prediction (NWP)
model (LR no-obs) and one adding local observations (LR obs). The performances of these models are
compared in Reference [32] in terms of Normalized Root Mean Square Error (NRMSE), defined with
the formula (3):

NRMSE =

√
1
N

∑N
i=1(ŷi − yi)

2

Y
, (3)

where:
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• ŷi : i-th forecasted value
• yi : i-th observation corresponding to ŷi

• Y : average value of the observations
• N : number of forecast

The results are reported in Figure 15 [32]:
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methodology), LRno-obs (classic downscaling) [32].

The proposed results show that nowcasting techniques (LRobs) would allow a significant
improvement in the forecast performances for lead-time longer than 45–50 min, furthermore the LRobs
method is better than the persistence method for each lead-time considered, although the two methods
converge for times less than 30 min.

In order to check the applicability of the results presented in [32] to the RR activation demand
problem discussed in this paper, the NRMSE is calculated for the forecasting error of the RR activation
demand computed according to the persistence method on 2018 data described in Section 5.1.
The NRMSE value obtained for the persistence method applied to the 1-h ahead RR activation demand
forecast problem is of about 17%—this value is compatible with the trend shown in Figure 10, confirming
the opportunity to further investigate nowcasting approach to be adopted for properly dimensioning
1-h ahead RR activation demand to be submitted by Terna to the LIBRA platform.

6. Conclusions

The Italian power system is characterized by a huge penetration of IRES, whose power production
is strongly depending on weather conditions. On the other hand, also the power demand varies
significantly in function of the weather conditions and variables, for example, air temperature.
Hence, a proper review of operational processes and practices is required for improving procurement
strategies to be adopted in the ancillary service markets and in the upcoming European platforms.

This study shows the importance of an appropriate assessment of the forecast errors when they are
used for sizing Replacement Reserve requirements—actual forecast error distributions show longer tails
if compared to a normal distribution, implying an under estimation of the reserve needed for copying
with high reliability standards (99.7%). An analysis on the correlation between the forecast error of
different variables and/or different bidding zones, as well as on the dependency on the operating
conditions, highlighted the opportunity to conduct further investigation in this sense, optimizing the
forecast error model. These improved models could be adopted by a TSO, when procuring RR, with
particular reference to the Italian TSO and its activity in the Italian Ancillary Service Market.
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Within the framework of the European TERRE project and the related European balancing platform
LIBRA, the real-time balancing process will shortly be integrated with a new “close to real-time”
process, which starts 60 min in advance to the delivery hour and where available RR resources are
activated (sending them an order 30 min in advance to the delivery hour), in order to balance the
expected system imbalance in the upcoming delivery hour. For this scope, TSOs have to formulate
the RR activation demand to be submitted to the LIBRA platform between 60 and 45 min in advance
to the delivery hour. This paper describes the sizing methodology proposed for the initial stage of
the process, which is based on a persistence method, showing its results using real data for the whole
2018 and highlighting potential limitations of this approach. In order to overcome these limitations,
a literature review on alternative approaches has been carried out, identifying nowcasting techniques
as a relevant alternative for the very short term forecast horizon—these methodologies will be further
investigated and tested in the future, using the persistence method as a benchmark.
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Nomenclature List

aFRR Automatic Frequency Restoration Reserve
ANN Artificial Neural Network
ARMA Auto-Regressive Moving Average
BGMM Bayesian Gaussian Mixture Model
BSP Balancing Service Provider
CACM Capacity Allocation & Congestion Management
CMO Common Merit Order
DAM Day-Ahead Market
FRR Frequency Restoration Reserve
GME Gestore dei Mercati Energetici
IGCC International Grid Control Cooperation
IRES Intermittent Renewable Energy Sources
LFC Load Frequency Control
MARI Manual Activation Reserve Initiative
MB A real-time Balancing Market (named in Italian Mercato del Bilanciamento)
mFRR Manual Frequency Restoration Reserve
MGP Italian Day-Ahead Market (named in Italian Mercato del Giorno Prima)
MI Intra-Day Market (named in Italian Mercato Infragiornaliero)
MPE Spot Electricity Market (named in Italian, Mercato a Pronti dell’Energia)
MSD Italian ancillary service market (named in Italian, Mercato per il Servizio di

Dispacciamento)
MTE Forward Electricity Market (named in Italian, Mercato a Termine dell’Energia)
NEMO Nominated Electricity Market Operator
NRMSE Normalized Root Mean Square Error
NWP Numerical Weather Prediction
PCR Price Coupling of Regions
PICASSO Platform for the International Coordination of Automated Frequency Restoration and

Stable System Operation
PUN National Single Price (named in Italian Prezzo Unico Nazionale)
RR Replacement Reserve
TERRE Trans European Replacement Reserve Exchange
TSO Transmission System Operator
UVA Virtual Enabled Units (named in Italian Unità Virtuali Abilitate)
XB Cross Border
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