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Abstract: A Time-of-Use (TOU)-tariff scheme, helps residential customers to adjust their energy
consumption voluntarily and reduce energy cost. The TOU tariff provides flexibility in demand,
alleviate volatility caused by an increase in renewable energy in the power system. However,
the uncertainty in the customer’s behavior, causes difficulty in predicting changes in residential
demand patterns through the TOU tariff. In this study, the dissatisfaction model for each time slot is
set as the energy consumption data of the customer. Based on the actual customer’s consumption
pattern, the user sets up a model of dissatisfaction that enables aggressive energy cost reduction. In the
proposed Home Energy Management System (HEMS) model, the efficient use of jointly invested
offsite photovoltaic (PV) power generation is also considered. The optimal HEMS scheduling result
considering the dissatisfaction, cost, and PV curtailment was obtained. The findings of this study
indicate, that incentives are required above a certain EV battery capacity to induce EV charging for
minimizing PV curtailment.

Keywords: home energy management system; multi-objective optimization; residential households;
dissatisfaction weights; home appliances; electric vehicle; shared PV

1. Introduction

A Home Energy Management System (HEMS) is a home automation solution based on the Internet
of Things (IoT). The IoT enables communication between different types of objects through network
technology. The IoT is versatile in terms of connectivity, as it not only connects a network of computers
but also other devices such as home appliances and networks resulting in interoperability [1,2].
Home automation has benefitted with the application of Artificial Intelligence (AI) technology.
For example, when the system detects the resident’s arrival within a certain distance of the home,
the air conditioner in the house can changes from the energy-saving mode to the customer’s preferred
temperature, lights can go on as the resident enters the house, and music can be played [3]. With the
development of IoT and AI technologies, smart home appliances such as air conditioners, washing
machines, and dishwashers that combine IoT with AI technology have the ability to provide advanced
services to residential customers [4]. The importance of HEMS is increasing because it helps
residential customers to optimize energy consumption by improving energy efficiency through
smart home appliances.

Many countries are trying to replace the existing power system because of serious global warming,
continuous increase in electric power demand, aging of system facilities, and limitation of energy
generation resources [5]. As a result, distributed energy resources (DERs) such as photovoltaic (PV)
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systems, wind turbine power system, and energy storage systems (ESSs) [6], and smart metering
technologies have been developed [7] and they are continuously evolving in terms of technical and
economic efficiencies. Changes in the smart grid have continued to expand the role of electric vehicles
(EVs). An EV is no longer just an environmentally friendly model of transportation as it plays an
important player role in the smart grid because of Vehicle-to-Grid (V2G) technology, which enables
power transfer between the vehicle and the grid, peak load reduction, load leveling, and spinning
reserve [8].

The complex and diversified smart grid exhibits problems related to reliability, stability,
and efficiency of the power system. Demand Response (DR) is a demand-side management technology
to overcome these problems. Incentive DR and Price-based DR are two types of DR programs [9].
The Time-of-Use (TOU) program is a type of price-based DR and it induces a change in the consumer’s
power consumption pattern to generate maximum profit from a utility perspective. As the penetration
rate of residential Advanced Metering Infrastructures (AMIs) increases worldwide, many countries
have started implementing TOU programs in residential sector such as US, UK, EU, Canada, China,
Malaysia, Australia, Vietnam, etc. [10]. However, according to previous studies, the TOU program was
not effective because of the complexity of human behavior [11]. The management of residential loads
according to price signals was considered attractive, but consumers’ consumption patterns did not
correlate with price signals.

HEMS provides opportunities for residential customers to increase convenience and energy
consumption efficiency by utilizing smart home appliances, EV, and renewable energy sources [12,13].
Customers using the TOU tariff can reduce energy costs with minimal dissatisfaction through the
HEMS. The types of power consumption patterns of household appliances can be categorized based
on schedules of optimal power size and operating time [14]. Today, solar energy is the most used
renewable energy source [15]. PV power consumption is efficiently consumed to minimize the loss of
investment in solar PV in the house. Energy cost is reduced through the HEMS by utilizing surplus PV
power. An EV battery is suitable for the efficient use of PV surplus power when compared to other
household appliances in terms of power consumption and scheduling. The amount of PV generation
increases during the daytime and the use of this in EV charging results in the efficient use of surplus
power. However, the customer loses the EV discharge revenue because of the scheduled charging
and consideration of customer’s dissatisfaction. This study proposes an optimal scheduling that was
arrived at considering energy cost, dissatisfaction, and PV curtailment based on TOU tariff and using
real data.

2. Literature Review

Many researchers have studied the HEMS from various perspectives. Optimization of EV and
home energy scheduling was investigated jointly to minimize the total energy cost considering
user comfort preference with reference to the discomfort cost function in terms of the temperature
desired by the consumer [16]. However, this study also considers customer comfort by artificially
generating a human behavior data set for analyzing customer behavior patterns. The HEMS
proposed in [17] maintains residential convenience by scheduling home appliances and EV. In [18],
an optimization-based Residential Energy Management (REM) system is proposed to minimize cost
and customer’s dissatisfaction as a function of the load curtailment. In this study, the dissatisfaction
period is set for each appliance, and the dissatisfaction degree is set to 1 for dissatisfaction periods and
0 for other times. The dissatisfaction period for the washing machine, clothes dryer, and dishwasher
is assumed in consideration of normal consumer behavior. Dissatisfaction is designed by the Kano
model, which demonstrates the impacts of customer’s needs and satisfaction. Consumer’s needs have
been set for load curtailment and load shift. In [13], the degree of comfort through the difference in
the appliance’s On/Off status before and after scheduling was defined. The dissatisfaction index was
expressed in a simple integer form set by the customer in [19]. Customer’s monthly bill target or
daily budget limit was predetermined with respect to the previously cited works for Multi-Objective
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Optimization (MOO) [20,21]. A joint scheduling model of both electric and natural gas appliances
for HEMS was proposed in [22]. The proposed model describes the dissatisfaction caused by time
shifting, power consumption reduction of appliances, and preferences for types of energy (electricity
and natural gas). Recently, an increasing number of previous studies have considered the impact of
EVs on a smart grid. A joint scheduling model that optimizes household appliances and EVs and
considers EVs as distributed generators to minimize energy from the grid and optimally uses renewable
energy was introduced in [23]. An energy management system that uses EVs to minimize the cost of
HEMS was presented in [24–26]. Peak shaving and valley filling of a power-consumption profile in a
non-residential building were performed through scheduling of EV charging and discharging [27].
This allows EV users to opt-out with minimal impact on the system. HEMS with the use of renewable
energy and technology is significantly developed. The EV charging–discharging schedule was managed
to minimize the customer’s cost by selling the electricity generated by solar energy, and considering its
impact on the grid through PV curtailment [28]. In order to maximize personal profit, when there was a
large amount of PV power generation, it was sold to the grid and induced discharge, which is thought
to deepen the duck curve of the system. Also, since the driving pattern is assumed, the dissatisfaction
based on real data is not an approach.

The rest of the paper is structured as follows: Section 2 provides a comprehensive study of the
HEMS model. Section 3 describes the simulation results with discussions. Conclusions are provided in
Section 4.

3. HEMS Model for the Residential Community

Figure 1 describes the HEMS model for the residential community. Each residential customer
has home appliances washing machine (wm), dish washer (dw), air conditioner (ac), and EV. All the
residential houses use a shared solar PV and the electricity generated is sent to the home charger when
the residential EV user requires charging. The maximum capacity that an EV user can charge with
the electricity generated from the PV is the total amount of PV divided by the number of households.
The customer can also make a profit by selling the electricity through the discharge. Furthermore,
the EV user will save the cost by discharging to the grid. Figure 2 shows an overall flowchart of HEMS
optimization considering the shared PV power, TOU tariff scheme, and setting the dissatisfaction
weight from real energy consumption data.
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Figure 2. Flowchart for the proposed HEMS model process.

4. Methodology

4.1. Mathematical Modeling

In this section, the mathematical formulations of the proposed HEMS model are shown. Firstly,
the multi-objective optimization constraints of home appliances and EV is presented. Next, the contents
of setting the customer’s dissatisfaction weight and parameters are shown. Finally, the multi-objective
optimization function is shown.

4.1.1. Shiftable Appliances

Equations (1)–(3) express the models of shiftable appliances. Equation (1) shows the optimized
power consumption of appliances i at time t. Equation (2) presents the on/off operation state of the
appliances. Shiftable appliances have a fixed operation time γ, which is running for γ hours from the
time it is started Equation (3).

Pi
t = Xi

tP
i
rated ∀i∈ {wm, dw}, ∀t ∈ T (1)

Xi
t =

{
0 ∀ i ∈ {wm, dw},∀t < Ti

work
1 ∀ i ∈ {wm, dw},∀t ∈ Ti

work
(2)

∑t+γi
−1

t
Xi

t = γi, ∀i ∈ {wm, dw}, ∀t ∈ T (3)

4.1.2. Controllable Appliance

The model of an air conditioner, which is classified as a power controllable appliance is shown in
Equations (4)–(9). In Equation (4), where θin

t+1 is the indoor temperature at time t + 1, this temperature
is calculated by outdoor temperature at time t and efficiency of appliances ηac and power consumption
Pac

t . A residential customer sets the preference temperature θin
pre f er in Equation (7). Depending on the

customer’s preference temperature, the HEMS model optimizes the power consumption level as in
Equation (8) and conducts scheduling on/off states as in Equation (6).

θin
t+1= ε·θin

t + (1− ε)·(θout
t − η

ac
·Pac

t ), ∀t ∈ T (4)

Pac
t = XtPac,rated, ∀t ∈ T (5)



Energies 2020, 13, 2852 5 of 16

Xac
t =

 0, θin
t ≤ θ

in
pre f er

1, θin
t > θin

pre f er
,∀t ∈ T (6)

θin
pre f er = 25 (7)

Pac,min
≤ Pac,rated

≤ Pac,max (8)

θin
ini = θout

t=0 (9)

4.1.3. Interruptible Appliance

The mathematical modeling of an EV, which is classified as an interruptible appliance of the
proposed HEMS model is given in Equations (10)–(19). The departure and arrival times of the EV are
kept open in all the time slots so that they can be optimized based on the customer’s pattern.

Pev
t (t) = Xev

t Pev,rated
t ,∀t ∈

[
Ta = 19, Td = 18

]
(10)

Xev
t =


1, charging state, Pev

t = Pev,rated
t ,∀t ∈

[
Ta, Td

]
0, steady state,

−1, discharging state, Pev
t = −Pev,rated

t ,∀t ∈
[
Ta, Td

] (11)

SOCt= SOCini, i f t = Ta (12)

SOCt= SOCmax, i f t = Td (13)

Xev
t = 0, i f t = Td (14)

SOCt= SOCt−1 +
ηcPc∆T

Ecap −
ηdcPdc∆T

Ecap , ∀t ∈
(
Ta, Td

)
(15)

SOCmin
≤ SOCt≤ SOCmax (16)

0 ≤ Pc
tη

c
≤ Pch,max (17)

0 ≤ Pdc
t η

dc
≤ Pdch,max (18)

Pev,rated
t = 2, 4, 6 kWh (19)

4.1.4. Setting the Dissatisfaction Weight

For the proposed HEMS model analysis, the Pecan Street data [29] consisting of energy consumption
data for 7 residential customers from Austin, Texas in 2018 were used. Determination of the on/off

states of the appliances was achieved by using only the power consumption data as provided in [30].
An analysis of the power consumption of the appliances during the weekdays of the year showed that
the metering data is extremely low on the power consumption scale of each appliance as they are ‘off’
most of the time, and hence, most of the readings are near zero. Therefore, the on/off state of the home
appliance at time t on day d is S

(
xt,d

)
, and it is set to ‘on’ when the energy consumption data at time t

on day d, xt,d is much greater than 1 standard deviation σxt,D from the mean of the whole weekdays of
D at time t,

-
xt,D as in Equation (20).

S
(
xt,d

)
=

{
1, xt,d ≥

-
xt,D + σxt,D

0, xt,d <
-
xt,D + σxt,D

(20)
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Then, the probability value at which the appliance is ‘on’ at time t, Rt, where Rt denotes the total
sum of S

(
xt,d

)
during the whole weekdays of D, which is divided by the total number of weekdays is

defined as in Equation (21).

Rt =

∑
d∈D S

(
xt,d

)
n(D)

(21)

DSFt: The dissatisfaction weight at time t can be denoted by the percentile rank given in Equation
(22), and [31]. The probability value that the appliance’s state is ‘off’ is defined as 1−Rt at time t.

DSFt =
cl + 0.5 ∗ n(1−Rt)

n(T)
× 100%, T = [0, 1, · · · , 23] (22)

In [31], where cl denotes the count of all the values less than the value of interest, that is 1−Rt is
the frequency of the value of interest and n(T) is the number of time slots in day d.

Figure 3a with normal bell-shaped curve and standard deviation value shows that percentile
rank represents the ratio of the probability of appliances use from the top 0% to the bottom 100%.
The definition of percentile rank used in this study has a lower percent value and a smaller percent
value. Figure 3b shows that 8 p.m. is the most preferred appliance usage time among all 24 periods.
Figure 3b lists DSFt values in small order, and Figure 4 below is a graph showing DSFt values by time
slot of the 7 households.
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Through the process described in Equations (20)–(22), the dissatisfaction weights of each time slot
were derived. When the dissatisfaction weight is small at time t, it means that the residential customer
has a greater probability of using the appliance at time t compared to the other time. In addition,
the energy consumption patterns by time slots appeared similarly and differently for each appliance.
It is presumed that this result is because there is no one present in the house. In this study, shiftable
and interruptible appliances are used to determine the time at which an increase or a decrease in
the customer’s dissatisfaction occurs. The results of the analysis of the dynamic changes in costs are
shown in Figure 5 and Table 1. In previous studies [13,19–22,32,33], binary or integer dissatisfaction
values were used based on the preferred appliance usage time or on/off state changes. The proposed
model reflected the patterns of actual customers with less rigidity differences in dissatisfaction over
time, and it was observed that the customers using the TOU tariff were more actively saving costs.
The proposed model is more reasonable in terms of optimal scheduling for cost saving of shiftable and
interruptible appliances. However, the degree of dissatisfaction for the power controllable appliance is
determined by indoor temperature and not by the customer’s appliance usage time.
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Table 1. Cost comparison according to the set dissatisfaction weight approach.

House Binary Optimal Cost ($/Day) Proposed Optimal Cost ($/Day)

#1 6.10 5.44
#2 6.46 5.56
#3 6.38 4.86
#4 5.95 5.42
#5 7.90 6.13
#6 6.07 5.41
#7 6.58 5.43

4.1.5. Parameters

For EV tariff is shown in Figure 6, the maximum discharging tariff was assumed is set at 130%
of the maximal charging tariff, and the minimum discharging tariff was set at 60% of the minimal
charging tariff with reference to [34].
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The parameters of the appliances are given in Table 2. It is assumed the operation duration of the
appliance is 2 h for the washing machine and 1 h for the dishwasher. The air conditioner is consumed
with a power in the range of 5 to 10 kWh depending on the preference temperature. The battery
capacity of the electric vehicle is 60 kWh, the maximum SOC of the battery is set to be 0.85, and the
minimum SOC of the battery is set to be 0.1. Charging and discharging power can be variously output
as 2, 4, and 6 kWh.

Table 2. Parameters of the appliances.

Appliances Power (kWh) Operation Durations (h) Efficiency ηi

Washing Machine 2 2 -
Dish Washer 2 1 -

Air Conditioner 5–10 - -

Appliances Capacity SOCmax SOCmin Pev,cha
t

, Pev, dch
t

ηc, ηdc

Electric Vehicle 60 kWh 0.85 0.1 2, 4, 6 kW 0.9

4.2. Multi-Objective Function

In this section, the multi-objective optimization of the proposed HEMS model is solved using the
mixed-integer linear program (MILP) algorithm using IBM ILOG studio with the CPLEX solver [35,36].
The HEMS optimization model is introduced to minimize the cost of the residential customers and
minimize the curtailment of the PV, which is jointly invested in by the residential community.

4.2.1. Multi-Objective Function

The multi-objective optimization function consists of three parts. The first optimization function
f1 is the total electricity consumption in Equation (23). If the demand of the EV charging exceeds
generation of PV, the cost paid depends on the electricity pricing structure in Equation (23a). On the
other hand, if the power generation exceeds the EV charging, the cost is calculated as in Equation (23b).

f1 =


∑
t∈T

{
πt

(
Pac

t + Pwm
t + Pdw

t

)
+ πev,cha

t

(
Pev,cha

t − PPV
t

)
−πev,dch

t Pev,dch
t

}
, i f Pev,cha

t > PPV
t (23a)∑

t∈T

{
πt

(
Pac

t + Pwm
t + Pdw

t

)
−πev,dch

t Pev,dch
t

}
, i f Pev,cha

t ≤ PPV
t (23b)

The second optimization function f2 aims to minimize the dissatisfaction of the residential
customer. XBL,i

t is the binary variable of appliance i’s state at time t, and only the dissatisfaction is
considered. That is, the scheduled state is set as a baseline from the real consumption data. So f2
is composed of the difference between the baseline (XBL,i

t ) and the scheduled state (Xopt,i
t ), and the

dissatisfaction weights for each time slot in Equation (24).

f2 =
∑

i∈{ev,wm,dw}

∑
t∈T

{∣∣∣∣XBL,i
t −Xopt,i

t

∣∣∣∣×DSFt,i

}
(24)

The third objective function is given in Equation (25). Residential customer optimizes scheduling
of EV charging to reduce PV curtailment while considering individual costs and dissatisfaction.

f3 =
∑
t∈T

∣∣∣PPV
t − Pev,c

t

∣∣∣ (25)

4.2.2. Normalization

Each of the multi-objective optimization functions has different units and different orders of
magnitude. Hence, it is necessary to normalize them such that they all have similar magnitudes [35].
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The multi-objective functions f ∗1 , f ∗2 , and f ∗3 were normalized as in Equations (26)–(28) to assume a
value between 0 and 1.

f ∗1(x) =

 f1(x) −min f1(x)
max f1(x) −min f1(x)

 (26)

f ∗2(x) =
[

f2(x) −min f2(x)
max f2(x) −min f2(x)

]
(27)

f ∗3(x) =
[

f3(x) −min f3(x)
max f3(x) −min f3(x)

]
(28)

The Multi-Objective function is as follows:

Minimize
[∣∣∣ f ∗1 ∣∣∣+ ∣∣∣ f ∗2 ∣∣∣+ ∣∣∣ f ∗3 ∣∣∣] (29)

4.2.3. Priority Method

Many solutions to the multi-objective optimization method are available, and there is no single
correct answer [37,38]. The CPLEX can automatically generate priority orders, that determine the
optimal variable point. The priority method has an order of importance for each objective function
and it simulates by changing the order for all of them.

5. Analysis of the Results

5.1. Case Results at EV Battery Capacity 36 kWh

This section is divided into three scenarios of different objective functions showing the scheduling
results by appliance type such as shiftable, interruptible, and controllable. To analyze the results
of the HEMS simulation with various patterns of data, the dissatisfaction weights of 105 residential
households were generated using a random number generation method. The average values for the
scheduling results of the households are summarized. The proposed dissatisfaction weight model
to analyze the optimal scheduling that considered the dissatisfaction of the residential customer was
applied. The scheduling that considered only the dissatisfaction using the energy consumption data
was considered as the baseline Figure 7(a1,b1,c1). This model assumes that the customer’s plan to
reduce the TOU tariff or reduce the PV curtailment is not reflected. Figure 7(a2,b2,c2) shows an
optimized scheduling result that considered cost and dissatisfaction. The results for minimizing the
PV curtailment in addition to cost and dissatisfaction can be seen in Figure 7(a3,b3,c3).
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Figure 7. (a) Simulation results of washing machine and dish washer (b) Simulation results of EV
charging/discharging power and PV curtailment, and (c) Simulation results of air conditioner and
indoor temperature.

The results of the shiftable appliance in Figure 7 show that the appliance is used even though the
DSF is high in Figue 7(a2,a3), unlike in Figure 7(a1). There was no significant change in the scheduling
difference between Figure 7(a2,a3). The interruptible appliance results show that in Figure 7(b2,b3),
the frequent discharges during the daytime are with the high discharge tariff. In the case of Figure 7(b3),
it is seen that it charges more than (b2) to minimize the PV curtailment. In the case of the power
controllable appliance as in Figure 7(c3), the average power value by time slot was low, and the average
temperature was higher than in the other cases Figure 7(c1,c2).

By comparing the results of the three approaches when the EV battery capacity is numerically
36 kWh, in case 1, the cost, dissatisfaction, and the amount of PV curtailment were US$18.77, 0.13,
and 59.48 kWh, respectively. However, when the residential customers considered cost saving in case
2, the cost was US$10.34, a decrease of US$8.43 from case 1. However, dissatisfaction increased from
0.13 to 2.61. In the scheduling results of case 3, dissatisfaction increased and PV curtailment decreased
when compared to both cases 1 and 2. The cost also decreased by US$0.89 from US$10.34 in case 2 to
US$9.45. When the battery capacity is 36 kWh, the discharge was maintained at the time of the highest
discharge tariff and the charge was increased in the rest of the time to minimize the PV curtailment.

5.2. Case Results by Various EV Battery Capacities

The results of the three cases for each EV battery capacity were analyzed in Table 3 and it was
confirmed that the cost increased again in case 3 when the capacity is 60 kWh or more. This analysis
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shows that the EV battery capacity is directly proportional to the charging time and power required.
Furthermore, as the EV battery capacity increases, the opportunity cost for the discharge increases,
and thus, a minimum incentive cost is required to minimize PV curtailment. When the capacities
of 36 and 84 kWh, in case 3 and case 2 are compared, the PV curtailment decreased by 5.6 and 6.3,
respectively. A customer with an 84 kWh battery will not try to minimize PV curtailment because
of higher cost. Therefore, a minimum incentive should be ensured, which is above the difference of
US$14.58 in case 3 and US$14.27 in case 2.

Table 3. Comparison of results by EV battery capacities for the three cases.

Case EV Battery
Capacity (kWh) Dissatisfaction Cost ($/Day) PV Curtailment

(kWh/Day)

1

36 0.13 18.77 59.48
48 0.29 19.88 58.33
60 0.50 20.47 54.92
72 0.82 21.17 52.38
84 1.23 21.71 49.01

2

36 2.61 10.34 51.99
48 2.93 11.38 50.13
60 3.50 12.05 47.01
72 3.59 13.14 44.99
84 3.64 14.27 43.12

3

36 4.24 9.45 45.69
48 4.38 10.77 42.80
60 4.01 12.15 39.92
72 3.84 13.45 37.92
84 3.72 14.58 37.51

6. Discussion and Conclusion

This study is motivated by the aforementioned research works based on a multi-objective HEMS.
The major contribution of this paper is summarized as follows:

• Multi-objective optimal scheduling considering cost and dissatisfaction by using the On/Off

pattern for each appliance as the dissatisfaction weight for each time slot.

Many previous HEMS studies have considered consumer dissatisfaction, however, the preference
time and binary index of dissatisfaction were based on assumptions. Previously, the subjective factor,
that is, the consumer’s discomfort was not expressed correctly. The weight of dissatisfaction is
determined through real power consumption data. The preference for each time slot, which is not
strictly classified as a binary index or an integer, resulted in more aggressive cost reduction.

• It is proposed to optimize scheduling of EV charging and minimizing the cost and dissatisfaction
of individuals with the aim of minimizing the curtailment of PV shared by multiple households.

The opportunity cost of discharge for each residential customer’s specific battery capacity is
estimated. An appropriate incentive range to be paid according to the capacity of the EV battery is
derived. Based on this, the system operator can induce EV charging to reduce PV curtailment.

The optimal scheduling model was proposed taking into account the customer’s dissatisfaction,
cost, and PV curtailment in this study. Here, the customer’s dissatisfaction weight was included
only with respect to the energy consumption data. In a previous study, the binary or integer
weight approach was utilized making dynamic scheduling for cost saving difficult [13,19–22,32,33].
The MILP optimization through this model brought about a more aggressive cost reduction effect
while considering the actual residential customer’s usage patterns. Also, it was proved that the plan
to use PV generation through EV charging affects the cost of the customers. By utilizing PV power
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generation to charge EV battery, it is possible to recover the investment cost of the solar community,
because power from utility was saved for EV charges during peak load periods. Besides, it helps to
mitigate the duck curve caused by the large amount of PV power generation to provide flexibility of
the power system instead of PV curtailment. The important key factor is EV battery capacities in this
study. EV charging power size is the same as 2, 4, and 6 kWh, but EV batteries have various capacities.
The EV battery capacity affects the scheduling of charging and discharging and PV curtailment. If EV
battery capacity is small (e.g., less than 60 kWh), EV owner tends to charge using PV power generation
to maintain certain SOC level. Otherwise, EV owner tends to discharge power of EV battery instead
of charging PV power generation. Therefore, we concluded that the HEMS optimization scheduling
strategy according to the EV battery capacity should also be changed. In the future, an in-depth
analysis of the results of cases 2 and 3, with respect to the TOU tariff and the appropriate selling price
of the discharge to induce EV charging in the period of high PV generation will be conducted, and the
EV TOU design will be evaluated considering incentives.
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Nomenclature

Symbol Description
HEMS Home Energy Management System
TOU tariff Time of Use tariff
EV Electric Vehicle
PV Photovoltaic
πt Electricity price at time t
πev,c

t Electric vehicle charging price at time t
πev,dc

t Electric vehicle discharging selling price at time t
Xi

t on/off status of appliance i at time t
XBL,i

t Real energy consumption data based appliance on/off states

Xopt,i
t Optimized appliance’s on/off status

Pi
t Optimal power of appliance i at time t

Ti
work Time slot in which the appliance i was worked
γi Shiftable appliance i operating time
S
(
xt,d

)
the on/off state of the home appliance at time t on day d

-
xt,D mean value of appliance energy consumption data at time t on day d
σxt,D standard deviation of appliance energy consumption data at time t on day d
Rt the probability value that the appliances is ‘on’ at time t
DSFt the dissatisfaction weight at time t
θin

t Indoor temperature
θin

pre f er Customer preferred temperature
θout

t Outdoor temperature
ε System inertia of air conditioner
ηac Efficiency of air conditioner
Pev,cha

t Electric vehicle charging power at time t
Pev,dch

t Electric vehicle discharging power at time t
SOCt State of charge of electric vehicle at time t
SOCini Initial state of charge of electric vehicle
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SOCmax Maximum state of charge of electric vehicle
SOCmin Minimum state of charge of electric vehicle
Ecap Electric vehicle battery capacity
ηc Electric vehicle charging efficiency
ηdc Electric vehicle discharging efficiency
Ta Electric vehicle arriving time
Td Electric vehicle departure time
wm Shiftable appliance—washing machine
dw Shiftable appliance—dish washer
ev Interruptible appliance—electric vehicle
ac Controllable appliance—air conditioner
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