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Abstract: Due to the intermittency and randomness of photovoltaic (PV) power, the PV power
prediction accuracy of the traditional data-driven prediction models is difficult to improve.
A prediction model based on the localized emotion reconstruction emotional neural network
(LERENN) is proposed, which is motivated by chaos theory and the neuropsychological theory of
emotion. Firstly, the chaotic nonlinear dynamics approach is used to draw the hidden characteristics
of PV power time series, and the single-step cyclic rolling localized prediction mechanism is
derived. Secondly, in order to establish the correlation between the prediction model and the
specific characteristics of PV power time series, the extended signal and emotional parameters are
reconstructed with a relatively certain local basis. Finally, the proposed prediction model is trained
and tested for single-step and three-step prediction using the actual measured data. Compared with
the prediction model based on the long short-term memory (LSTM) neural network, limbic-based
artificial emotional neural network (LiAENN), the back propagation neural network (BPNN), and the
persistence model (PM), numerical results show that the proposed prediction model achieves better
accuracy and better detection of ramp events for different weather conditions when only using PV
power data.

Keywords: PV power prediction; localized emotion reconstruction emotional neural network
(LERENN); chaotic; extended signals; emotional parameters

1. Introduction

In response to reducing carbon emission caused by the fossil fuels and following the trend of
global environmental protection, photovoltaic (PV) generation has been widely used as one of the
environmentally friendly power generation alternatives. However, PV power shows high intermittency
and randomness due to the impacts of various meteorological factors, which hinders the development
of the grid-connected PV power system [1]. Ultra-short-term PV power prediction is considered for
intra-hour prediction. The accurate prediction of PV power from a few seconds to one hour is important
to assure grid quality and stability and can effectively help the grid to perform power smoothing [2].
Therefore, an effective and accurate prediction model for PV power is of great importance.

Physical methods and statistical methods can be used for ultra-short-term PV power
prediction [3,4]. Physical methods are based on physical equations describing the laws of solar
radiation and the operation of PV modules, as well as the detailed data from numerical weather
prediction (NWP) [5]. The cloud image-based prediction method in the physical method can achieve
high precision ultra-short-term PV power prediction by monitoring cloud movement [6–8]. The physical
method does not require a lot of historical data, but it is difficult to simulate some extreme weather
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conditions and the changes of the environment and PV module parameters with time [9,10]. Compared
with the physical method, the statistical method needs a lot of historical data. At present, it is difficult
to improve the quality of model input data and mining the characteristics of data [11,12]. However,
since there is no need of knowing PV plant characteristics and it is more generalizable, statistical
methods are used in short/ultra-short-term prediction. The artificial neural network (ANN) is widely
used to predict PV power in most researches of statistical prediction methods [13,14]. The deep neural
network contains a large number of hidden layers, which has a good ability of feature extraction for
non-stationary data and has also been widely used in the field of PV power prediction [15,16].

For most machine learning models represented by ANNs, training of the model is the first
step for prediction. The training methods can be divided into global training and localized training.
The localized training focuses only on predicting the upcoming output of the current data point, so it
makes use of the most relevant historical data points with the current data points. Compared to
global training, localized training has superior performance in prediction accuracy [17,18]. The essence
of PV power prediction using ANNs is to find the nonlinear mapping relationships between PV
power time series, and the training relies on global fitting approaches to capture the average trend of
input historical data. Due to the excellent nonlinear mapping function, self-learning, adaptive ability,
and fault tolerance, the error back propagation (BP) training algorithm is the most widely used global
training algorithm for matured ANNs to predict PV power [19]. Although ANNs are widely used in PV
power prediction, they still suffer from the problem of model complexity [20–22]. The establishment
of precise mapping relationships requires a good deal of neurons, and the number of hidden layer
neurons is often difficult to determine. Furthermore, uncertain weather conditions may cause these
historical data to contain non-stationary components, which will result in high prediction errors due to
improper training of the model. For all of these reasons, the accuracy of prediction results needs to be
further improved.

Time series analysis can be a pre-stage of prediction. Recent studies have proved that PV power
time series have chaotic characteristics [23,24]. The fluctuation of a PV power time series is not
completely random, but still has certain regularity which can be reflected in different weather types.
The trajectories of PV power time series look very similar under typical conditions. Chaotic time
series analysis can draw the hidden information from random-look data produced by chaotic systems.
However, only a few researches have applied chaotic time series analysis to PV power prediction,
and the correlation between the prediction model and specific characteristics of PV power time series
is neglected in the modeling process.

With the rapid development of neuropsychology, emotional intelligence is applicable. Emotional
neural networks (ENNs) are among the most important achievements earned from the above efforts.
The high speed of emotional processing and the inhibitory connections between the amygdala and
the orbitofrontal cortex (OFC) in the limbic system motivate the application of ENNs. The distinctive
features of emotional processing reveal the biological background of the brain emotional learning
(BEL) algorithm, which contributes to BEL-based ENNs. There are various modified versions of
BEL-based ENNs, and all of them have achieved many improvements on prediction applications.
Milad indicated that BEL-based ENNs are superior in the prediction of classical chaotic time series
such as Lorenz, Mackey glass, and Rossler [25]. For real time series, predictions of solar geomagnetic
activity index have been carried out by modified versions of BEL-based ENNs, where fuzzy-logic-based
algorithms and genetic algorithms (GA) were applied to improve the performance of network [26,27].
However, for power systems, only a few studies have tried in the field of load and wind power
prediction [28,29]. Although BEL-based ENNs have demonstrated promising results for predictions of
complex systems, the modeling of emotion mentioned above is created only as an anatomical model
in artificial intelligence. Furthermore, the importance of emotion for optimization tasks is ignored.
A model that integrates emotional appraisal with the BEL learning algorithm was first proposed by
Lotfi and Akbarzadeh-T [30]. The novel computational model is named as the limbic-based artificial
emotional neural network (LiAENN), which is inspired by the emotional back propagation (EmBP)



Energies 2020, 13, 2857 3 of 21

neural network. So far, ENNs have not been applied to the field of PV power prediction. In this
paper, an ultra-short-term PV power prediction model with localized emotion reconstruction in the
LiAENN is proposed, which is combined with the idea of phase space reconstruction in chaotic time
series analysis.

The contributions of this paper are as follows:
(a) The chaos theory is first combined with neuropsychological theory of emotion to improve the

LiAENN-based model; the proposed LERENN-based prediction model provides a new direction for
ultra-short-term PV power prediction.

(b) By mining the hidden information of PV power time series and deriving the single-step cyclic
rolling localized prediction mechanism, the influence of human subjective factors in the prediction
process can be reduced.

(c) The reconstructed extended signal and emotional parameters according to the derived
single-step rolling localized prediction mechanism makes the correlation between the prediction
model and the characteristics of the PV power time series more accurate, which can further improve
prediction accuracy.

2. The Localized Emotion Reconstruction in the Limbic-Based Artificial Emotional
Neural Network

2.1. The Neuropsychological Aspect of Emotion

The emotion plays an essential role in human cognition and perception process, which happens
in the limbic system. Figure 1 shows the schematic diagram of the amygdala interaction with other
brain systems in the limbic system. The limbic system commonly includes amygdala, orbitofrontal
cortex (OFC), thalamus, sensory cortex, hypothalamus and hippocampus. It can be clearly seen that
the amygdala is highly connected with other limbic system components, such as thalamus, sensory
cortex and OFC. The amygdala is responsible for dealing with emotional stimulus which comes from
two pathways: one is directly transmitted by the thalamus, which is short and inaccurate; the other is
derived from the sensory cortex, which is long but accurate. The important position of the amygdala
in emotional processing indicates that it is the centerpiece of neuroeconomic decision-making.

Figure 1. Schematic diagram of the amygdala interaction with other brain systems in the limbic system.

In the LiAENN from Figure 2, the amygdala and OFC module are expanded into two layers with
two hidden neurons and single output neuron by using biases bs and activation function f to introduce
the anxiety-confidence emotional states into the network [30]. The emotional stimuli Pq (q = 1,...,n)
as the input patterns enter into the thalamus and then go to the sensory cortex. Amygdala receives
the input information from the sensory cortex. The thalamus also maps the expanded signals Pn+1

extracted from input information directly to the amygdala. The emotional output of amygdala is Ea.
The OFC produces the emotional output Eo, which is to inhibit the inaccurate emotional response of
the amygdala and determine the final emotional output E. The dashed line in Figures 1 and 2 represent
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the feedback effects of resultant emotional response. In the LiAENN, the target value of input pattern
T which controls the feedback effects is employed to adjust the amygdala weights vs and the OFC
weights ws. Additionally, to control the effects of using targets, the network uses a decay rate to
simulate the oblivious characteristic of amygdala.

The LiAENN is trained with the anxious confident decayed brain emotional learning rules
(ACDBEL), wherein the added anxiety-confidence emotional state and their attentional effects are used
in learning in the amygdala. The emotionally derived concepts in LiAENN provide a new direction for
its application in the ultra-short-term prediction of PV power.

Figure 2. Limbic-based artificial emotional neural network (LiAENN) architecture.

2.2. Limitations of the Current Limbic-Based Artificial Emotion Neural Network

2.2.1. The Limitations of the Expanded Signal

The existence of the short path not only allows the model to react faster to a wide range of stimuli,
but also provides another pathway for emotional learning if the long path is damaged. However,
inappropriate expanded signals also bring greater challenges to the application of prediction such as
interfering with other input information or leading to the redundancy of information. The two-layer
architecture of LiAENN has two short paths, which increases the inaccuracy of the information
transmitted through the short paths. The expanded signal, which is transmitted through the short path,
is usually calculated using a nonlinear function such as a mean operator or a max operator. A mean
operator represents the average value of the input signals, which is used to simulate the average trend
of input signals. A max operator, which is the maximum value of input signals, is chosen to simulate
the expanded signal in most ENNs. Although the applications of ENNs are becoming more and more
mature, the expanded signal is still not clearly defined as to whether it is a uniform regulation or a
choice based on a particular application. However, the precise definition of the extended signal is
critical to the accuracy of the prediction. In this paper, the expanded signal is considered according to
the chaotic characteristics of PV power time series and the prediction mechanism.
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2.2.2. The Limitations of the Emotional Parameters

The LiAENN is distinctive because more emotional concepts are involved in the emotional
computing. The added emotional parameters referring to the anxiety and confidence more closely
mimic the attentional behavior of human learning. The confidence and anxiety variables are influenced
by the perceived objects. Emotional psychology theory holds that the new learning task will bring a
high initial anxiety level and low confidence level. Rather, the proficiency of practice will lead to a
lower level of anxiety and a higher level of confidence. Confidence makes the previous update occupy
a dominant position. Anxiety has an effect on enhancement, including latest errors, which effectively
slows down the learning of new tasks. Hence, anxiety can be seen as a feature of attention focusing on
learning about new and "interesting" data. The choice of these data should be considered in terms of
the interaction mechanism between emotion and attention. The amygdala is responsible for attentional
behavior, which can eliminate interference items from desired target objects to obtain the salience.
The interaction mechanism between emotion and attention can be summarized as follows: the attention
is the first step in emotion processing, and on the contrary, emotional function helps to guide attention
to a great extent. The important role of the amygdala in attention and memory suggests that the quick
low-level automatic emotional responses are derived from the most important stimuli associated with
survival [31]. Hence, these new and "interesting" data should be determined according to the specific
application. On the facial detection and emotion recognition experiments, the new and "interesting"
data are resourced from the average value of the global input signals, whose goal is to mimic trends in
human emotional judgments and preferences based on general impressions, rather than precise details
of perceived objects.

The fluctuation of wind power is mainly reflected in the hourly fluctuation, whereas the PV power
has stronger fluctuation in a few minutes. Therefore, for the ultra-short-term PV power prediction,
the global average of the input signals does not provide the most direct stimulus to the emotional
learning of the network. It is especially important to pick out the most important information about
the prediction from the input signals. The improvement of LiAENN concentrates on tracking the
detailed information of input signals, which is crucial for ultra-short-term PV power prediction.
The construction of emotion parameters has a relatively certain local basis based on the chaos theory.

2.3. The Localized Emotion Reconstruction in the Limbic-based Artificial Emotional Neural Network

2.3.1. Chaotic Time Series Analysis

If the behavior of the observed time series data is chaotic, it can be assumed that the behavior
follows a certain deterministic law in the high-dimensional phase space. Considering the chaotic
characteristics of PV power helps to better explore the relationship between emotion and attention.
The key point of this approach lies in the phase space reconstruction of the dynamics, which is aimed
at mapping these historical time series into high-dimensional phase space, and then extracting and
restoring the original law. The original law is a kind of trajectory in high-dimensional space, which is
called chaotic attractor [32].

For a chaotic system, the phase space is defined as a vector space Rm, where each point is
represented by an m-dimensional vector r(t), which is expressed as:

r(t) = [r1(t), r2(t), r3(t), ..., rm(t)] (1)

where t is the index of the time series and m is the dimension of the vector space.
According to Taken’s embedding theorem, the value of r(t) and its related components

r1(t), r2(t), ..., rm(t) are unknown in the chaotic system. However, the evolution of any component of the
system can be determined by other components interacting with it, so the information of these related
components is implicit in the development of any components. This means that if a single quantity
or variable x(t) can be observed from a chaotic system, the chaotic attractor can be recovered from
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the reconstructed dynamics of a system X(t) = [x(t), x(t + τ), x(t + 2τ)...] after a certain time delay
τ, which are geometrically similar to the original attractor. Therefore, the reconstructed phase space
X(t)→ X(t + τ) can be used to reflect the unknown dynamics of the actual system r(t)→ r(t + τ) [33].
The future value of system at time t+ τ can be determined by the following equation with the nonlinear
function f : Rm

→ Rm , which describes the system:

r(t)→ f (r(t)) = r(t + τ) (2)

where the arrows appearing in the text represent a mapping from one-dimensional space to
multi-dimensional space.

Thus, although the PV power time series is random, its deterministic behavior can be described in
the embedded phase space. The first step in reconstructing the PV power chaotic time series into phase
space points is to determine the embedding dimension m and delay time τ based on the embedding
theorem. Due to the small amount of calculation and strong anti-noise performance, the C-C method is
used to calculate the phase space reconstruction parameters [23]. It is a kind of time delay window
technique based on time series. The delay time τ is obtained by multiplying the delay amount l and the
sampling time ∆t. Taking into account the discreteness of the sampling data, we use the delay amount
l instead of delay time τ.

First, the correlation integral of PV power time series x(i)( i = 1, 2, ..., N) is given as follows:

C(m, rd) =

∑
1≤e< f≤M

2H
(
rd −

∥∥∥Xe −X f
∥∥∥)

M(M− 1)
(3)

where N is the length of time series; M is the number of delay vectors; rd (rd > 0) is defined as the
spatial distance; and H(a) is a step function, i.e., H(a)=0 if a < 0; 1 otherwise. Xe and Xf are the random
point vectors of the PV power output time series in the reconstructed phase space. Infinite norm is
used to calculate the Euclidean distance between Xe and Xf. The BDS (Brock-Dechert-Scheinkman)
statistic is applied to obtain the appropriate estimation of m and rd. Choose:

2 ≤ m ≤ 5, and rd = dσ/2 (4)

where d ∈ (1, 2, 3, 4) and σ is the standard deviation of the time series.
Second, the PV power output test statistics are computed. Considering the limited sequence

length and the possible relationship among the time series data points, we divide the PV power

output time series x(i) into l sequences with a length N/l. We define CC = 1
l

l∑
s=1

[Cs(m, rd) −Cs(1, rd)]

as an intermediate variable. The system test statistics S(l) can be found when N is large enough (or
approaches the infinity in theory):

S(l) =
1
16

5∑
m=2

4∑
d=1

CC (5)

The first zero crossing of S(l) is selected as the optimal delay amount lopt of PV power output time
series phase space reconstruction. Get the difference between the maximum value and the minimum
value of S(l) for rd given the same m and l. ∆S(l) is defined as the average value of the difference with
different dimension m, i.e.,

∆S(l) =
1
4

5∑
m=2

{max{CC}−min{CC}} (6)

On account of the finite length and noise effect of the time series data, S(l) may not reach a
zero-crossing point. Then, the first local minimum value of ∆S(l) can be chosen to determine optimal
delay amount lopt in the time series phase space reconstruction. A new statistic Scor(l) is then defined as:



Energies 2020, 13, 2857 7 of 21

Scor(l) =
∣∣∣S(l)∣∣∣+ ∆S(l) (7)

Determine the global minimum value of Scor(l), which corresponds to the average trajectory cycle
optimal estimate l∗. We have the best dimension mopt.

mopt = f loor(l∗/lopt) + 2 (8)

Then, the PV power time series x(i) can be embedded in m-dimensional space by plotting the
delay vector X:

X =


X(1) x(1 + l) · · · x(1 + (m− 1)l)
x(2) x(2 + l) · · · x(2 + (m− 1)l)

...
...

. . .
...

x(M) x(M + l) · · · x(M + (m− 1)l)

 (9)

2.3.2. The Single-Step Cyclic Scrolling Localized Prediction Mechanism

The single-step cyclic scrolling localized prediction mechanism [34] is described as follows: x(t1)
is assumed as the first power to be predicted and the x(t0) is the known quantity. When the power x(t1)
is to be predicted at time t1, the correspondence between X(t0) and x(t1) is as follows:

X(t0) =
{
x[t0 − (m− 1)l], x[t0 − (m− 2)l], ..., x[t0 − l], x(t0)

}
→ x(t1) (10)

where the arrow represents the corresponding relationship between input and output when the model
predicts the power value x(t1) at time t1.

Then, the delay vector X(t0) is imported into the trained model, and the single-step prediction is
performed. Hence, the predicted power x(t1)preat t1 time is obtained.

When the power at t2 time is to be predicted, considering that at t2 time, the actual PV power
x(t1)real at the t1 time is available, the x(t1)real can be added to the last position of the phase space vector
X(t1) (x(t1)=x(t1)real). Based on the phase space reconstruction, a new chaotic phase space based on
x(t1) is constructed as follows:

X(t1) =
{
x[t1 − (m− 1)l], x[t1 − (m− 2)l], ..., x[t1 − l], x(t1)

}
(11)

Then, the delay vector X(t1) is imported into the trained model, and the power x(t2) at t2 time
can be predicted. The effect of rolling forward one step is realized, and the cycle is used to realize the
ultra-short-term prediction of every moment in the future day. The pattern-target samples extracted
from PV power chaotic time series are shown in Table 1 and the whole prediction mechanism is shown
in Figure 3.

It is worth noting that each update forms a new set of chaotic phase space points, and the only
unknown value in the actual prediction process refers to the last phase space point of each delay
vector, which can be defined as prediction center point. The mapping relationship is more precise.
This prediction mechanism ensures that the model can be adjusted by pattern-target samples and the
next predicted value is not affected by the previous predicted value, which avoids the problem of error
accumulation in rolling prediction.

Table 1. The pattern-target samples extracted from photovoltaic (PV) power chaotic time series.

Time Pattern Target

t1 X(t0) x(t1)
t2 X(t1) x(t2)
... ... ...
tM X(tM-1) x(tM)
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Figure 3. The block diagram of the single-step cyclic scrolling localized prediction mechanism.

2.3.3. The Localized Emotion Reconstruction

A. Expanded Signal

Based on aforementioned analysis, the actual prediction process can be described as a localized
rolling prediction between a single delay vector with m input components and one output component.
The mapping relationship shown in Table 1 indicates that the prediction center point is critical to the
prediction value, which can be chosen as the expanded signal. The expanded signal is expressed
as follows:

Pn+1 = x(t j) ( j = 1, 2, ...M) (12)

B. Emotional Parameters

The motivation for modifying these emotional parameters is our human cognitive process of new
learning tasks. For the ultra-short-term prediction of PV power, the delay vector X is a time-dependent
sequence transformed from the initial observation x(i) after stretching and folding. According to
the prediction mechanism and the embedding theorem, the network tracks one pattern at a time.
The anxiety level is affected by each pattern-target sample which is exposed to the network, and the
effect of each component of single pattern on anxiety level increases with time. The predicted value
is determined by x(tj) to a large extent. Based on the above analysis, the emotional parameters can
be successfully modeled within the network configuration by paying attention to the details of each
pattern-target sample instead of the general impression.

The anxiety coefficient and confidence coefficient can be expressed as µ and k. The initial values of
the anxiety coefficient and the confidence coefficient are set to “1” and “0”, respectively, which means
that a new learning task such as first iteration needs more attention to be devoted to the learning of
prediction model. With the deepening of learning or the increase of iteration steps, the decrease of
anxiety level means that the derivative of the error of the training patterns is less and less valued
by the network. On the contrary, increasing attention has been attached to the previous changes of
network that confidence level made to weights. Therefore, the minimization of the error brings about a
high level of confidence and a low level of anxiety. The anxiety and confidence maintain a balance of
attention between previous iteration and subsequent iteration.

The anxiety coefficient µ(t j) at each time can be expressed as follows:

µ(t j) = x(t j−1) + err(t j)( j = 1, 2, ..., M) (13)
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The err feedback of each pattern-target sample at each time is defined as:

err(t j) = [x(t j) − x(t j)pre]
2( j = 1, ..., M) (14)

Then the final anxiety coefficient at the ς-th iteration can be calculated as:

µς = mean[
M−1∑
j=0

x(t j) +
M∑

j=1

err(t j)] (15)

The value of confidence coefficient at the ς-th iteration is defined as:

kς = µ0 − µς (16)

where µ0 is the value of anxiety coefficient at the first iteration.
After the localized emotion reconstruction, the prediction model is trained to capture the functional

relationship among given phase space points. Finally, the weights and biases of the trained model are
maintained to predict the future values of the phase space points. The future values of time series
are obtained when the unknown phase space points are predicted. Only the amygdala involves the
emotional states, and the above process is presented in Figure 4.

Figure 4. The localized emotion reconstruction in the amygdala part of the localized emotion
reconstruction emotional neural network (LERENN).

3. Ultra-Short-Term Photovoltaic Power Prediction Model Based on the Localized Emotion
Reconstruction Emotional Neural Network

3.1. The Training Algorithm of the Localized Emotion Reconstruction Emotional Neural Network

3.1.1. Feed Forward Computations

For the amygdala, the detailed steps are as follows:

i. Input Layer to Hidden Layer

In Figure 4, the delay vector X(tj) (j = 0,1,...,M–1) as the n inputs Pq (q = 1,...,n) enter the amygdala,
which come from the sensory cortex; meanwhile, the expanded signal Pn+1 as another input enters
the amygdala. For the amygdala, hi is the i-th (i = 1, 2) neuron in the hidden layer. ba1

i is the i-th bias
neuron in the hidden layer, which is set to “+1.” Eahi is the weighted sum of the inputs to the i-th
neuron in the hidden layer, which can be expressed as in Equation (17). f 1

a is the activation function
of the hidden layer. Eai is the activated value of the i-th neuron as the final output of hidden layer,
which can be expressed as in Equation (18). v1

q.i is the amygdala weight associated with the connection
between the q-th neuron in the input layer and the i-th neuron in the hidden layer.
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Eahi =
n+1∑
q=1

v1
q.ipq + ba1

i (17)

Eai = f 1
a (Eahi) (18)

ii. Hidden Layer to Output Layer

Similarly, the output value of output layer in amygdala is calculated as follows:

Eao = v2
1.1 × Ea1 + v2

2.1 × Ea2 + ba2
1 (19)

Ea = f 2
a (Eao) (20)

where v2
i.1 (i = 1, 2) is the amygdala weight in the output layer located between the i-th neuron in

the hidden layer and the output neuron; ba2
1 is related to the bias neuron in output layer; f 2

a is the
activation function of the output layer.

In the same way, the output Eo of OFC can be obtained, and the final output can be calculated by
the following equation:

E = Ea− Eo (21)

3.1.2. Backward Learning Computations

The backward learning computations are aimed at updating the learning weights of the amygdala
and the OFC, which is similar to the error back propagation algorithm.

As can be seen from Figure 2, the output error of the amygdala is err, as shown in Equation (22):

err =
1
2
(T − Ea)2 (22)

where T is the target value, and the err actually has a result of the feed forward calculations, and the
amygdala is Ea.

The aim of the training process is to minimize this error over training patterns. For the output
layer neuron, a quantity called the error signal is represented by ∆Ja, which is expressed as:

∆Ja = f 2
a
′
(Eao) × err (23)

For the first hidden neuron, an error signal definition is as follows:

∆ha1 = f 1
a
′
(Eah1) × v2

1.1 × ∆Ja (24)

Then, the learning weights of the first hidden neuron are calculated by the following equation:

v1
q.1 = (1− γ) × v1

q.1 − η× ∆ha1 × Pq × µ+ k× ∆v1
q.1(for q = 1, 2 . . . n) (25)

Particularly, due to the expanded single from the thalamus,

v1
n+1.1 = v1

n+1.2 = (1− γ) × v1
n+1.1 − η× ∆ha1 × Pn+1 × µ+ k× ∆v1

n+1.1 (26)

ba1
1 = (1− γ) × ba1

1 − η× ∆ha1 × µ+ k× ∆ba1
1 (27)

where µ and k are updated based on Equations (13)–(16) at each iteration, η is the learning coefficient,
and γ is the decay rate in amygdala learning rule. The v2

1.1 and ba2
1 are adjusted as follows:

v2
1.1 = v2

1.1 − η× ∆Ja × Ea1 (28)
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ba2
1 = ba2

1 − η× ∆Ja (29)

The updating between the second hidden neuron and the output neuron is similar to the backward
learning computations of the OFC, and so details are no longer given here.

3.2. The Ultra-Short-Term PV Power Prediction Framework Based on the Localized Emotion Reconstruction
Emotional Neural Network

After collecting the PV power time series data, the prediction can be implemented with the
following steps:

(a) After data normalization, the phase space reconstruction of the obtained PV power time series
is performed.

(b) Construct the localized emotion reconstruction emotional neural network (LERENN)-based
model; the overall frame structure of the prediction model, especially the number of input nodes
and output nodes, is determined based on the data matrix of phase space point vector. Additionally,
the initial values of the emotional parameters are set.

(c) Import the phase space points to the model; the proposed model is trained with the pattern-target
pairs to capture the functional relationships among the given phase space points. The total training
process includes the feed forward computations, emotional parameter settings, and backward learning
computations. Among them, the setting of emotional parameters is carried out in accordance with 2.3.3.

(d) The weights and biases of the trained model are maintained to predict the future values of the
phase space points.

(e) Repeat the above steps to perform prediction.
The corresponding prediction process of PV power based on the proposed model is shown in

Figure 5.

Figure 5. The flow chart of PV power ultra-short-term prediction based on LERENN.

4. Case Study

4.1. Description of Dataset

The grid-connected PV power station built by the National Institute of Standards and Technology
(NIST) in Gaithersburg, MD campus can provide the high-resolution, low uncertainty, comprehensive
PV output power data for extended, continuous time periods. There is a single inverter at the station
that is connected to the local grid via the NIST campus grid [35]. In this paper, the data of 70 days in the
third quarter of 2015 were selected for simulation. Sampling was done daily from 6:00 am to 7:00 pm
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every 5 min, and 157 sampling points were included in one day set. In order to obtain an appropriate
prediction accuracy with an affordable computation burden, historical data of 62 days were used as the
training dataset, and 8 days of data under different weather conditions were chosen as the forecasting
dataset. The training dataset includes different weather conditions, and all the dataset only includes
historical PV power data. To reflect the prediction performance of the proposed model, the selected
forecasting dataset include 2 sunny days, 2 cloudy days, 2 overcast days, and 2 abrupt weather days
like sunny to cloudy and cloudy to sunny weather [36]. For this dataset, the ultra-short-term PV power
prediction was carried out with the step length of 5 min.

To quantify errors, the mean absolute percentage error (MAPE) and the root-mean-squared error
(RMSE) were used as the main two metrics. In particular, MAPE and RMSE are defined as follows:

MAPE =
1
N

N∑
s=1

∣∣∣∣∣∣Ps
p − Ps

a

Ps
a

∣∣∣∣∣∣ (30)

RMSE =

√√√√√ N∑
s=1

(Ps
p − Ps

a)
2

N
(31)

where Ps
p and Ps

a are the s-th value in the predicted time series and the actual series of measured PV
power, respectively, and N denotes the number of samples in test set.

However, since in some extreme weather conditions or at certain points in time, the actual PV
power may fall to zero, the sum of squares due to error (SSE) defined by Equation (32) was used to
represent the error in PV power prediction.

SSE =
N∑

s=1

(Ps
p − Ps

a)
2 (32)

The above three evaluation metrics give the prediction information of point-wise error, however,
they are not sufficient to distinguish the prediction behavior between different prediction methods.
In the variability of PV power, repercussions from large ramping events are of primary concern.
Hence it is useful to use ramp metric to quantify the ability of prediction methods to capture the
ramp events. In this paper, we use the Ramp score proposed by Vallance et al [37] as another metric.
The Ramp metric is defined as follows:

Ramp score =
1

tmax − tmin

∫ tmax

tmin

∣∣∣SD(T(t)) − SD(R(t))
∣∣∣dt (33)

where SD(T(t)) and SD(R(t)) are the slopes of the test series and real series ramps, respectively, and the
tmax and tmin are the bounds of the period to be predicted.

4.2. Benchmark Models for Numerical Comparison

For comparison, the proposed model was compared with a persistence model (PM) [38] commonly
used as a benchmark model for ultra-short-term PV power prediction. In addition, the performance of
the LSTM-based model, LiAENN-based model and the BPNN-based model were also compared to the
proposed model.

It is noteworthy to mention that for a fair comparison, the setting of key parameters was tested
in the search of optimum values. For the proposed model, the statistic curve obtained with the C-C
method is shown in Figure 6.

As can be seen from Figure 6, since S(l) has no zero crossing, the first local minimum value of ∆S(l)
can be chosen to determine optimal delay amount lopt in the time series phase space reconstruction.
Determine the global minimum value of Scor(l), which corresponds to the average trajectory cycle
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optimal estimate l∗. From it, we have lopt = 12 and l∗ = 36. We then calculate the optimal dimension
mopt = 5 via Equation (8).

Figure 6. Statistic curves of PV power output time series using C-C methodNote: The C-C method is a
kind of time delay window technique based on time series.

For decay rate γ, due to the sensitivity of the PV power chaotic system to the initial value, the γ
should be set as a relatively small value. Take values at intervals of 0.05 within 0 to 1, and each training
is repeated 10 times. γ= 0 is unreliable, meaning that the model barely learns new pattern-target
samples during each training iteration. With the continuous increase of γ, the error jump range
increases, and finally, the performance of the model tends to be unstable. When γ = 0.55, the training
fails. Then, constrain the range of γ from 0 to 0.05 with step size 0.01. Finally, the value 0.01 is achieved
as the optimum decay rate. For the BPNN-based model, we choose BPNN with three-layer network
structure, the logsig function is used for the neural-transfer function of hidden layer, and the purelin
function is used for the neuron transfer function of output layer. The weights and thresholds of the
network are initialized by rand function. The number of neurons in the hidden layer is determined by
trail according to the empirical formulas [39]. Namely, that,

l <
√
(G + H) + a (34)

l = 2G + 1 (35)

where G, l, H are the number of neurons in the input layer, the hidden layer, and the output layer,
respectively; and a is a constant between 0–10.

Here, eight different structures (5-9-1; 5-10-1; 5-11-1; 5-12-1; 5-13-1; 5-14-1; 5-15-1; 5-16-1) of the
BPNN-based model were considered. For each structure, the experiment was repeated 20 times,
and the results are presented in Table 2.

As can be seen from Table 2, the best architecture of the BPNN-based model for PV power
prediction is 5-11-1 (5 inputs, 11 hidden neurons, and 1 output). Table 3 lists the final parameters of the
successfully trained models, including the BPNN-based model, the LiAENN-based model, and the
proposed model.
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Table 2. Comparison of the back propagation neural network (BPNN)-based model architecture.

Hidden Neurons Mean Squared Error (MSE)

9 0.00638
10 0.00623
11 0.00598
12 0.00616
13 0.00640
14 0.007102
15 0.007256
16 0.008245

Table 3. The final training parameters used in the BPNN-based model, the limbic-based artificial
emotional neural network (LiAENN)-based model, and the proposed model.

Parameter BPNN LiAENN Proposed

Input neurons 5 5 5
Hidden neurons 11 2 2
Output neurons 1 1 1

Learning Coefficient 0.002 0.002 0.002
Random initial weights range –1.0 to +1.0 –1.0 to +1.0 –1.0 to +1.0

4.3. Numerical Results and Analysis

The simulations were carried out, aimed at testing the performance of the proposed model and
comparing its performance with the benchmark models. Training and testing of the prediction models
were implemented in MATLAB. For a fairer comparison, each model was run 30 times independently.

Figure 7 shows the prediction results of PV power under five typical weather conditions. It is clear
that the five prediction models coincide well with the actual value in sunny weather from Figure 7b,c.
It can be seen from the Figure 7b that the actual power curve is not completely smooth, so the prediction
curves of each prediction model have different degrees of deviation throughout the prediction interval.
Between 6:00 am to 7:00 am and 15:00 pm to 19:00 pm, the prediction results of the LiAENN-based
model and the BPNN-based model both show significant deviations, and the BPNN-based model is the
most significant. The prediction results of the PM and the proposed model are relatively close. Overall,
the prediction curve of the proposed model is closer to the actual curve. However, the prediction error
of the LSTM-based model, PM and the proposed model is mainly reflected in the stage of steep rise
and fall of power. In order to further compare the prediction performance of the three prediction
models, the prediction curve of the stage with large power fluctuation between 11:00 and 12:00 was
selected to be enlarged. From the partial enlarged drawing, it can be seen that each prediction model
has a certain lag when tracking PV output. During the power climbing phase, the predicted value
is generally lower than the actual value, and during the power decline phase, the predicted value is
generally higher than the actual value. The strong inertia effect of the PM model in a short period of
time makes the dislocation between the predicted curve and the actual curve most obvious. Compared
with the proposed model, the prediction error increases significantly. Compared with the LSTM-based
model, the prediction ability of the proposed model at the power inflection point is better than that
of LSTM model, which can detect ramp events better. The PV output power curve of Figure 7c is
smoother than that on the first sunny day. The large prediction deviation of the benchmark models
appears near the peak value. Combining two sunny test days, the proposed model outperforms all of
the benchmark models in sunny weather.

In abrupt weather, the clouds change suddenly, and the PV power suddenly rises or falls with large
fluctuation. The prediction results of each model fluctuated to a large extent. In the power smoothing
phase, each model coincides well with the actual value. In the stage of large power fluctuations,
as shown during 11:00 am to 16:00 am in Figure 7a and 9:00 am to 11:00 am in Figure 7f, both the
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LiAENN-based model and the BPNN-based model have large prediction errors. From the partial
enlarged drawings, it can be seen that when the power rises and falls sharply, the prediction curve of
the LSTM-based model is smoother than that of the proposed model, and the ability to detect slope
events is poor. Although the prediction results based on the PM can reflect the overall trend of PV
power, due to the inertia effect of the PM, when the PV power sharply rises and falls, especially at
the inflection point, the tracking effect is obviously inferior to the proposed model. The proposed
model can still track the original power curve well, although its prediction curve has some fluctuations.
This shows that reconstructing the chaotic phase space to extract the original PV power information,
and reconstructing the extended signal and emotional parameters, makes the model more sensitive to
abrupt changes and fluctuations of PV power.

On cloudy days, effected by the randomness behavior of the clouds, power fluctuates greatly as
the PV output is large and the prediction performance of each model is the worst in cloudy weather.
From Figure 7d,e and the partial enlarged drawings, it can be seen that the proposed model still
outperforms all of the benchmark models, and the BPNN-based model performs the worst. It is shown
that the proposed model successfully eliminates large prediction errors, especially when the PV power
fluctuates sharply.

On overcast days, the PV output is low, and the PV power fluctuation is relatively small as the
cloud cover is relatively uniform. From Figure 7g,h, it can be clearly seen that the predicted values of
the four models are generally smaller than the actual values in the power climbing stage. The predicted
values of the four models are generally larger than the actual values in the power downhill stage.
The prediction deviation is mainly reflected near the peak points and valley points; the BPNN-based
model is the worst, followed by the LiAENN-based model. From the partial enlarged drawings,
overall, the prediction curves of the proposed model, LSTM-based model and PM are close to each
other. The prediction curve of the proposed model is closer to the actual curve means that the proposed
model can improve the prediction accuracy of PV output on overcast days, but the accuracy is limited.
There is still room for improvement.

Figure 7. Cont.



Energies 2020, 13, 2857 16 of 21

Figure 7. The results of single-step prediction of PV power in different weather conditions.

To closely compare the effectiveness of the proposed model and the benchmark models,
the comparison of prediction errors among different models under different weather conditions
is summarized in Table 4. As can be seen from Table 4, the prediction performance of each model has
the least difference in sunny weather. The proposed model outperforms all of the benchmark models
under different weather conditions in general, except for individual metrics that are slightly higher
than those of the LSTM-based model and PM, which are shown in bold font in the table. Focusing
on the average of four metrics under various weather conditions in Table 5, the improvement in the
average MAPE of the proposed model with respect to the other four models is 27.84%, 23.04%, 31.65%,
and 44.90%; the improvement in the average RMSE of the proposed model with respect to the other
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four models is 1.82%, 7.25%, 13.77%, and 22.81%; the improvement in the average SSE of the proposed
model with respect to the other four models is 2.58%, 12.71%, 23.93%, and 37.38%; the improvement in
the average Ramp score of the proposed model with respect to the other four models is 30.85%, 19.55%,
31.48%, and 42.84%.

Table 4. Comparison of single-step prediction errors among different models under different
weather conditions.

Weather Sunny to
Cloudy Sunny Cloudy Cloudy

to Sunny Overcast

Test Day 1 2 3 4 5 6 7 8

LERENN

MAPE 0.1521 0.056 0.0419 0.2715 0.2085 0.1274 0.1447 0.2004
RMSE/kW 30.1674 5.5934 1.3602 42.0671 34.5300 13.2894 3.9845 12.6832

SSE/(kW)2*103 142.8954 4.9358 0.2917 278.0129 187.2060 27.7512 2.5163 25.2599
Ramp score/kW.h−1 93.3108 29.8320 9.3228 153.6768 139.8804 45.5568 25.0572 72.3960

LSTM

MAPE 0.2609 0.0675 0.0586 0.3685 0.3349 0.1872 0.1599 0.2291
RMSE/kW 30.9844 5.6320 2.7657 42.6542 34.6060 13.1315 3.9890 12.5732

SSE/(kW)2*103 150.7249 4.9799 1.3069 285.6431 188.0198 28.1023 2.5224 25.2503
Ramp score/kW.h−1 143.8032 55.2324 29.8752 209.3352 187.9620 74.1576 35.9796 86.6076

PM

MAPE 0.2057 0.0911 0.0693 0.3371 0.2450 0.2161 0.1663 0.2318
RMSE/kW 31.7276 6.5936 2.9086 45.5884 36.7949 14.5366 3.9995 12.7599

SSE/(kW)2*103 158.0424 6.8256 1.3282 326.2938 212.5564 33.1763 2.5114 25.5618
Ramp score/kW.h−1 122.3412 50.8920 28.8036 183.9240 152.4612 58.8828 30.5364 79.5036

LiAENN

MAPE 0.2491 0.1035 0.0916 0.3644 0.2983 0.1768 0.1977 0.2774
RMSE/kW 33.6615 7.0468 3.8622 48.7172 39.4742 15.6192 4.5361 13.7023

SSE/(kW)2*103 178.6753 8.0183 2.3465 374.4040 244.7497 38.3727 3.2785 29.4934
Ramp score/kW.h−1 136.8816 64.4636 38.9076 196.2504 186.0828 75.8400 39.9000 91.9920

BPNN

MAPE 0.2676 0.1364 0.1257 0.4797 0.3699 0.2189 0.2698 0.3145
RMSE/kW 36.0657 8.5071 5.0395 53.0031 42.8105 17.7739 7.3146 15.6128

SSE/(kW)2*103 208.4089 11.6246 4.0312 457.9941 287.8621 50.9993 8.8506 38.3697
Ramp score/kW.h−1 147.0128 71.7876 54.9180 244.3812 207.6900 81.5688 71.5296 116.6340

Note: MAPE – mean absolute percentage error; RMSE – root-mean-squared error; SSE – the sum of squares due
to error.

Table 5. Average value of indicators for PV power single-step prediction under different
weather conditions.

Model MAPE RMSE/kW SSE/(kW)2 Ramp Score/kW.h-1

LERENN 0.1503 17.9594 83.6087 71.1291
LSTM 0.2083 18.2920 85.8187 102.8691

PM 0.1953 19.3636 95.7870 88.4181
LiAENN 0.2199 20.8274 109.9173 103.8023

BPNN 0.2728 23.2659 133.5176 124.4403

Note: The definitions of abbreviations in Table 5 are the same as those in Table 4.

As a comparison, the distributions of relative error for the proposed model and benchmark models
over an 8-day period are depicted in Figure 8. The percentage of the relative error is divided into
10 bins and the reduction in prediction error is highlighted in the figure. The largest proportion of
reduction in prediction errors associated with the proposed model lies in the first bin; compared
with the LSTM-based model, PM, LiAENN-based model and BPNN-based model, it has 9.24%,
5.34%, 14.89% and 20.39% improvement, respectively. This result validates the effectiveness of the
LERENN-based model in reducing large prediction errors.

At present, the minimum time resolution of power dispatching is 15 min. To verify prediction
performance comprehensively, the three-step prediction of the first, second, fourth, sixth and seventh
test days was implemented.

In order to analyze the performance of each model for the three-step prediction, the prediction
errors of the four models under different typical weather conditions are given in Table 6.

As can be seen from Table 6, except on overcast days, the proposed prediction model has
individual metrics slightly higher than the LSTM model. Overall, the proposed prediction model
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has the highest prediction accuracy, and it can still detect ramp events well. Comparing Tables 4
and 6, the prediction accuracy of all five of the models deteriorates, along with the increase of the
prediction steps. The deterioration of each model is different. Compared with single-step prediction,
in three-step prediction the RMSE mean value of the proposed model, the LSTM-based model, PM,
the LiAENN-based model, and the BPNN-based model are increased by 17.30%, 19.67%, 21.32%, 20.29%
and 23.98%, respectively. Overall, the prediction performance of the BPNN-based model is the worst.
The proposed model is less affected by the increase of the prediction steps. Namely, the proposed model
can improve the prediction accuracy, and it is still robust to power fluctuations and weather changes.

Figure 8. The distribution of each error interval for single-step prediction.

Table 6. Comparison of three-step prediction errors among different models under different
weather conditions.

Prediction Model
Evaluation Metrics

MAPE RMSE/kW SSE/(kW)2*103 Ramp Score/kW.h−1

Sunny to cloudy

LERENN 0.2073 32.4131 164.9597 182.5788
LSTM 0.3555 35.0389 192.7532 280.7976

PM 0.4533 40.0173 251.4171 246.7728
LiAENN 0.3094 36.4885 209.0506 276.0372

BPNN 0.3572 40.8130 262.0784 283.3200

Sunny

LERENN 0.1333 11.1363 19.4895 87.2256
LSTM 0.1592 11.6602 21.3456 129.6888

PM 0.2645 14.3359 32.2661 125.4564
LiAENN 0.2208 16.5784 43.1977 155.0616

BPNN 0.2517 19.7618 61.9399 196.6812

Cloudy

LERENN 0.3694 43.9757 303.6602 295.7916
LSTM 0.4478 45.7702 328.9011 299.7456

PM 0.5174 46.0834 333.4171 304.4988
LiAENN 0.4809 50.3866 398.7767 314.5740

BPNN 0.6129 56.8173 507.5595 337.3860

Cloudy to sunny

LERENN 0.2339 18.9519 56.4368 151.4148
LSTM 0.2845 19.0463 56.9536 171.6264

PM 0.4927 20.8886 68.5040 132.1837
LiAENN 0.2953 23.1878 84.4329 186.3912

BPNN 0.3448 28.1974 126.1679 263.3244

Overcast

LERENN 0.2494 8.5190 11.4084 74.5356
LSTM 0.2944 8.4760 11.3930 81.9648

PM 0.5739 8.8750 12.3663 76.0968
LiAENN 0.3290 10.8299 18.5590 112.4520

BPNN 0.3901 15.7730 39.4865 147.5160

Mean value

LERENN 0.2387 22.9992 111.1909 158.3093
LSTM 0.3083 23.9983 122.2693 192.7646

PM 0.4604 26.04 139.5941 177.0017
LiAENN 0.3271 27.4942 150.8034 208.9032

BPNN 0.3913 32.2725 199.4464 245.6455

Note: The definitions of abbreviations in Table 5 are the same as those in Table 4.
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5. Conclusions

In this paper, a prediction model based on the localized emotion reconstruction emotional neural
network for ultra-short-term prediction of PV power was proposed. Based on chaotic time series
analysis, the chaotic phase space reconstruction method was used to draw the hidden characteristics of
PV power time series, and the single-step cyclic rolling localized prediction mechanism was derived.
The extended signal and emotional parameters were determined by the reconstructed phase space
points, which have relatively sure local foundations.

Compared to the BPNN-based model, the more emotionally derived concepts in the neural
network make the learning of the model more intelligent. Compared to the LiAENN-based model,
the reconstructed emotional parameters and expanded signals based on the chaotic time series
analysis make the model pay more attention to track each input pattern and pick out the most useful
information of input pattern, with the result that the mapping relationship is more precise. Compared
with LSTM-based model, the combination of chaos theory and emotion theory makes the proposed
model has stronger prediction ability of ramp events. Simulation results validate that the proposed
model has certain adaptability under different weather conditions.

Although in a real-world application, the utility company may argue that five minutes power
prediction is less applicable since smoothing the power quality is not an easy task. In consideration of
point-wise accuracy, other metrics should be considered in the next step to provide more comprehensive
information in PV power prediction. In addition, meteorological factors such as solar radiation intensity
and aerosol index can be used as new model inputs to further correct the prediction results. All above
those are useful for the future research on the smoothing control strategy of the grid-connected PV
generation system’s power output using the prediction results combined with the energy storage system.
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