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Abstract: The transition from traditional energy to cleaner energy sources has raised concerns
from companies and investors regarding, among other things, the impact on financial downside
risk. This article implements backtesting techniques to estimate and validate the value-at-risk (VaR)
and expected shortfall (ES) in order to compare their performance among four renewable energy
stocks and four traditional energy stocks from the WilderHill New Energy Global Innovation and
the Bloomberg World Energy for the period 2005-2016. The models used to estimate VaR and ES
are AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1), and AR(1)-APARCH(1,1), all of them under either
normal, skew-normal, Student’s t, skewed-t, Generalized Error or Skew-Generalized Error distributed
innovations. Backtesting performance is tested through traditional Kupiec and Christoffersen tests
for VaR, but also through recent backtesting ES techniques. The paper extends these tests to the
skewed-t, skew-normal and Skew-Generalized Error distributions and applies it for the first time
in traditional and renewable energy markets showing that the skewed-t and the Generalized Error
distribution are an accurate tool for risk management in those markets. Our findings have important
implications for portfolio managers and regulators in terms of capital allocation in renewable and
traditional energy stocks, mainly to reduce the impact of possible extreme loss events.

Keywords: volatility modeling; risk and portfolio modeling; forecasting; energy

1. Introduction

The demise of fossil fuels is imminent, as can be seen in the recent generation of electricity in
the United States. In April 2019, for the first time, renewable sources generated more electricity than
coal, according to Bloomberg News based on data from the Energy Information Administration [1].
Moreover, Saudi Arabia is keen to move towards clean energy development, recognizing the changing
global agenda in energy resources [2]. This climate shift is leading to concerns among regulators and
investors regarding financial downside risk. Consequently, risk quantification and management of
financial assets related to traditional and renewable energy have become increasingly important in
both academia and industry. This interest is triggered by different issues, such as the high energy
price volatility or the demand for mitigation of climate change, which encourages the intensification of
energy generation from renewable sources, among others.

In energy markets, it is known that renewable energy stocks are more volatile than traditional
energy stocks; the annual volatility between 2005 and 2016 associated with the main traditional
energy index, Bloomberg World Energy (BWEI), was 17%, while that of the main renewable energy
index, WilderHill New Energy Global Innovation (NEX), was 35%. This difference in volatility can be
explained by several factors that more aggressively affect renewable energy stocks; among them,
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weather conditions, inventory levels, geopolitical events, legislation and exchange rate movements [3].
As a result, investors participating in this market face higher risks in comparison to the traditional
energy market.

Regarding investment opportunities, the global green economy represents market capitalization
comparable to the fossil fuel sector as of December 2017, according to an FTSE Russell research [4].
Although the market share for each sector represents around 6% (USD 4 trillion), the green economy has
been growing since 2013, and it could represent 7% by 2030 based on the current trend. The potential
growth could be higher, considering that renewables (excluding hydropower) produce only 8% of
the world’s electricity, and financial innovation is helping in developing new ways of investing in
renewable energy, as stated in a report of the Economist Intelligence Unit [5]. On the other hand, there
has been a decreasing tendency in fossil fuel share since 2011. However, there is a greater role to
be played by governments in mitigating the effects of climate change. For instance [6], a Senator in
Nebraska argued that renewable energy is very expensive, and replacing traditional energy sources is
not foreseeable in the short term.

There are some other risk factors faced by investment in traditional or renewable energy. The
performance of traditional energy investment depends greatly on the behavior of oil prices, which
is conditional on the supply and demand of the commodity. Oil amounted to 46% of global energy
supply during the Arab oil embargo in 1973. In 2014 the stranded assets (fossil fuels) still dominated
the energy market, 31% for oil, 29% for coal, and 21% for natural gas, whereas the main renewable
sources (wind, solar and geothermal energy) only accounted for around 1% of the market supply.

Additionally, oil companies are under pressure by European and American shareholders who
ignore how these companies are going to deal with their business if regulation becomes more oriented
to a “cleaner” world energy market. This raises concerns for financial regulators, especially for the
current Governor of Bank of England (Mark Carney), about the financial instability potentially caused
by the energy transition, since around 80% of fossil fuel reserves could be stranded [7]. Energy markets
are becoming more volatile, and shares that were profitable in the past could return huge losses to
investors. This is the case of stock prices of E.ON and RWE (the two largest German utilities companies),
which declined by two thirds after Japan’s Fukushima nuclear disaster in 2011 [8].

For all the previously stated reasons, there is a need to assess potential losses adequately in
traditional and renewable energy financial assets. More specifically, it is necessary to gauge the market
risk posed by investments in such assets. To this end, our study implements validation tests on the
recently proposed risk measure by the Basel Committee, expected shortfall (ES), which captures the
tail risk more adequately than its predecessor, the Value-at-Risk measure. Nonetheless, the accuracy of
the risk measure depends on the distribution assumed to fit the returns of the assets.

In this context, the purpose of this study is to provide a technical approach to quantifying
market risk measures and compare its performance between traditional and renewable energy markets,
considering the financial regulation changes by the BCBS combined with new ES backtesting techniques
proposed in the literature. The dataset is composed of four traditional energy stocks, Epistar, Kingspan,
Boralex, Nibe, and four traditional energy stocks, Exxon Mobil, Chevron, Total S.A., Schlumberger, the
period is from January 2005 to December 2016, for a total of 2901 prices and 2900 log-returns.

Furthermore, we extend the analysis to the skew-normal, skewed-t, Generalized Error and
Skew-Generalized Error distributions (GED and SGED henceforth, respectively) under a comprehensive
analysis of AR-GARCH/EGARCH/APARCH processes to filter the returns of the analyzed stocks
over the period 2005–2016. Our results indicate that the skewed-t and the SGED are the probability
distributions that perform best in backtesting when the AR(1)-GARCH(1,1) model is used. In general,
there are more VaR violations with renewable energy stocks than with traditional energy stocks;
however, renewable energy stocks perform better in ES backtesting than traditional energy stocks.
All this reveals the skewed-t and the SGED to be very accurate tools for quantifying ES and implementing
risk management policies in energy markets. In terms of ES, the skew-t has better results in the
traditional energy sector, and the SGED performs better in the renewable energy sector.
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The remainder of this paper is structured as follows. Section 2 provides a literature review in risk
quantification. Section 3 reviews the VaR and ES methodologies, as well as the AR-GARCH models.
Section 4 presents the data. Section 5 shows an application of VaR and ES backtesting to traditional
and renewable energy stocks and the results of the application, whereas Section 6 presents a discussion
in light of the new regulation. Lastly, Section 7 summarizes the conclusions.

2. Literature Review: Risk Quantification

This study applies recent ES tests proposed by Acerbi and Székely [9,10] and extends these tests
to the skewed Student’s t (skewed-t hereafter) and SGED distributions, which are flexible distributions
with good performance for capturing risk in financial markets. We introduce this approach to measuring
risk in the renewable energy market and present a comparison in terms of risk assessment with the
traditional energy market. The paper aims to provide adequate tools for investors, portfolio and risk
managers, and regulators to mitigate the negative impact of several risk factors on investments in
traditional and renewable energy stocks.

Risk in energy markets has traditionally been quantified through Value-at-Risk (VaR) [11,12],
which can be defined as the maximum expected loss at a given confidence level and time horizon.
Statistically, VaR corresponds to a quantile of the asset return distribution. Despite its common use,
this measure does not meet the ‘subadditivity’ property or diversification criteria, which means that it
is not consistent with portfolio diversification, i.e., the risk of a diversified portfolio may be higher
than that incurred independently by its components [13]. Additionally, it is argued that VaR is unable
to adequately capture fat-tailed risk and thus performed poorly during the recent financial crisis.
Consequently, in 2013, the Basel Committee on Banking Supervision (BCBS) decided to replace VaR
at the 1% significance level with ES also known as Tail VaR (TVaR) or Conditional VaR (CVaR), at a
2.5% significance level as the appropriate measure to estimate the regulatory capital under Basel III.
ES, defined as the expected loss given that losses have exceeded VaR, is a coherent risk measure [14].
This implies that it not only has better mathematical properties than VaR, but that it also captures
the extreme loss events that impact the price of traditional and renewable energy stocks in periods
of high instability. However, despite these improvements, ES has not been fully accepted due to
criticisms regarding its implementation; these are mainly linked to the lack of ‘elicitability’ [15] and
its implications for backtesting. The latter refers to the process of validating the estimates of the
risk measure by verifying whether the realized losses, observed ex post, are in line with the ex-ante
estimates or forecasts. Research, see, e.g., Acerbi and Szekely [9], Constanzino and Curran [16],
Du and Escanciano [17], Fissler and Ziegel [18] and Fissler et al. [19] has demonstrated that elicitability
affects the risk measure selection, but not its validation; therefore, backtesting techniques for ES can
be performed.

Recent works have assessed expected shortfall in financial markets [20,21], but also in the energy
field. For instance, Ref. [22] applied VaR and ES on energy markets, and the author recommended
tougher guidelines for the proposal of Basel III; Ref. [23] also employed these risk measures for hedging
comparison using future contracts. On the other hand, for systemic risk, marginal and component
ES have been estimated to find that Energy and Industrial sectors are the main risk contributors in
the Chinese stock markets [24]. Chinese energy stocks have also been examined for diversification
purposes in [25]. The authors found that commodity futures could help to reduce the expected
shortfall of the diversified portfolios. Expected shortfall or expected shortage was calculated in food,
energy, water and environmental security worldwide data by [26]. Other authors [27] have proposed a
risk-averse two-stage stochastic mixed-integer optimization model with Conditional Value-at-Risk or
ES as a risk measure for power generation capacity expansion, while Ref. [28] applied the financial risk
measures but in an energy security context for better understanding of energy accident risks. In related
applications, Ref. [29] employed Bayesian CVaR super-quantile regression on the energy price dataset,
whereas Ref. [30] used ES and VaR as risk measures in a real options context.
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3. Materials and Methods

This section provides the definitions of VaR and ES with their respective closed expressions
according to three probability density functions (pdfs): normal, skew-normal, Student’s t, skewed-t,
GED and SGED. Subsequently, the complete VaR/ES measure for different mean-variance models is
defined. Finally, the three tests proposed by Acerbi and Székely [9,10] for ES backtesting are presented.

3.1. Dynamics of VaR/ES with Mean and Variance Models

It is known that daily financial returns exhibit characteristics of leptokurtosis (fat-tailed risk),
skewness, clustering, and persistence in the conditional volatility, in addition to long memory in
stochastic shocks [31–36], among others. These returns have a predictable component in their
conditional mean, which has traditionally been modeled with ARMA structures; in this case, the
AR(1) model is used in accordance with most financial literature. The other standard features have
traditionally been captured by different conditional volatility models, among them we chose the
GARCH [37], EGARCH [38] and APARCH [39] models; the latter two can capture asymmetric effects
on conditional volatility (the so-called ‘leverage effect’, which involves a higher severity of negative
returns). From an empirical viewpoint, the combination of AR with these different GARCH models
was selected according to their performance and accuracy criteria (e.g., AIC or BIC). The formal
representation of the models for the conditional mean and the variance are:

AR(1)
µt = ϕ+ φµt−1 + εt,

(1)

where −1 < φ < 1 and ϕ > 0.
GARCH(1, 1)

σ2
t = ω+ αε2

t−1 + βσ2
t−1,

(2)

where α > 0, β > 0, α+ β < 1 and ω > 0.

EGARCH(1, 1)
log

(
σ2

t

)
= ω+ γ(|Zt−1| −E|Zt−1|) + αZt−1 + β log

(
σ2

t−1

)
,

(3)

where ω > 0 and γ ∈ R.
APARCH(1, 1)

σδt = ω+ α(|εt−1| − γεt−1)
δ + βσδt−1,

(4)

where δ < 0 and −1 < γ < 1.
Standardized errors are modeled according to a certain parametric distribution,

Zt =
εt

σt
, ∼ iid Fθ(Zt), (5)

where Zt represents independent and identically distributed (iid) innovations. The normal (θ =

(µ = 0, σ = 1)), the skew-normal (θ = (µ = 0, σ = 1, ξ)), Student’s t (θ = ν), skewed-t (θ = (ν,λ)),
GED (θ = η) and SGED (θ = (η, ζ)) distributions are employed to characterize the innovations of
GARCH models. Where ξ stands for the skewness parameter in the skew-normal, ν stands for the
degrees of freedom in Student’s t, λ stands for skewness parameter in the skewed-t, η stands for the
shape parameter in GED, and ζ stands for the skew parameter in SGED.

In the empirical application, we estimate the two risk measures with a time horizon of one day,
ÊSt+1, 1−α and V̂aRt+1, 1−α, which are subject to the information available up to time t (Ft), which
comprises a 500-day rolling window. The parameters of the pdfs associated with the innovations Zt

and the AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1) and AR(1)-APARCH(1,1) model parameters are
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jointly estimated through maximum likelihood (ML) method and used to estimate the dynamic VaR
and ES as follows:

V̂aRt+1,1−α = µ̂t+1 + σ̂t+1VaR1−α(Zt+1), (6)

ÊSt+1, 1−α = µ̂t+1 + σ̂t+1ES1−α(Zt+1), (7)

where VaR1−α(Zt+1) and ES1−α(Zt+1) are computed according to Equations (8) and (9), respectively,
depending on the distribution function.

3.2. Risk Measures under Different Distributions

Given the innovations, Zt (∀ t = 1 . . .T) with a cumulative distribution function (cdf) FZ, the
VaR1−α(Zt), and ES1−α(Zt) can be defined as:

VaR1−α(Z) = in f
{
z ∈ R : FZ(z) ≥ 1− α

}
, (8)

ES1−α(Z) =
1
α

∫ α

0
VaR1−q(Z)dq, (9)

where α represents the significance level, which conforms to the regulation is set at 1% and 2.5% for
the VaR and ES, respectively. According to this notation, VaR and ES are quantified in the left tail of
the innovations (1% and 2.5%), and it is denoted VaR at 99% and ES at 97.5%. Equation (8) can be
expressed as:

VaR1−α(Z) = F−1
Z (α), (10)

where F−1
Z stands for the quantile function, which is represented by Φ−1, Φ−1

ξ , t−1
ν , st−1

ν,λ, g−1
η and g−1

η,ζ
for the cases of the normal, skew-normal, Student’s t, skewed-t, GED and SGED, respectively. Based
on Equation (9), and solving the integral, ES under a normal distribution is:

ES1−α(Z) = −
φ
(
Φ−1(α)

)
α

, (11)

where φ represents the pdf of the standard normal distribution. For the skew-normal distribution,
ES is:

ES1−α(Z) = es1−α(ξ), (12)

where es1−α(ξ) is estimated through numerical integration, using Equation (9) and the pdf of the
skew-normal distribution following Fernández and Steel [40] in the general method to transform a
unimodal symmetric distribution into a skew-symmetric distribution:

sn(z, ξ) =


−

2
λ+ 1

λ

φ (ξz) f or z < 0,
2

λ+ 1
λ

φ
(

z
ξ

)
f or z ≥ 0 ,

(13)

where ξ is the skewness parameter (ξ ∈ (0,∞)), and φ(z) denotes the standard normal pdf.
For the Student’s t distribution, the ES [41] is expressed as:

ES1−α(Z) = −
gν

(
t−1
ν (α)

)
α

ν+
(
t−1
ν (α)

)2

ν− 1

, (14)

where ν represents the degrees of freedom and tν and gν denote the Student’s t cdf and pdf, respectively.
For the skewed-t distribution, ES is:

ES1−α(Z) = es1−α(v,λ), (15)
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where es1−α(v,λ) is estimated through numerical integration, using Equation (9) and the pdf of the
skewed-t distribution proposed by Fernández and Steel [40]:

st(z,λ) =


−

2
λ+ 1

λ

t (λz) f or z < 0,
2

λ+ 1
λ

t
(

z
λ

)
f or z ≥ 0 ,

(16)

where λ is the skewness parameter (λ ∈ (0,∞)), and t(z) denotes the Student’s t pdf. For GED, the
ES is:

ES1−α(Z) = es1−α(η), (17)

where es1−α(η) is estimated by numerical integration using Equations (9) and (18). The GED’s pdf as
introduced in [38] is:

g(z) =
ηe[−(

1
2 )|

z
κ |
η]

κ2(1+
1
η )Γ

(
1
η

) , (18)

where κ =
[
2(−2/η)Γ(1/η)/Γ(3/η)

]1/2
, and η stands for the shape parameter (η ∈ (0,∞)). For SGED,

the ES is:
ES1−α(Z) = es1−α(η, ζ), (19)

where es1−α(η, ζ) is estimated throughout numerical integration using Equations (9) and (20), where
Equation (20) stands for the SGED’s pdf:

sg(η, ζ) =


−

2
ζ+ 1

ζ

g (ζz) f or z < 0,

2
ζ+ 1

ζ

g
(

z
ζ

)
f or z ≥ 0 ,

(20)

where ζ is the skewness parameter (ζ ∈ (0,∞)), and g(z) represents the GED’s pdf.

3.3. VaR Backtesting

The literature on VaR backtesting is broad; this article uses the tests by Kupiec [42] and the
independence test of Christoffersen [43]. The first test is based on the observation of the VaR estimated
with a significance level α, and identifying the occasions when realized losses exceed the VaR during
the backtesting period, which are called VaR exceptions. To validate the risk measure, the sequence of
exceptions should follow an iid Bernoulli process with probability α(1− α). This binomial test for the
exceptions is known as an unconditional coverage test. The second test examines the independence of
the exceptions. The period of both VaR and ES backtesting in the empirical application is T = 2400,
and the rolling window size is 500 observations.

3.4. ES Backtesting

Three tests have been proposed for ES backtesting; two of them were presented in [9], and the
other was introduced in [10]. To the best of our knowledge, this is the first application of these three
tests on traditional and renewable energy markets. To implement the tests, we assume that the model
performance derives from a ‘true but unknown’ conditional distribution function Ft, which is unknown,
but can be estimated by a ‘predictive’ probability distribution Pt. In our case, Pt represents the normal,
skew-normal, Student’s t, and skewed-t distributions. Following the same notation of the authors, the
risk measure is denoted by VaRF

1−α and ESF
1−α when the variable X is distributed according to F. It is

assumed that the return distribution is continuous and strictly increasing. Therefore, the ES can be
expressed as:

ES1−α(Xt) = −E[Xt|Xt+VaR1−α,t < 0]. (21)
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For all three tests, 97.5%-VaR backtest is performed first, after which the exceptions are used to
build the ES backtests. The null hypothesis assumes that the distribution employed to construct the
risk measures is correct, and thus the alternative hypothesis implies risk misspecification.

3.4.1. Z1 Test

The first test proposed by Acerbi and Székely [9] is based on the conditional expectation of the
exceptions with VaR at 97.5%. From Equation (17), it follows that

E
[

Xt

ES1−α,t
+ 1

∣∣∣∣∣∣ Xt + VaR1−α,t < 0
]
= 0, (22)

Then, the Z1 statistic is defined as

Z1

(⇀
X
)
=

∑T

t=1

XtIt
ES1−α,t

NT
+ 1, (23)

where It is an indicator function that takes the value 1 if Xt + VaR1−α,t < 0, and is otherwise equal to 0.
Nt =

∑T
t=1 It is the sum of the exceptions at VaR1−α. T is the backtesting period, which is 2400 in our

empirical application. The null and alternative hypotheses being

H0 : P[α]
t = F[α]

t , ∀ t, (24)

H1 : ESF
1−α ≥ ES1−α,t, ∀ t; and greater for some t,

VaRF
1−α = VaR1−α,t, ∀ t.

(25)

In test Z1, null hypothesis H0 indicates that the ‘predictive’ probability distribution Pt, is correct,
since it complies with the characteristics of the Ft distribution to characterize financial returns. On the
contrary, the alternative hypothesis H1 indicates an underestimation of the ES, including when the VaR
estimation is correct.

The Z1 statistic reveals that ES1−α is an appropriate risk measure when the result of the estimate
is close to zero, more specifically, EH0 [Z1| NT > 0] = 0. Conversely, when EH1 [Z1| NT > 0] is negative,
it implies that ES1−α is not a suitable risk measure. Algorithm 1, described in Section 3.4.4, is used
to find the critical values of the three backtesting ES tests. These values are tabulated in Table 1, for
different values of the parameters of the normal, skew-normal, student’s t, skewed-t, GED and SGED
distributions, considering a backtesting period T = 2400 and a 5% confidence level. The critical value
at 5% for the normal, skew-normal, GED and SGED distributions is −0.03; for the Student’s t and
skewed-t distributions, it is −0.05. The critical values are sensitive to the size T, as shown in [44], and
also to the degrees of freedom parameter and shape parameter, but not to the skewness parameter
of the skew-normal, skewed-t distributions and SGED. As T increases, the critical value of the test
increases until it stabilizes close to zero.

3.4.2. Z2 Test

ES can be expressed as the following unconditional expectation:

ES1−α,t = E
[XtIt

α

]
. (26)

The Z2 statistic is defined as

Z2

(⇀
X
)
=

∑T

t=1

XtIt

TαES1−α,t
+ 1, (27)



Energies 2020, 13, 2805 8 of 42

where the null and alternative hypotheses are:

H0 : P[α]
t = F[α]

t ,∀ t, (28)

H1 : ESF
α ≥ ESα,t, ∀ t; and greater for some t,

VaRF
α ≥ VaRα,t, ∀ t.

(29)

In test Z2, null hypothesis H0 indicates that the ‘predictive’ probability distribution Pt, is correct.
On the contrary, the alternative hypothesis, H1, indicates an underestimation of the VaR and the ES.

The Z2 test indicates that ES1−α is an appropriate risk measure when the result of the estimate
is close to zero, i.e., EH0 [Z2| NT > 0] = 0. On the contrary, ES1−α is not an appropriate risk measure
when EH1 [Z2| NT > 0] < 0, since losses are underestimated. This test penalizes the VaR1−α due to the
number of exceptions; additionally, the alternative hypothesis rejects VaR1−α and ES1−α. The critical
value at 5% for the normal, skew-normal, GED and SGED distribution is −0.21; for the Student’s t and
skewed-t distributions, it is −0.22 (see Table 1).

3.4.3. ZES Test

Tests Z1 and Z2 depend not only on the ES1−α results, but also on the values of VaR1−α because the
latter needs to be backtested previously. Figure 1 illustrates how the critical value of the Z2 (ordinate
axis) at 5% increases as the value of VaR1−α (abscissa axis) does. This is crucial, because it increases
the possibility of committing a type II error P

(
accept H0

∣∣∣ reject H0
)
. If the type II error occurs, a ES1−α

risk measure would be accepted, which is not suitable, and would leave the investment exposed to
market risk.
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Given the above feature, Acerbi and Székely [10] proposed the ZES test, which is not as sensitive
to possible VaR values (see dotted dash line in Figure 1); therefore, this test is expected to be more
powerful. From Equation (15) and following [14], ES1−α is equivalent to:

ES1−α,t = VaR1−α,t −
1
α

E[(Xt + VaR1−α,t)It]. (30)

Re-organizing the terms and performing the operations, the ZES test becomes:

ZES

(⇀
X
)
=

T∑
t=1

α(ES1−α −VaR1−α) + (Xt + VaR1−α)It

TαES1−α,t
. (31)

The null and alternative hypotheses are:

H0 : P[α]
t = F[α]

t , for all t, (32)

H1 : ESF
1−α ≥ ES1−α,t, ∀ t and lesser for some t,

VaR1−α,t ∼ VaRF
1−α,t

(33)

The ZES test, just like the other two tests, indicates that ES1−α is a good risk measure when
EH0 [ZES] = 0; and when EH1 [ZES] < 0, it indicates that ES1−α is not a good risk measure. In this test,
the alternative hypothesis indicates that ES1−α is rejected, regardless of the value of VaR1−α. The
critical value at 5% for the normal and skew-normal distributions is −0.20, for Student’s t and skewed-t
distributions, it is −0.27, while for GED and SGED, it is −0.22 (see Table 1). The next subsection
explains the algorithm used to delimit the rejection area of Z1, Z2, and ZES tests, which is based on the
computation of the critical values at 5% under the normal, skew-normal, Student’s t, skewed-t, GED
and SGED distributions.

3.4.4. Algorithm 1: Critical Values for ES Backtesting under Student’s t Distributions

The critical values of the Z1, Z2, and ZES tests are determined by generating random numbers from
the normal, skew-normal, Student’s t, skewed-t, GED and SGED distributions. In Panel A of Table 1, the
degrees of freedom and coefficient of skewness parameters are (ξ,λ) = {0.6, 0.8, 0.9, 1, 1.1, 1.2}, and
v = {3, 5, 7, 10}, respectively. In Panel B, the skewness parameters are (ζ) = {0.6, 0.8, 0.9, 1, 1.1, 1.2},
and the shape parameters are η = {1, 1.2, 1.4, 1.6, 1.8}. We choose the parameters according to the
model results in Tables A2–A4 for traditional and renewable energy markets.

Algorithm 1

1. Simulation of Xi
t under normal, skew-normal, Student’s t, skewed -t, GED and SGED distributions, and

M = 10,000 times. The i value indicates the test (i = 1, 2, ES).

2. Calculation of the Zi = Z(
→

X
i
) statistics, using the data simulated in step 1.

3. Estimation of critical values (cv) at 5%, Zcv = F−1
5%(Zi).

4. Resampling the critical values for the different skewness, degrees of freedom and shape parameters.

Table 1 shows the results of critical values.
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Table 1. Selection of critical values for Z1, Z2 y ZES tests, and different distributions. T = 2400 and significance level of 5%.

Panel A: Normal, Skew-Normal, t-Student and Skew t Panel B: GED and SGED

Test Z1 Skew Parameter (λ,ξ) Skew Parameter (ζ)

Degrees of freedom (ν) 0.6 0.8 0.9 1 1.1 1.2 Shape parameter (η) 0.6 0.8 0.9 1 1.1 1.2
3 −0.13 −0.13 −0.14 −0.14 −0.14 −0.14 1 −0.06 −0.06 −0.06 −0.06 −0.05 −0.05
5 −0.07 −0.07 −0.07 −0.08 −0.07 −0.08 1.2 −0.05 −0.05 −0.05 −0.05 −0.05 −0.05
7 −0.05 −0.06 −0.06 −0.06 −0.06 −0.06 1.4 −0.05 −0.05 −0.04 −0.04 −0.04 −0.04
10 −0.05 −0.05 −0.05 −0.05 −0.05 −0.05 1.6 −0.04 −0.04 −0.04 −0.04 −0.04 −0.04

Skew−Normal −0.03 −0.03 −0.03 −0.03 −0.03 −0.03 1.8 −0.04 −0.04 −0.04 −0.03 −0.03 −0.03

Test Z2 Skew Parameter (λ,ξ) Skew Parameter (ζ)

Degrees of freedom (ν) 0.6 0.8 0.9 1 1.1 1.2 Shape parameter (η) 0.6 0.8 0.9 1 1.1 1.2

3 −0.25 −0.26 −0.26 −0.26 −0.26 −0.26 1 −0.22 −0.22 −0.22 −0.22 −0.22 −0.22
5 −0.22 −0.23 −0.22 −0.23 −0.23 −0.22 1.2 −0.22 −0.22 −0.22 −0.22 −0.21 −0.22
7 −0.22 −0.21 −0.22 −0.22 −0.23 −0.22 1.4 −0.22 −0.22 −0.22 −0.22 −0.22 −0.21
10 −0.22 −0.22 −0.22 −0.22 −0.22 −0.22 1.6 −0.22 −0.22 −0.21 −0.22 −0.22 −0.22

Skew−Normal −0.21 −0.21 −0.21 −0.21 −0.21 −0.21 1.8 −0.22 −0.22 −0.22 −0.21 −0.22 −0.22

Test ZES Skew Parameter (λ,ξ) Skew Parameter (ζ)

Degrees of freedom (ν) 0.6 0.8 0.9 1 1.1 1.2 Shape parameter (η) 0.6 0.8 0.9 1 1.1 1.2

3 −0.50 −0.51 −0.52 −0.52 −0.52 −0.52 1 −0.34 −0.33 −0.33 −0.32 −0.31 −0.30
5 −0.34 −0.35 −0.35 −0.36 −0.36 −0.37 1.2 −0.31 −0.30 −0.29 −0.29 −0.28 −0.27
7 −0.29 −0.30 −0.30 −0.30 −0.31 −0.31 1.4 −0.28 −0.28 −0.27 −0.26 −0.25 −0.24
10 −0.25 −0.26 −0.27 −0.27 −0.27 −0.28 1.6 −0.25 −0.25 −0.25 −0.24 −0.23 −0.22

Skew−Normal −0.19 −0.20 −0.20 −0.20 −0.21 −0.21 1.8 −0.25 −0.23 −0.23 −0.22 −0.21 −0.21

Z1 and Z2 tests are proposed by Acerbi and Székely [9], while ZES is proposed in Acerbi and Székely [10]. Skew-normal, Skewed-t and SGED distributions collapse to standard normal,
Student’s t and GED distribution, respectively, when the skew parameter is equal to 1.
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If Algorithm 1 is applied with T = 2400, it is found that the mean of the Z1 test with a skewed-t
distribution is −0.000318, and the confidence interval at 95% is [−0.05868; 0.05199]. With the Z2 test, the
mean is 0.001611, and the confidence interval at 95% is [−0.25791; 0.24852]. With the ZES test, the mean
is −0.203813, and the confidence interval at 95% is [−0.28459; −0.13449]. For the SGED, the mean of the
Z1 test is −0.000082, and the confidence interval at 95% is [−0.04253; 0.03816]. For the Z2 test, the mean
is −0.001122, and the confidence interval at 95% is [−0.27060; 0.24579]. With the ZES test, the mean
is −0.168741, and the confidence interval at 95% is [−0.23137; −0.11399]. The critical values do not
vary consistently over skew-t and SGED distributions. Figure 2 shows these results and the empirical
distributions of the three tests under skew-t, and also identifies in blue the critical value at 5%.
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Figure 2. Critical values tests for skewed-t distribution.

4. Data

The dataset consists of the prices of four renewable energy stocks from WilderHill New Energy
Global Innovation (NEX), and four traditional energy stocks from the Bloomberg World Energy index
(BWEI). Appendix A gathers detailed information on the stocks. The prices are collected on a daily
frequency basis from January 2005 to December 2016, for a total of 2900 observations. The logarithmic
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returns are calculated as rt = 100 log(Vt/Vt−1), where Vt represents the price of each share at a time t.
The units of the variables are logarithmic returns in decimals.

Table 2 displays the descriptive statistics of the data. The typical characteristics of the daily
returns are featured, such as mean reversion, positive excess kurtosis, and non-zero skewness. The
average annual volatility of renewable energy stocks is 41%, while that of the traditional energy stocks
is 19%. Renewable energy stocks have an average excess kurtosis of 10, while that of the traditional
energy stocks is 13. The high kurtosis values imply that the empirical distributions of returns exhibit
extreme values. The renewable energy stocks Epistar, Kingspan, and Nibe and the traditional energy
stock Schlumberger have negative coefficients of skewness; this means that in these stocks, negative
returns persist more than positive returns. This finding represents evidence supporting the fact that
the analyzed renewable energy stocks are riskier than traditional energy stocks. These stylized facts
are illustrated in Figures A1 and A2 (see Appendix B), which depicts prices and log-returns of different
energy stocks.

Table 2. Descriptive statistics of renewable and traditional energy stocks.

Total Period (January 2005–December 2016)

Stock Type Mean Median Std. Dev. Excess Kurtosis Skewness Min Max Obs

Epistar Renewable −0.0001 0.0007 0.030 (47.62%) 3.494 −0.014 −0.109 0.098 2900
Kingspan Renewable 0.0003 0.0008 0.027 (42.86%) 11.997 −0.546 −0.254 0.179 2900
Boralex Renewable 0.0004 0.0004 0.023 (36.51%) 13.677 0.062 −0.195 0.220 2900

Nibe Renewable 0.0005 0.0002 0.024 (38.10%) 12.231 −0.119 −0.255 0.224 2900
Exxon Mobil Traditional 0.0002 0.0003 0.016 (25.40%) 16.283 0.028 −0.150 0.159 2900

Chevron Traditional 0.0003 0.0008 0.017 (26.99%) 15.495 0.086 −0.133 0.189 2900
Total S.A. Traditional 0.0000 0.0004 0.019 (30.16%) 10.130 0.184 −0.113 0.162 2900

Schlumberger Traditional 0.0003 0.0002 0.023 (36.51%) 10.806 −0.533 −0.203 0.139 2900

Annual volatility is presented in parentheses.

5. Empirical Results

5.1. Conditional Mean and Variance Models in Sample Estimations

The AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1) and AR(1)-APARCH(1,1) models are used to
standardize the returns with the conditional mean and conditional variance. The AR and GARCH
orders were selected according to the significance of the coefficients, validation of the assumptions of
each model, and information criteria. Each model is estimated jointly by ML method. Tables A2–A4
(see Appendix B) gather the coefficients associated with each model for the six distributions:
normal, skew-normal, Student’s t, skewed-t, GED and SGED. These tables also display the
estimates of the conditional mean-variance models, either AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1)
or AR(1)-APARCH(1,1). In all cases, the coefficients associated with the AR(1) (φ) and GARCH(1,1)
(α and β) processes are significant, both in traditional and renewable energy stocks. Similarly, the
results of the coefficients of the skewness (ξ) of the skew-normal distribution, the degrees of freedom
for the Student’s t distributions (v), the skewness parameter of the skewed-t distributions (λ), and
the shape parameter (η) from GED, and the skewness parameter from SGED (ζ), are consistently
significant. For the EGARCH model, the parameter that represents the asymmetry of stochastic shocks
in the conditional volatility (γ) is positive and significant in all cases. In the APARCH model, the
parameter that also represents the asymmetric effects of the stochastic shocks on conditional volatility
is significant in all cases, and it is even higher than 1 for the renewable energy stocks Epistar and
Boralex, and the traditional energy stocks Exxon, Chevron and Schlumberger.

Table A5 (see Appendix B) shows the results of the two-sample Kolmogorov-Smirnov test, where
the null hypothesis indicates that standardized returns and standardized residuals for the models
AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1), AR(1)-APARCH(1,1) with the six distributions were drawn
from the same continuous distribution. In addition to the estimate of the skewness parameters
and excess kurtosis in the standardized residuals of the AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1),
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AR(1)-APARCH(1,1) models, each fitted with normal, skew-normal, Student’s t, skewed-t, GED and
SGED distributions. In the two-sample Kolmogorov-Smirnov test, the null hypothesis, is rejected
for all stocks and models, except for Epistar, from the renewable energy market. Nonetheless, the
best results were achieved with the skew-t and GED distributions in the AR(1)-EGARCH(1,1) model.
In all models, the kurtosis coefficients are greater than three. Moreover, in the AR(1)-GARCH(1,1)
model, all the skewness coefficients are negative, except that of the traditional energy stock Nibe,
which is positive. In the AR(1)-EGARCH(1,1) model under the Student’s t, skewed-t, GED and SGED
distributions, three renewable energy stocks present positive skewness coefficients: Epistar, Kingspan
and Nibe. For the remaining stocks, the skewness coefficients are negative. In the AR(1)-APARCH(1,1)
model under the Student’s t and skewed-t distributions, two renewable energy stocks have positive
skewness coefficients: Kingspan and Nibe. For the remaining stocks, the skewness coefficients are
negative. The kurtosis coefficient is consistently lower for the GED and SGED distributions in the
AR(1)-APARCH(1,1) model. In summary, in all three models with the three innovation distributions,
the standardized residuals still exhibit skewness and kurtosis after filtering the returns. Figure 3
shows the standardized returns and standardized residuals of the AR(1)-GARCH(1,1) model, under
the skew-normal, skew-t and SGED distributions.
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Figure 3. Epistar’s standardized returns and standardized residuals of the AR(1)-GARCH(1,1) model
under the skew-normal, skew-t and SGED distributions.

Table A6 (see Appendix B) shows the Ljung-Box test results to detect autocorrelation of the
standardized residuals from the AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1), AR(1)-APARCH(1,1) models,
with the different innovation distributions. Considering no seasonal effects in the daily returns included
in the sample, it is suggested the number of lags m = ln(T) [45] provides better power performance.
Accordingly, we choose m = ln(2900) ≈ 8. In addition, we added the twelfth and twentieth lags. There
is no autocorrelation in any of the lags. This indicates that the proposed AR models are suitable for
modeling renewable and traditional energy stock returns.

Table A7 (see Appendix B) shows the Ljung-Box test results to detect autocorrelation of the squared
standardized residuals from the AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1), AR(1)-APARCH(1,1) models
with different innovation distributions. The Kingspan stock shows significant autocorrelation in the
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first five lags. The Boralex stock, from the renewable sector, evidences autocorrelation until the fifth
lag; nonetheless, there is no evidence of autocorrelation for the AR(1)-GARCH(1,1) under the student’s
t and skew-t distribution. The Chevron stock displays significant autocorrelation for lags in the orders
two, three and four in the AR(1)-GARCH(1,1) model under all distributions; nevertheless, there is
no statistical evidence of autocorrelation under all distributions for the AR(1)-EGARCH(1,1) and
AR(1)-APARCH(1,1) models. The remaining stocks work well for all the models and distributions.

5.2. Backtesting of 99%-VaR

The results of the backtesting for 99%-VaR are presented in Table 3, including, for all the models
and stocks, the observed and expected number of violations as well as the Kupiec and independence
tests. Model performance is considered accurate if it simultaneously rejects the null hypothesis in
both tests.

In the AR(1)-GARCH(1,1) model, the normal distribution does not perform accurately in any case;
however, the renewable energy stock Nibe exceeds the Kupiec test. The model under the skew-normal
only works well for Chevron. As for the Student’s t distribution, model performance is found to be
accurate for four stocks: Epistar and Boralex for renewable energy and Total S.A. and Schlumberger
for traditional energy. The model under skewed-t distribution performs well in all cases except with
two traditional energy stocks—Chevron and Total S.A.—which do not reject the null hypothesis in the
independence test. The null hypothesis is not rejected for any of the stocks in either test, except for
Exxon Mobil and Chevron, from the traditional energy sector for the GED distribution. The model for
the SGED distribution works well in all cases, except for Exxon Mobil.

For the AR(1)-EGARCH(1,1) model, the normal and skew-normal distributions are not appropriate
in any case; however, as in the previous model for the normal, the renewable energy stock Nibe does
not reject the null hypothesis in the Kupiec test. Regarding the Student’s t distribution, the model only
works well in two cases, with the renewable energy stock Boralex and the traditional energy stock
Schlumberger. The model under the skewed-t distribution performs accurately in four cases: renewable
energy stock Boralex, and traditional energy stocks Exxon Mobil, Total S.A., and Schlumberger. For
the GED distribution case, the null hypothesis is not rejected for all of the stocks in either of the tests,
except for Exxon Mobil, Chevron and Total S.A. from the traditional energy industry. On the other
hand, the null hypothesis is rejected for Epistar, Exxon Mobil and Chevron for the SGED distribution.

As far as the AR(1)-APARCH(1,1) model is concerned, under normal and skew-normal
distributions, only the renewable energy stock Nibe performs well. Besides, the Student’s t distribution
behaves adequately in three cases: Kingspan and Nibe for renewable energy and Schlumberger for
traditional energy. The skewed-t model, however, presents adequate performance in six cases, two
from renewable energy stocks (Kingspan and Boralex) and for all the four traditional energy stocks.
For the GED and SGED distributions, both tests perform well in all cases, except for Exxon Mobil,
Chevron and Total S.A. from the traditional energy sector.

5.3. Backtesting of 97.5%-VaR

Backtesting analyses for VaR are extended in Table 4 by considering 97.5%-VaR.
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Table 3. 99%-VaR backtesting. Expected violations (EV) = 24.

AR(1)-GARCH(1,1)

Normal Skew-Normal t-Student Skew-t GED SGED

v Kupiec
Test

Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test

Epistar 36 4.57
(0.03)

4.92
(0.09) 36 5.25

(0.02)
5.58

(0.06) 24 0.02
(0.89)

1.45
(0.48) 27 0.21

(0.65)
1.28

(0.53) 25 0.04
(0.84)

1.30
(0.52) 28 0.64

(0.42)
1.56

(0.46)

Kingspan 39 7.10
(0.01)

9.14
(0.01) 44 13.51

(0.00)
14.82
(0.00) 20 0.97

(0.32)
7.70

(0.02) 27 0.21
(0.65)

4.68
(0.10) 25 0.04

(0.84)
4.97

(0.08) 24 0.00
(1.00)

5.23
(0.07)

Boralex 43 11.20
(0.00)

12.70
(0.00) 48 18.79

(0.00)
19.69
(0.00) 23 0.12

(0.73)
1.65

(0.48) 26 0.07
(0.80)

1.25
(0.54) 24 0.00

(1.00)
1.38

(0.50) 27 0.36
(0.55)

1.39
(0.50)

Nibe 31 1.50
(0.22)

5.00
(0.08) 38 7.01

(0.01)
9.12

(0.01) 17 2.73
(0.10)

5.35
(0.07) 27 0.21

(0.65)
4.68

(0.10) 21 0.40
(0.53)

6.64
(0.05) 27 0.36

(0.55)
4.73

(0.09)

Exxon Mobil 49 18.75
(0.00)

14.48
(0.00) 45 14.76

(0.00)
16.48
(0.00) 39 7.10

(0.01)
9.14

(0.01) 28 0.42
(0.51)

4.63
(0.10) 40 8.97

(0.00)
10.33
(0.01) 36 5.25

(0.02)
6.35

(0.04)

Chevron 46 14.78
(0.00)

15.92
(0.00) 34 3.73

(0.05)
4.70

(0.10) 31 1.50
(0.22)

5.00
(0.08) 17 2.73

(0.10)
5.35

(0.07) 40 8.97
(0.00)

10.33
(0.01) 27 0.36

(0.55)
0.98

(0.61)

Total S.A. 45 13.54
(0.00)

13.58
(0.00) 41 10.03

(0.00)
10.15
(0.01) 27 0.21

(0.65)
4.68

(0.10) 19 1.45
(0.23)

4.36
(0.08) 33 3.05

(0.08)
3.56

(0.17) 28 0.64
(0.42)

1.56
(0.46)

Schlumberger 39 7.10
(0.01)

7.31
(0.03) 39 7.96

(0.00)
9.25

(0.01) 23 0.12
(0.73)

1.65
(0.48) 26 0.07

(0.80)
1.25

(0.54) 31 1.89
(0.17)

2.70
(0.26) 30 1.40

(0.24)
2.16

(0.34)

AR(1)-EGARCH(1,1)

Normal Skew-Normal t-Student Skew-t GED SGED

v Kupiec
Test

Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test

Epistar 45 13.54
(0.00)

14.81
(0.00) 42 11.14

(0.00)
12.70
(0.00) 32 1.99

(0.16)
5.27

(0.07) 38 6.20
(0.01)

8.40
(0.02) 33 3.05

(0.08)
6.04

(0.05) 36 5.25
(0.02)

7.69
(0.02)

Kingspan 43 11.20
(0.00)

15.27
(0.00) 44 13.51

(0.00)
14.82
(0.00) 22 0.31

(0.58)
6.30

(0.04) 29 0.71
(0.40)

8.96
(0.01) 21 0.40

(0.53)
2.22

(0.33) 27 0.36
(0.55)

4.73
(0.09)

Boralex 52 23.11
(0.00)

23.74
(0.00) 50 21.68

(0.00)
21.68
(0.00) 27 0.42

(0.51)
4.63

(0.10) 26 0.07
(0.80)

1.25
(0.54) 28 0.64

(0.42)
1.56

(0.46) 31 1.89
(0.17)

2.54
(0.28)



Energies 2020, 13, 2805 16 of 42

Table 3. Cont.

Nibe 30 1.07
(0.30)

8.93
(0.01) 36 5.25

(0.02)
7.69

(0.02) 21 0.59
(0.44)

6.94
(0.03) 27 0.21

(0.65)
9.28

(0.01) 21 0.40
(0.53)

2.22
(0.33) 26 0.16

(0.69)
4.80

(0.09)

Exxon Mobil 58 32.85
(0.00)

36.45
(0.00) 42 11.14

(0.00)
12.64
(0.00) 46 14.78

(0.00)
15.94
(0.00) 32 1.99

(0.16)
2.60

(0.27) 42 11.14
(0.00)

12.64
(0.00) 37 6.10

(0.01)
7.26

(0.03)

Chevron 54 26.20
(0.00)

28.29
(0.00) 40 8.97

(0.00)
10.33
(0.01) 49 18.75

(0.00)
21.64
(0.00) 22 0.31

(0.58)
6.30

(0.04) 47 17.40
(0.00)

19.28
(0.00) 37 6.10

(0.01)
7.26

(0.03)

Total S.A. 49 18.75
(0.88)

18.75
(0.00) 40 8.97

(0.00)
9.12

(0.01) 38 6.20
(0.01)

6.45
(0.04) 28 0.42

(0.51)
4.63

(0.10) 39 7.96
(0.00)

8.15
(0.02) 33 3.05

(0.08)
3.97

(0.14)

Schlumberger 38 6.20
(0.01)

8.40
(0.00) 38 7.01

(0.01)
8.23

(0.01) 29 0.71
(0.40)

1.58
(0.45) 28 0.42

(0.51)
4.63

(0.10) 29 0.99
(0.32)

1.70
(0.43) 27 0.36

(0.55)
0.98

(0.61)

AR(1)-APARCH(1,1)

Normal Skew-Normal t-Student Skew-t GED SGED

v Kupiec
Test

Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test

Epistar 55 27.81
(0.00)

29.76
(0.00) 44 12.20

(0.00)
12.44
(0.00) 38 6.20

(0.01)
8.40

(0.02) 42 10.10
(0.00)

14.40
(0.00) 33 3.05

(0.08)
6.04

(0.05) 28 0.64
(0.42)

1.56
(0.46)

Kingspan 43 11.20
(0.00)

11.29
(0.00) 41 9.05

(0.00)
9.31

(0.00) 21 0.59
(0.44)

2.46
(0.29) 28 0.42

(0.51)
4.63

(0.10) 27 0.36
(0.55)

4.73
(0.09) 24 0.02

(0.89)
0.00

(0.99)

Boralex 40 8.05
(0.00)

8.22
(0.02) 45 11.20

(0.00)
13.13
(0.00) 22 0.31

(0.58)
6.30

(0.04) 24 0.02
(0.89)

0.00
(0.99) 24 0.02

(0.89)
0.00

(0.99) 24 0.02
(0.89)

0.00
(0.99)

Nibe 29 0.71
(0.40)

4.67
(0.10) 32 1.99

(0.16)
5.51

(0.08) 25 0.00
(0.95)

1.30
(0.52) 39 7.10

(0.01)
15.92
(0.00) 22 0.31

(0.58)
4.63

(0.10) 28 0.64
(0.42)

4.73
(0.09)

Exxon Mobil 56 29.45
(0.00)

30.23
(0.00) 43 11.20

(0.00)
12.41
(0.00) 46 14.78

(0.00)
16.82
(0.00) 28 0.42

(0.51)
4.63

(0.10) 42 11.14
(0.00)

12.64
(0.00) 44 13.51

(0.00)
14.82
(0.00)

Chevron 50 20.16
(0.00)

20.16
(0.00) 46 14.78

(0.00)
16.01
(0.00) 38 6.20

(0.01)
6.45

(0.04) 20 0.97
(0.32)

3.56
(0.08) 44 13.51

(0.00)
14.82
(0.00) 47 17.40

(0.00)
19.28
(0.00)

Total S.A. 51 21.61
(0.00)

22.32
(0.00) 40 8.97

(0.00)
11.46
(0.01) 33 2.54

(0.11)
5.52

(0.05) 25 0.00
(0.95)

1.23
(0.59) 38 6.20

(0.01)
8.40

(0.02) 37 6.10
(0.01)

7.26
(0.03)

Schlumberger 41 9.05
(0.00)

9.31
(0.00) 39 7.10

(0.01)
8.35

(0.00) 25 0.00
(0.95)

1.23
(0.59) 26 0.07

(0.80)
1.25

(0.54) 28 0.42
(0.51)

4.63
(0.10) 27 0.21

(0.65)
2.60

(0.27)

v stands for violations depending on the distribution (normal, Skew-normal,Student’s t, Skewed-t, GED and SGED). p-values for each test in parentheses. Bold figures represent adequate
performance of the model for each test.
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Table 4. 97.5%-VaR backtesting. Expected violations (EV) = 60.

AR(1)-GARCH(1,1)

Normal Skew-Normal t-Student Skew-t GED SGED

v Kupiec
Test

Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test

Epistar 81 5.60
(0.02)

8.98
(0.01) 79 5.62

(0.02)
9.16

(0.01) 66 0.29
(0.59)

1.05
(0.58) 77 3.57

(0.06)
7.73

(0.02) 74 3.12
(0.08)

4.26
(0.12) 78 5.07

(0.02)
7.09

(0.03)

Kingspan 73 1.98
(0.16)

3.33
(0.19) 84 8.77

(0.00)
10.07
(0.01) 61 0.01

(0.92)
1.23

(0.54) 67 0.44
(0.51)

1.13
(0.57) 61 0.02

(0.90)
1.15

(0.56) 64 0.27
(0.60)

2.67
(0.26)

Boralex 74 2.34
(0.13)

7.13
(0.03) 74 3.12

(0.08)
10.02
(0.01) 62 0.00

(0.98)
1.12

(0.57) 63 0.02
(0.87)

1.05
(0.59) 53 0.87

(0.35)
1.38

(0.50) 55 0.44
(0.51)

0.83
(0.66)

Nibe 61 0.01
(0.92)

0.16
(0.92) 67 0.81

(0.37)
1.42

(0.49) 57 0.39
(0.53)

0.71
(0.70) 78 4.04

(0.05)
6.22

(0.04) 51 1.46
(0.23)

2.11
(0.35) 63 0.15

(0.70)
0.22

(0.89)

Exxon Mobil 91 12.41
(0.00)

13.17
(0.00) 79 5.62

(0.02)
6.32

(0.04) 81 5.60
(0.02)

5.79
(0.06) 64 0.08

(0.78)
0.15

(0.93) 79 5.62
(0.02)

5.68
(0.06) 72 2.32

(0.13)
2.33

(0.31)

Chevron 87 9.39
(0.00)

9.84
(0.01) 70 1.62

(0.20)
2.31

(0.31) 79 4.53
(0.03)

4.66
(0.10) 43 6.54

(0.01)
6.62

(0.04) 85 9.48
(0.00)

9.89
(0.01) 64 0.27

(0.60)
0.63

(0.73)

Total S.A. 80 5.05
(0.02)

6.40
(0.04) 78 5.07

(0.02)
6.34

(0.04) 72 1.65
(0.20)

2.40
(0.30) 52 1.68

(0.20)
1.68

(0.43) 72 2.32
(0.13)

3.14
(0.21) 66 0.60

(0.44)
1.06

(0.59)

Schlumberger 66 0.29
(0.59)

0.32
(0.85) 67 0.81

(0.37)
0.82

(0.66) 53 1.34
(0.25)

1.90
(0.39) 53 1.34

(0.25)
1.90

(0.39) 61 0.02
(0.90)

0.14
(0.93) 60 0.00

(1.00)
0.16

(0.92)

AR(1)-EGARCH(1,1)

Normal Skew-Normal t-Student Skew-t GED SGED

v Kupiec
Test

Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test

Epistar 96 16.68
(0.00)

20.76
(0.00) 85 9.48

(0.00)
12.00
(0.00) 88 10.11

(0.00)
13.99
(0.00) 94 14.90

(0.00)
23.57
(0.00) 74 3.12

(0.08)
5.74

(0.06) 76 4.04
(0.04)

6.35
(0.04)

Kingspan 88 10.11
(0.00)

13.99
(0.00) 89 12.54

(0.00)
12.58
(0.00) 74 2.34

(0.13)
9.53

(0.01) 76 3.13
(0.08)

9.77
(0.01) 73 2.71

(0.10)
2.73

(0.26) 75 3.57
(0.06)

3.62
(0.16)

Boralex 87 9.39
(0.00)

11.80
(0.00) 80 6.20

(0.01)
6.40

(0.04) 74 2.34
(0.13)

7.13
(0.03) 73 1.98

(0.16)
7.00

(0.03) 65 0.42
(0.52)

0.45
(0.80) 67 0.81

(0.37)
0.82

(0.66)

Nibe 62 0.00
(0.98)

5.19
(0.07) 69 1.32

(0.25)
3.02

(0.22) 60 0.05
(0.82)

1.38
(0.50) 86 8.70

(0.00)
15.04
(0.00) 52 1.14

(0.28)
1.72

(0.42) 59 0.02
(0.90)

0.21
(0.90)
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Table 4. Cont.

Exxon Mobil 96 16.68
(0.00)

19.19
(0.00) 74 3.12

(0.08)
3.16

(0.21) 91 12.41
(0.00)

14.26
(0.00) 70 1.08

(0.30)
4.56

(0.10) 80 6.20
(0.01)

6.24
(0.04) 69 1.32

(0.25)
1.32

(0.52)

Chevron 90 11.62
(0.00)

15.12
(0.00) 66 0.60

(0.44)
1.06

(0.59) 87 9.39
(0.00)

11.80
(0.00) 49 2.91

(0.09)
11.94
(0.00) 87 10.96

(0.00)
10.97
(0.00) 65 0.42

(0.52)
0.83

(0.66)

Total S.A. 98 18.55
(0.00)

18.86
(0.00) 79 5.62

(0.02)
5.98

(0.04) 86 8.70
(0.00)

9.92
(0.01) 66 0.29

(0.59)
1.05

(0.59) 78 5.07
(0.02)

5.15
(0.08) 72 2.32

(0.13)
2.63

(0.27)

Schlumberger 75 2.72
(0.59)

3.87
(0.14) 72 2.32

(0.13)
3.14

(0.21) 66 0.29
(0.59)

2.53
(0.28) 63 0.02

(0.87)
2.73

(0.26) 61 0.02
(0.90)

0.25
(0.88) 60 0.00

(1.00)
0.20

(0.91)

AR(1)-APARCH(1,1)

Normal Skew-Normal t-Student Skew-t GED SGED

v Kupiec
Test

Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test v Kupiec

Test
Ind.
Test

Epistar 102 22.53
(0.00)

27.10
(0.00) 102 22.53

(0.00)
24.10
(0.00) 90 11.62

(0.00)
11.78
(0.00) 89 10.85

(0.00)
11.79
(0.00) 76 4.04

(0.04)
6.35

(0.04) 80 6.20
(0.01)

6.40
(0.04)

Kingspan 91 12.41
(0.00)

12.55
(0.00) 88 10.11

(0.00)
11.42
(0.00) 71 1.35

(0.25)
1.77

(0.41) 76 3.13
(0.08)

5.61
(0.06) 74 3.12

(0.08)
5.74

(0.06) 70 1.08
(0.30)

4.56
(0.10)

Boralex 81 5.60
(0.02)

5.79
(0.06) 80 5.05

(0.02)
6.51

(0.02) 68 0.62
(0.43)

0.63
(0.73) 69 0.84

(0.36)
0.84

(0.66) 65 0.42
(0.52)

0.83
(0.66) 69 1.32

(0.25)
1.32

(0.52)

Nibe 63 0.02
(0.87)

1.05
(0.59) 63 0.02

(0.87)
2.73

(0.26) 62 0.00
(0.98)

0.24
(0.89) 92 13.22

(0.00)
18.12
(0.00) 52 1.14

(0.28)
1.72

(0.42) 57 0.39
(0.53)

0.71
(0.70)

Exxon Mobil 101 21.50
(0.00)

21.87
(0.00) 80 6.20

(0.01)
6.40

(0.04) 92 13.22
(0.00)

13.28
(0.00) 71 1.35

(0.25)
1.35

(0.51) 80 6.20
(0.01)

6.40
(0.04) 73 1.98

(0.16)
1.05

(0.59)

Chevron 94 14.90
(0.00)

15.01
(0.00) 90 11.62

(0.00)
10.08
(0.00) 79 4.53

(0.03)
5.79

(0.06) 43 6.54
(0.01)

6.62
(0.04) 88 10.11

(0.00)
11.42
(0.00) 71 1.35

(0.25)
1.77

(0.41)

Total S.A. 90 11.62
(0.01)

11.78
(0.00) 90 11.62

(0.00)
13.22
(0.00) 82 6.17

(0.01)
6.20

(0.05) 64 0.08
(0.78)

4.80
(0.09) 80 6.20

(0.01)
6.40

(0.04) 74 3.12
(0.08)

3.16
(0.21)

Schlumberger 76 3.13
(0.82)

4.16
(0.12) 73 1.98

(0.16)
1.05

(0.59) 60 0.05
(0.82)

0.22
(0.90) 56 0.57

(0.45)
0.64

(0.73) 62 0.00
(0.98)

0.24
(0.89) 69 0.84

(0.36)
0.84

(0.66)

102 22.53
(0.00)

27.10
(0.00) 102 22.53

(0.00)
24.10
(0.00) 90 11.62

(0.00)
11.78
(0.00) 89 10.85

(0.00)
11.79
(0.00) 63 0.02

(0.87)
2.73

(0.26) 60 0.05
(0.82)

1.38
(0.50)

v stands for violations depending on the distribution (normal, Skew-normal,Student’s t, Skewed-t, GED and SGED). p-values for each test in parentheses. Bold figures represent the
adequate performance of the model for each test.
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The AR(1)-GARCH(1,1) model under normal distribution performs well in three stocks: Kingspan
and Nibe from the renewable energy sector, and Schlumberger from the traditional energy sector. The
model under the skew-normal distribution performs well in Nibe, Exxon Mobil, and Schlumberger.
All stocks pass the test with the Student’s t distribution, except two from the traditional power sector:
Exxon Mobil and Chevron. The model performs accurately with the skewed-t distribution in five cases,
but the renewable energy stocks Epistar and Nibe and the traditional energy stock Chevron reject the
null hypothesis in the Kupiec and independence test. The model under the GED distribution does not
reject both tests in any of the cases, except for Exxon Mobil and Chevron, from the traditional energy
sector. Whereas for the SGED distribution, the model performs well in all cases except for Epistar, from
the renewable energy sector.

The AR(1)-EGARCH(1,1) model under normal distribution is only satisfactory for the traditional
energy stock Schlumberger. Under the skew-normal distribution, four stocks pass the tests: Nibe from
the renewable sector, and Exxon Mobil, Chevron, and Schlumberger from the traditional energy sector.
As for the Student’s t distribution, the model seems adequate in two cases, the renewable energy stock
Nibe and the traditional energy stock Schlumberger. The renewable energy stocks do not pass the test
for the skewed-t distribution. On the contrary, all the traditional energy stocks except for Chevron
reject the null hypothesis in the Kupiec and independence test. The model under the GED distribution
accurately exhibits results in all cases, except for Exxon Mobil, Chevron and Total S.A. In addition,
for the SGED distribution, the model works well in all cases except for Epistar, from the renewable
energy sector.

The AR(1)-APARCH(1,1) model performs well under normal and skew-normal distributions in
two cases: with the renewable energy stock Nibe, and with the traditional energy stock Schlumberger.
The model behaves adequately under the Student’s t distribution with the renewable energy stocks
Kingspan, Boralex and Nibe, and the traditional energy stock Schlumberger. Under the skewed-t
distribution, the model performs accurately with the renewable energy stock Boralex and with all
the traditional energy stocks, with the exception of Chevron. The model under the GED distribution
works well in all cases, except for Exxon Mobil, Chevron, and Total S.A. from the traditional energy
sector. For the SGED distribution, the model works precisely in all cases except for Epistar from the
renewable energy sector.

5.4. Backtesting of 97.5%-ES

Table 5 displays the results for the 97.5%-ES backtesting for the three tests (Z1, Z2 y ZES).

5.4.1. Z1 Test

With the AR(1)-GARCH(1,1) model under normal and skew-normal distributions, all of the stocks
reject the null hypothesis of the test. Under the Student’s t distribution, the test works well with the
renewable energy stocks Epistar, Kingspan and Boralex, and the traditional energy stock Total S.A. The
test presents satisfactory results under the skewed-t distribution; in all cases, the null hypothesis of the
test is not rejected, except with the traditional energy stock Schlumberger. For the GED and SGED, the
test works well for Epistar, Kingspan and Boralex from the renewable energy sector, and for Total S.A.
from the traditional energy sector.

In the AR(1)-EGARCH(1,1) and AR(1)-APARCH(1,1) model under normal and skew-normal
distributions, all of the stocks rejects the null hypothesis of the test. The four renewable energy stocks
pass the test with the Student’s t and skewed-t distributions, and the traditional energy stocks Total
S.A. and Chevron also pass, but the latter only passes the test in the AR(1)-APARCH(1,1) model. Under
the GED and SGED, the test works well for Epistar, Kingspan and Boralex, and for Total S.A.
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Table 5. 97.5%-ES backtesting. Values for Z1, Z2 y ZES statistics.

AR(1)-GARCH(1,1)

Normal Skew-Normal t-Student Skew-t GED SGED

Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES
Epistar −0.09 −0.45 −0.32 −0.10 −0.44 −0.34 0.02 −0.17 −0.25 0.00 −0.37 −0.33 −0.02 −0.20 −0.20 −0.02 −0.32 −0.20

Kingspan −0.10 −0.52 −0.36 −0.12 −0.57 −0.39 0.02 −0.05 −0.24 0.01 −0.22 −0.24 −0.03 −0.06 −0.10 −0.03 −0.11 −0.16
Boralex −0.21 −0.35 −0.41 −0.19 −0.46 −0.43 0.03 0.08 −0.26 0.02 0.01 −0.23 −0.03 0.05 −0.22 −0.02 0.00 −0.19

Nibe −0.18 −0.27 −0.37 −0.21 −0.35 −0.41 −0.04 0.03 −0.28 −0.01 −0.49 −0.42 −0.13 0.04 −0.28 −0.12 −0.18 −0.34
Exxon Mobil −0.16 −0.72 −0.48 −0.14 −0.50 −0.40 −0.05 −0.48 −0.39 −0.05 −0.09 −0.29 −0.10 −0.45 −0.39 −0.09 −0.20 −0.34

Chevron −0.11 −0.70 −0.41 −0.10 −0.28 −0.32 −0.05 −0.46 −0.37 −0.01 0.25 −0.16 −0.09 −0.54 −0.38 −0.08 −0.15 −0.28
Total S.A. −0.09 −0.57 −0.36 −0.09 −0.41 −0.32 −0.02 −0.31 −0.30 0.00 0.05 −0.20 −0.02 −0.21 −0.22 −0.03 −0.15 −0.16

Schlumberger −0.15 −0.36 −0.36 −0.15 −0.29 −0.35 −0.05 −0.05 −0.27 −0.06 −0.06 −0.25 −0.09 −0.11 −0.18 −0.09 −0.09 −0.18

AR(1)-EGARCH(1,1)

Normal Skew-Normal t-Student Skew-t GED SGED

Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES
Epistar −0.08 −0.52 −0.34 −0.09 −0.54 −0.35 0.00 −0.28 −0.27 −0.05 −0.41 −0.36 −0.02 −0.21 −0.22 −0.01 −0.33 −0.19

Kingspan −0.08 −0.60 −0.36 −0.10 −0.63 −0.38 0.03 −0.20 −0.26 0.01 −0.21 −0.26 −0.00 −0.19 0.21 −0.01 −0.26 −0.17
Boralex −0.14 −0.52 −0.40 −0.16 −0.54 −0.42 0.03 −0.04 −0.28 0.02 −0.05 −0.27 −0.03 −0.13 −0.19 −0.03 −0.13 −0.10

Nibe −0.19 −0.23 −0.37 −0.20 −0.38 −0.41 −0.05 0.02 −0.28 0.00 −0.42 −0.38 −0.12 0.03 −0.16 −0.14 −0.12 −0.18
Exxon Mobil −0.18 −0.70 −0.49 −0.17 −0.44 −0.41 −0.10 −0.50 −0.43 −0.07 −0.11 −0.26 −0.13 −0.51 −0.43 −0.12 −0.19 −0.40

Chevron −0.14 −0.63 −0.43 −0.12 −0.23 −0.32 −0.09 −0.62 −0.42 −0.07 0.22 −0.17 −0.11 −0.61 −0.41 −0.10 −0.19 −0.36
Total S.A. −0.12 −0.58 −0.39 −0.10 −0.45 −0.34 −0.01 −0.42 −0.35 −0.01 −0.03 −0.22 −0.02 −0.40 −0.22 −0.03 −0.21 −0.20

−0.15 −0.30 −0.35 −0.12 −0.35 −0.34 −0.07 −0.08 −0.28 −0.07 −0.01 −0.27 −0.09 −0.11 −0.19 −0.09 −0.09 −0.20

AR(1)-APARCH(1,1)

Normal Skew-Normal t-Student Skew-t GED SGED

Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES Z1 Z2 ZES
Epistar −0.11 −0.63 −0.29 −0.08 −0.52 −0.32 0.04 −0.21 −0.27 −0.02 −0.41 −0.36 −0.03 −0.21 −0.21 −0.03 −0.31 −0.17

Kingspan −0.09 −0.49 −0.35 −0.11 −0.58 −0.36 0.01 −0.20 −0.26 0.01 −0.19 −0.22 −0.02 −0.18 0.15 −0.00 −0.28 −0.21
Boralex −0.12 −0.72 −0.44 −0.12 −0.61 −0.40 0.05 −0.04 −0.25 0.02 −0.05 −0.24 −0.02 −0.11 −0.16 −0.03 −0.12 −0.14

Nibe −0.21 −0.35 −0.36 −0.23 −0.42 −0.37 −0.03 0.02 −0.22 0.00 −0.42 −0.38 −0.12 0.03 −0.22 −0.12 −0.12 −0.17
Exxon Mobil −0.11 −0.59 −0.47 −0.26 −0.51 −0.47 −0.10 −0.50 −0.43 −0.09 −0.11 −0.21 −0.15 −0.55 −0.39 −0.11 −0.17 −0.41

Chevron −0.09 −0.45 −0.45 −0.14 −0.28 −0.36 −0.03 −0.62 −0.42 −0.02 0.22 −0.23 −0.10 −0.60 −0.41 −0.10 −0.18 −0.36
Total S.A. −0.11 −0.69 −0.42 −0.11 −0.45 −0.38 −0.02 −0.42 −0.35 −0.01 −0.03 −0.25 −0.03 −0.41 −0.21 −0.01 −0.21 −0.22

Schlumberger −0.18 −0.22 −0.35 −0.17 −0.35 −0.33 −0.12 −0.08 −0.25 −0.08 −0.01 −0.19 −0.09 −0.11 −0.17 −0.11 −0.11 −0.16

The critical value for Z1 test is -0.03 for normal, skew-normal, GED and SGED, -0.05 for Student’s t and skewed-t. The critical value for Z2 test is -0.21 for normal, skew-normal, GED and
SGED, -0.22 for Student’s t and skewed-t. The critical value for ZES test is -0.20 for normal and skew-normal, -0.27 for Student’s t and skewed-t, and -0.22 for GED and SGED. Bold figures
represent the adequate performance of the model for each test.
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5.4.2. Z2 Test

In the AR(1)-GARCH(1,1) model under normal and skew-normal distributions, all of the stocks
reject the null hypothesis of the test. For the Student’s t distribution, the test performs well with all
four renewable energy stocks and with the traditional energy stock Schlumberger. The results improve
noticeably with the skewed-t distribution; none of the stocks reject the null hypothesis of the test except
the renewable energy stocks Epistar and Nibe. Under the GED, the test performs well for all four
stocks from the renewable sector, and for Total S.A. and Schlumberger from the traditional energy
sector. In the case of SGED, the test presents satisfactory results for all the stocks, except for Epistar,
from the renewable energy sector.

In the AR(1)-EGARCH(1,1) and AR(1)-APARCH(1,1) models under normal and skew-normal
distributions, all of the stocks rejects the null hypothesis of the test. All the renewable energy stocks,
except for Epistar in AR(1)-EGARCH(1,1), pass the test with the Student’s t distribution; Schlumberger
from the renewable energy stocks also passes the test. None of the stocks reject the null hypothesis of
the test under the skewed-t distribution, except the renewable energy stocks Epistar and Nibe. Under
the GED, the test performs well for all the four stocks from the renewable sector, and for Schlumberger
from the traditional energy sector. For the SGED, the test performs well for all the stocks, except for
Epistar and Kingspan, from the renewable energy sector.

5.4.3. ZES Test

In the AR(1)-GARCH(1,1) model under normal and skew-normal distributions, all of the stocks
reject the null hypothesis of the test. For the Student’s t distribution, the test works well with
three renewable energy stocks (Epistar, Kingspan and Boralex) and with the traditional energy stock
Schlumberger. With the skewed-t distribution, the null hypothesis of the test cannot be rejected for all
the stocks, with the exception of the renewable energy stocks Epistar and Nibe and the traditional
energy stock Exxon Mobil. Under the GED and the SGED, the test exhibits satisfactory results for
Epistar, Kingspan, Boralex, Total S.A., and Schlumberger.

None of the stocks pass the test with the AR(1)-EGARCH(1,1) and AR(1)-APARCH(1,1) models
under normal and skew-normal distributions. With the Student’s t distribution, however, none of the
renewable energy stocks reject the null hypothesis of the test; nor does the traditional energy stock
Schlumberger. Under the skewed-t distribution, all stocks pass the test except the renewable energy
stocks Epistar and Nibe. Under the GED and SGED, the test works well in all cases, except for Exxon
Mobil and Chevron from the traditional energy market.

In summary, the higher flexibility of the skewed-t and the SGED provides the best results for VaR
and ES testing. The skewed-t has better results in the traditional energy sector; meanwhile, the SGED
performs better in the renewable energy sector. Nevertheless, we recommend filtering the returns by
employing AR(1)-GARCH(1,1), since the results are similar to other GARCH(1,1) family models tested
in our application. Furthermore, ZES statistic is proposed to validate ES quantities, since this test is
more potent than Z1 and Z2 tests.

6. Discussion

The empirical analyses in the previous section shed light on the best techniques for risk management
in energy markets, revealing the skewed-t distribution to be an accurate tool, but also the adequacy
of ES as a new paradigm for regulatory capital. In this section, we present a discussion on the
implications in terms of capital reserves of the shift in the risk measure from VaR99% to ES97.5% in
renewable and traditional energy stocks considering skewed-t distribution for the innovations. Table 6
shows the daily VaR99%, ES97.5% and the difference between these two risk measures diff = ES97.5% −

VaR99% calculated for the renewable and traditional energy stock returns with the AR(1)-GARCH(1,1),
AR(1)-EGARCH(1,1) and AR(1)-APARCH(1,1) models in the analyzed sample. This difference (diff)
represents the percentage of extra reserve capital that must be established in adopting ES.
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Table 6. Capital requirements percentage for energy stocks under skewed-t innovations.

Total Period (January 2005–December 2016)

Model AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

Stock VaR99% ES97.5% diff VaR99% ES97.5% diff VaR99% ES97.5% diff

Renewable
Epistar −4.52166 −4.62706 0.10540 −4.50284 −4.60416 0.10131 −4.58420 −4.68796 0.10376

Kingspan −5.68544 −5.93938 0.25394 −5.52422 −5.75760 0.23338 −5.29004 −5.51206 0.22202
Boralex −3.74001 −3.99852 0.25851 −3.48382 −3.70996 0.22614 −3.85014 −4.10433 0.25420

Nibe −4.58810 −4.79142 0.20332 −4.91927 −5.13077 0.21150 −4.71179 −4.91350 0.20171
Traditional

Exxon Mobil −2.75996 −2.84387 0.08391 −2.43863 −2.50695 0.06832 −2.44536 −2.51313 0.06777
Chevron −3.03334 −3.09445 0.06111 −3.06976 −3.11185 0.04209 −3.15134 −3.21426 0.06291
Total S.A. −3.87745 −3.98049 0.10305 −3.93551 −4.03167 0.09616 −3.83333 −3.92498 0.09166

Schlumberger −3.23484 −3.31588 0.08104 −3.08337 −3.15876 0.07540 −3.06615 −3.13985 0.07370

The table presents the differences in capital requirements from replacing VaR99% with ES97.5%, computed as diff =
ES97.5% − VaR99%.

In Table 6, we can observe that VaR, ES, and diff values do not vary considerably between
AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1), and AR(1)-APARCH(1,1) models. On average, VaR and ES
quantities are higher in renewable (−4.6338 and −4.8391, respectively) than in traditional energy stocks
(−3.2264 and −3.3087), this can be attributed to the higher volatility faced in the renewable energy
market. In addition, ES estimates in all cases are considerably higher than VaR. This is a result of
extreme values that fatten the tail of the return distribution, which leads ES to assign higher regulatory
capital when the skewed-t distribution is employed to fit the standardized residuals of stock returns.
These findings have important implications for portfolio managers and regulators in terms of capital
allocation in renewable and traditional energy stocks mainly to reduce the impact of possible extreme
losses events.

To have a better understanding of the effects of switching the risk measures, we compute
AR(1)-GARCH(1,1)-VaR and -ES for two stocks, Epistar (renewable energy) and Exxon Mobil (traditional
energy), by employing a 500-day rolling window, and then we calculate the daily difference between
the two risk measures. The results are illustrated in Figure 4. In this graph, it can be observed that, on
average, the difference between both risk measures is much higher in Epistar (0.2402%) than in Exxon
Mobil (0.1119%). Nevertheless, in 2008, within the context of the subprime crisis, differences for Exxon
Mobil sharply rose to 1%, while those for Epistar remained at 0.25%. On the contrary, in relative calm
periods such as in 2012 to 2013, the difference between the risk measures is around 0.2%. On the other
hand, the difference between the two risk measures has increased consistently for Epistar since 2012,
with a difference between 0.3% and 0.7% in 2014 and 0.6% in 2016.

Figure 5 shows the difference between the 97.5%-ES and 99%-VaR, estimated with the
AR(1)-GARCH(1,1) and the skewed-t distribution for innovations during the 2008 subprime crisis.
Throughout this period, the ES was capable of adapting the extreme values and of allocating higher
capital reserves than the VaR. This evidence emphasizes the need to search for the most accurate
risk measures, especially in highly volatile scenarios. In these contexts, the use of ES with skewed-t
distribution is advisable as a protection mechanism against extreme loss events in renewable energy
stocks due to the capacity of skewed-t to adapt to potential volatility shocks and the asymmetric impact
of market news.
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Figure 5. Estimated VaR-99% and ES-97.5% with the skewed-t distribution.

Our results support the ES as a suitable risk measure for renewable and traditional energy stocks
in the context of periods of high volatility and turmoil when investors face extreme market risk.
Consequently, this study helps energy market participants to have a better understanding of the
market risk posed in renewable and traditional energy stock investments. Moreover, the efficient
allocation of regulatory capital through accurate risk management techniques also helps regulators to
fight against market instability and policymakers to decide on real investment decisions that might
have a significant impact on the future of traditional and renewable energies.
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7. Conclusions

The increasing demand for renewable energy and the high volatility of the prices of these energy
sources have increased the need to accurately measure the risk of these markets. This is particularly
important for the decision-making of firms, investors, and regulators and represents a cornerstone for
the stability and sustainability of these markets with profound implications for the whole economy.
This paper fits into this framework, implementing a rigorous methodology for risk management. This
section summarizes the main contributions and results of the paper, which are enumerated below.

(1) The article studies the risk in traditional and renewable energy markets by examining four
renewable energy stocks and four traditional energy stocks. The prices of these stocks exhibit the
same features as other financial assets, particularly leptokurtosis and skewness, calling for the use of
conditional mean-variance models and flexible non-normal distributions. The performance of three
models—(AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1) and AR(1)-APARCH(1,1))—with either normal,
skew-normal, Student’s t, skewed-t, GED or SGED innovations are compared in terms of both VaR and
ES backtesting techniques.

(2) The paper implements three tests proposed by Acerbi and Székely [9,10] to backtest 97.5%-ES.
Backtesting of 99%-VaR and 97.5%-VaR is also carried out with Kupiec and independence tests. Our
study contributes to the literature by extending the proposed ES tests to the skewed-t, GED and SGED
distributions. A straightforward algorithm is proposed to compute critical values, and we tabulate
them for different values of the skewed-t parameters. Furthermore, to the best of our knowledge, this
is the first application of these tests to renewable and traditional energy stocks.

(3) The renewable energy stocks generally have higher price volatility than the traditional energy
stocks, and thus the renewable energy stocks on average have more VaR violations than do the
traditional energy stocks. The results indicate that the fitting of the normal distribution is weak in the
three GARCH models for both traditional and renewable energy stocks. The best-fitting distribution in
the backtests is the skewed-t, and AR(1)-GARCH(1,1) is the model that best fits the sample data.

(4) In the ES backtest, renewable energy stocks perform better than traditional energy stocks. We
show that the tests proposed by Acerbi and Székely [9,10] are adequate for solving the drawback of the
backtestability of ES, especially the ZES test, which is more powerful. For this test, the skewed-t has
better results in the traditional energy sector; meanwhile, the SGED performs better in the renewable
energy sector. Consequently, we provide evidence on the appropriateness of ES, the new risk measure
proposed by the last Basel Accords, for quantifying the risk of traditional and renewable energy stocks.

(5) Our results have important implications for the efficient allocation of regulatory capital,
particularly in periods of high instability. The use of flexible distributions as the skewed-t and the
SGED may help to provide accurate capital provisions in case of potential losses provoked by extreme
events but also to free resources in more calm periods that can be used for undertaking real investments
in traditional or renewable energies.

All in all, our results constitute a methodological framework with empirical evidence that can be
used by regulators and investors to mitigate the market risk emerging from renewable and traditional
energy markets.
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Appendix A.

Table A1. Description of the stocks.

Stock Index Description

EPISTAR NEX Epistar Corporation manufactures and markets light-emitting diode (LED) chips and
epitaxial wafers. The Company sells its products in Taiwan and exports worldwide.

Kingspan Group PLC NEX Kingspan Group PLC is a global market player in high-performance insulation and
building envelope technologies.

Boralex Inc. NEX

Boralex Inc. is an electricity producer whose core business is the development and
operation of renewable energy power stations. The Corporation operates assets in the
following power generation types—wind, hydroelectric, thermal and solar-based in
Canada, the Northeastern United States, and France.

NIBE Industrier NEX

NIBE Industrier AB is an international heating technology company. The Company is
organized around three business areas, all united under a shared vision to create
world-class solutions in sustainable energy. NIBE produces and sells heat pumps, boiler
and water heaters, electrical heating elements as well as freestanding fireplaces.

Exxon Mobil Corporation BWEI

Exxon Mobil Corporation operates petroleum and petrochemical businesses on a
worldwide basis. The Company operations include exploration and production of oil
and gas, electric power generation, and coal and mineral operations. Exxon Mobil also
manufactures and markets fuels, lubricants and chemicals.

Chevron Corporation BWEI

Chevron Corporation is an integrated energy company with operations in countries
located around the world. The Company produces and transports crude oil and natural
gas. Chevron also refines, markets, and distributes fuels, as well as is involved in
chemical and mining operations, power generation and energy services.

TOTAL S.A. BWEI

TOTAL S.A. explores for, produces, refines, transports, and markets oil and natural gas.
The Company also operates a chemical division that produces polypropylene,
polyethylene, polystyrene, rubber, paint, ink, adhesives, and resins. TOTAL operates
gasoline filling stations in Europe, the United States and Africa.

Schlumberger Limited BWEI

Schlumberger Limited is an oil services company. The Company, through its
subsidiaries, provides a wide range of services, including technology, project
management, and information solutions to the international petroleum industry as well
as advanced acquisition and data processing surveys.

NEX stands for WilderHill New Energy Global Innovation index, and BWEI stands for Bloomberg World Energy index. Source:
Bloomberg LP.

Appendix B. Tables and Figures

Table A2. Estimation of AR(1)-GARCH(1,1) models.

Epistar Kingspan Boralex Nibe Exxon Chevron Total Schlumberger

Coefficient Normal Distribution

µ
0.0000
(0.001)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

φ
0.0499
(0.019)

0.0283
(0.020)

−0.0524
(0.019)

0.0017
(0.020)

−0.0517
(0.019)

−0.0342
(0.019)

−0.0172
(0.019)

−0.0267
(0.019)

ω
0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

α
0.0414
(0.007)

0.0952
(0.017)

0.0319
(0.004)

0.0931
(0.014)

0.0812
(0.010)

0.0837
(0.010)

0.0758
(0.010)

0.0496
(0.006)

β
0.9433
(0.010)

0.8894
(0.020)

0.9659
(0.004)

0.8652
(0.020)

0.8989
(0.012)

0.9012
(0.011)

0.9074
(0.012)

0.9428
(0.007)

Skew-Normal Distribution

µ
0.0001

(0.0005)
0.0012

(0.0004)
0.0007

(0.0003)
0.0013

(0.0004)
0.0004

(0.0002)
0.0005

(0.0002)
0.0004

(0.0003)
0.0007

(0.0003)

φ
0.0531

(0.0197)
0.0298

(0.0198)
−0.0593
(0.0192)

0.0001
(0.0207)

−0.0611
(0.0198)

−0.0409
(0.0195)

−0.0219
(0.0196)

−0.0235
(0.0198)
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Table A2. Cont.

Epistar Kingspan Boralex Nibe Exxon Chevron Total Schlumberger

ω
0.0000

(0.0000)
0.0000

(0.0000)
0.0000

(0.0000)
0.0000

(0.0000)
0.0000

(0.0000)
0.0000

(0.0000)
0.0000

(0.0000)
0.0000

(0.0000)

α
0.0405

(0.0028)
0.0485

(0.0182)
0.0317

(0.0022)
0.0862

(0.0142)
0.0857

(0.0093)
0.0866

(0.0111)
0.0682

(0.0095)
0.0507

(0.0076)

β
0.9435

(0.0050)
0.9456

(0.0217)
0.9663

(0.0020)
0.8740

(0.0207)
0.8945

(0.0123)
0.8997

(0.0125)
0.9184

(0.0119)
0.9412
0.0089

ξ
1.0119

(0.0235)
1.0162

(0.0221)
1.0032

(0.0194)
1.0340

(0.0212)
0.9062

(0.0211)
0.8597

(0.0225)
0.9295

(0.0216)
0.9729

(0.0226)

Student’s t Distribution

µ
0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

φ
0.0274
(0.019)

0.0216
(0.018)

−0.0653
(0.018)

−0.0065
(0.0019)

−0.0524
(0.018)

−0.0352
(0.019)

−0.0196
(0.018)

−0.0285
(0.018)

ω
0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

α
0.0500
(0.008)

0.0446
(0.009)

0.1131
(0.028)

0.0883
(0.019)

0.0831
(0.013)

0.0805
(0.011)

0.0689
(0.011)

0.0478
(0.007)

β
0.9421
(0.010)

0.9497
(0.010)

0.8494
(0.039)

0.8762
(0.026)

0.9026
(0.014)

0.9089
(0.011)

0.9151
(0.014)

0.9484
(0.007)

8.7578
(1.529)

5.2540
(0.498)

5.8807
(0.298)

5.2573
(0.488)

6.6061
(0.766)

10.000
(1.452)

7.6678
(1.035)

7.8742
(1.028)

Skewed-t Distribution

µ
0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

φ
0.0286
(0.019)

0.0216
(0.018)

−0.0653
(0.018)

−0.0030
(0.019)

−0.0572
(0.019)

−0.0427
(0.019)

−0.0268
(0.018)

−0.0285
(0.018)

ω
0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

α
0.0501
(0.008)

0.0445
(0.009)

0.1132
(0.027)

0.0887
(0.018)

0.0833
(0.012)

0.0809
(0.011)

0.0670
(0.011)

0.0478
(0.007)

β
0.9421
(0.010)

0.9497
(0.010)

0.8491
(0.038)

0.8762
(0.025)

0.9018
(0.014)

0.9093
(0.011)

0.9172
(0.014)

0.9484
(0.007)

ν
8.6184
(1.478)

5.2529
(0.498)

5.8799
(0.298)

5.2686
(0.489)

6.7975
(0.812)

10.000
(1.422)

7.6179
(1.031)

7.8740
(1.028)

λ
1.0288
(0.025)

0.9987
(0.025)

1.0167
(0.024)

1.0483
(0.027)

0.9385
(0.024)

0.882
(0.024)

0.9253
(0.023)

1.0003
(0.026)

GED

µ
−0.0003
(0.000)

0.0009
(0.000)

0.0003
(0.000)

0.0007
(0.000)

0.0005
(0.000)

0.0007
(0.000)

0.0006
(0.000)

0.0007
(0.000)

φ
0.0220
(0.019)

0.0103
(0.019)

−0.0676
(0.015)

−0.0165
(0.019)

−0.0490
(0.019)

−0.0356
(0.019)

−0.023
(0.020)

−0.0283
(0.019)

ω
0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

α
0.0444
(0.004)

0.0431
(0.008)

0.0394
(0.006)

0.0760
(0.017)

0.0851
(0.013)

0.0852
(0.012)

0.0676
(0.012)

0.0501
(0.018)

β
0.9443
(0.006)

0.9516
(0.009)

0.9521
(0.007)

0.8873
(0.027)

0.8977
(0.015)

0.9014
(0.014)

0.9188
(0.015)

0.9439
(0.021)

η
1.4626
(0.053)

1.2959
(0.046)

1.1214
(0.038)

1.2557
(0.041)

1.4437
(0.051)

1.6629
(0.061)

1.4599
(0.054)

1.4819
(0.056)
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Table A2. Cont.

Epistar Kingspan Boralex Nibe Exxon Chevron Total Schlumberger

SGED

µ
−0.0001
(0.001)

0.0010
(0.000)

0.0005
(0.000)

0.0010
(0.000)

0.0003
(0.000)

0.0005
(0.000)

0.0004
(0.000)

0.0006
(0.000)

φ
0.0224
(0.019)

0.0111
(0.016)

−0.0695
(0.013)

−0.0124
(0.022)

−0.0601
(0.020)

−0.0429
(0.019)

−0.0287
(0.019)

−0.0290
(0.019)

ω
0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

α
0.0446
(0.004)

0.0436
(0.009)

0.0394
(0.006)

0.0777
(0.017)

0.0850
(0.013)

0.0846
(0.013)

0.0649
(0.012)

0.0500
(0.018)

β
0.9439
(0.006)

0.9511
(0.010)

0.9520
(0.007)

0.8865
(0.026)

0.8972
(0.015)

0.9025
(0.015)

0.9217
(0.016)

0.9440
(0.021)

η
1.4597
(0.023)

1.2970
(0.020)

1.1220
(0.019)

1.2533
(0.028)

1.4618
(0.023)

1.7051
(0.023)

1.4639
(0.023)

1.4834
(0.025)

ζ
1.0266
(0.053)

1.0128
(0.046)

1.019
(0.038)0

1.0576
(0.040)

0.9339
(0.052)

0.8713
(0.064)

0.9331
(0.054)

0.9920
(0.057)

Standard error in parentheses.

Table A3. Estimation of the AR(1)-EGARCH(1,1) model.

Epistar Kingspan Boralex Nibe Exxon Chevron Total Schlumberger

Coefficient Normal Distribution

µ
0.0000

(0.0009)
0.0000

(0.0004)
0.0000

(0.0004)
0.0000

(0.0003)
0.0000

(0.0002)
0.0000

(0.0002)
0.0000

(0.0002) 0.0000 (0.0003)

φ
0.055

(0.077)
0.019

(0.020)
−0.052
(0.020)

−0.002
(0.003)

−0.051
(0.020)

−0.022
(0.011)

−0.007
(0.019)

−0.027
(0.019)

ω
−2.025
(0.491)

−0.307
(0.061)

−0.390
(0.075)

−0.258
(0.027)

−0.213
(0.021)

−0.157
(0.035)

−0.335
(0.043)

−0.329
(0.045)

α
−0.095
(0.022)

−0.042
(0.013)

−0.069
(0.011)

−0.060
(0.011)

−0.069
(0.011)

−0.078
(0.012)

−0.104
(0.005)

−0.060
(0.012)

β
0.712

(0.070)
0.957

(0.008)
0.948

(0.010)
0.965

(0.004)
0.975

(0.002)
0.981

(0.004)
0.959

(0.005)
0.957

(0.006)

γ
0.278

(0.019)
0.232

(0.026)
0.188

(0.005)
0.154

(0.038)
0.177

(0.016)
0.158

(0.041)
0.160

(0.005)
0.178

(0.020)

Skew-Normal Distribution

µ
−0.0001
(0.0006)

0.0007
(0.0003)

0.0002
(0.0002)

0.0011
(0.0004)

0.0001
(0.0002)

0.0002
(0.0003)

0.0001
(0.0003)

0.0003
(0.0003)

φ
0.0488

(0.0192)
0.0219

(0.0172)
−0.0591
(0.0152)

−0.0085
(0.0196)

−0.0570
(0.0188)

−0.0232
(0.0189)

−0.0155
(0.0188)

−0.0225
(0.0191)

ω
−0.1515
(0.0086)

−0.0308
(0.0005)

−0.0195
(0.0004)

−0.2447
(0.0089)

−0.2277
(0.0235)

−0.1516
(0.0328)

−0.1556
(0.0089)

−0.0828
(0.0011)

α
−0.0324
(0.0079)

−0.0327
(0.0065)

−0.0456
(0.0047)

−0.0585
(0.0060)

−0.0700
(0.0111)

−0.0784
(0.0112)

−0.0803
(0.0107)

−0.0413
(0.0078)

β
0.9782

(0.0012)
0.9955

(0.0001)
0.9968

(0.0001)
0.9667

(0.0013)
0.9731

(0.0027)
0.9820

(0.0039)
0.9808

(0.0011)
0.9890

(0.0002)

γ
0.0935

(0.0118)
0.0770

(0.00275
0.0690

(0.0027)
0.1481

(0.0156)
0.1822

(0.0165)
0.1561

(0.0423)
0.1107

(0.0202)
0.1008

(0.0036)

ξ
1.0226

(0.0240)
1.0219

(0.0219)
1.0123

(0.0193)
1.0390

(0.0211)
0.9006

(0.0212)
0.8569

(0.0230)
0.9351

(0.0219)
0.9757

(0.0226)
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Table A3. Cont.

Epistar Kingspan Boralex Nibe Exxon Chevron Total Schlumberger

Student’s t Distribution

µ
0.000

(0.001)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

φ
0.036

(0.020)
0.023

(0.020)
−0.069
(0.019)

−0.007
(0.018)

−0.052
(0.018)

−0.027
(0.019)

−0.014
(0.020)

−0.025
(0.019)

ω
−1.491
(0.341)

−0.562
(0.605)

−1.550
(0.534)

−0.311
(0.026)

−0.150
(0.013)

−0.138
(0.029)

−0.176
(0.002)

−0.068
(0.003)

α
−0.095
(0.021)

−0.069
(0.029)

−0.038
(0.027)

−0.066
(0.015)

−0.063
(0.012)

−0.072
(0.013)

−0.083
(0.011)

−0.051
(0.009)

β
0.788

(0.049)
0.925

(0.081)
0.798

(0.070)
0.959

(0.003)
0.983

(0.002)
0.984

(0.004)
0.979

(0.000)
0.991

(0.000)

γ
0.289

(0.019)
0.290

(0.148)
0.414

(0.035)
0.174

(0.024)
0.172

(0.020)
0.150

(0.055)
0.118

(0.009)
0.104

(0.011)

ν
9.972

(2.372)
5.947

(0.574)
5.621

(0.242)
5.344

(0.505)
7.021

(0.898)
13.361
(5.56)

8.410
(1.176)

8.356
(0.801)

Skewed-t Distribution

µ
0.000

(0.001)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)
0.000

(0.000)

φ
−0.008
(0.018)

0.011
(0.018)

−0.070
(0.019)

−0.005
(0.023)

−0.057
(0.018)

−0.041
(0.019)

−0.027
(0.018)

−0.025
(0.015)

ω
−0.117
(0.072)

−0.132
(0.075)

−1.574
(0.530)

−0.313
(0.026)

−0.150
(0.013)

−0.350
(0.093)

−0.365
(0.110)

−0.068
(0.002)

α
−0.698
(0.116)

−0.558
(0.175)

−0.038
(0.027)

−0.066
(0.015)

−0.063
(0.012)

−1.083
(0.278)

−1.417
(0.200)

−0.051
(0.009)

β
0.935

(0.032)
0.942

(0.028)
0.795

(0.070)
0.959

(0.003)
0.983

(0.001)
0.889

(0.027)
0.888

(0.032)
0.991

(0.000)

γ
2.410

(0.330)
2.553

(0.517)
0.416

(0.034)
0.176

(0.024)
0.171

(0.020)
3.587

(0.145)
2.464

(0.155)
0.104

(0.011)

ν
4.010

(0.001)
5.456

(0.000)
5.613

(0.242)
5.354
(0.506

7.229
(0.957)

5.812
(0.001)

4.513
(0.000)

8.357
(0.808)

λ
1.034

(0.029)
0.988

(0.023)
1.011

(0.025)
1.045

(0.027)
0.935

(0.024)
0.926

(0.028)
0.945

(0.025)
0.995

(0.026)

GED

µ
−0.0005
(0.001)

0.0007
(0.000)

0.0002
(0.000)

0.0004
(0.000)

0.0003
(0.000)

0.0003
(0.000)

0.0003
(0.000)

0.0004
(0.000)

φ
0.0191
(0.014)

0.0073
(0.015)

−0.0685
(0.021)

−0.0180
(0.020)

−0.0477
(0.021)

−0.0232
(0.019)

−0.0215
(0.019)

−0.0245
(0.019)

ω
−0.1301
(0.004)

−0.0371
(0.001)

−0.0612
(0.001)

−0.2399
(0.037)

−0.2105
(0.024)

−0.1526
(0.019)

−0.1609
(0.003)

−0.0761
(0.002)

α
−0.0328
(0.009)

−0.0337
(0.008)

−0.0395
(0.009)

−0.0613
(0.014)

−0.0688
(0.014)

−0.0772
(0.012)

−0.0800
(0.010)

−0.0471
(0.009)

β
0.9816
(0.001)

0.9952
(0.000)

0.9922
(0.000)

0.9684
(0.005)

0.9759
(0.003)

0.9823
(0.002)

0.9807
(0.001)

0.9903
(0.000)

γ
0.1035
(0.008)

0.0796
(0.007)

0.0924
(0.009)

0.1409
(0.040)

0.1804
(0.019)

0.1570
(0.023)

0.1144
(0.009)

0.1016
(0.001)

η
1.4724
(0.057)

1.3183
(0.046)

1.1360
(0.037)

1.2649
(0.041)

1.4612
(0.054)

1.7093
(0.068)

1.5078
(0.055)

1.4797
(0.051)
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Table A3. Cont.

Epistar Kingspan Boralex Nibe Exxon Chevron Total Schlumberger

SGED

µ
−0.0003
(0.001)

0.0008
(0.000)

0.0003
(0.000)

0.0007
(0.000)

0.0001
(0.000)

0.0002
(0.000)

0.0001
(0.000)

0.0003
(0.000)

φ
0.0181
(0.020)

0.0075
(0.016)

−0.0698
(0.013)

−0.0159
(0.019)

−0.0579
(0.019)

−0.0275
(0.019)

−0.0239
(0.019)

−0.0254
(0.019)

ω
−0.1310
(0.004)

−0.0369
(0.001)

−0.0608
(0.001)

−0.2357
(0.030)

−0.2234
(0.042)

−0.1475
(0.028)

−0.1566
(0.001)

−0.0766
(0.002)

α
−0.0332
(0.009)

−0.0335
(0.008)

−0.0390
(0.009)

−0.0593
(0.014)

−0.0712
(0.014)

−0.0764
(0.012)

−0.0794
(0.010)

−0.0470
(0.009)

β
0.9815
(0.001)

0.9952
(0.000)

0.9923
(0.000)

0.9690
(0.004)

0.9743
(0.005)

0.9827
(0.003)

0.9811
(0.000)

0.9902
(0.000)

γ
0.1039
(0.008)

0.0800
(0.007)

0.0923
(0.009)

0.1446
(0.033)

0.1815
(0.021)

0.1534
(0.038)

0.1092
(0.007)

0.1014
(0.001)

η
1.4707
(0.057)

1.3192
(0.046)

1.1362
(0.037)

1.2652
(0.041)

1.4805
(0.055)

1.7464
(0.082)

1.5056
(0.055)

1.4806
(0.051)

ζ
1.0310
(0.024)

1.0063
(0.020)

1.0131
(0.019)

1.0514
(0.026)

0.9247
(0.022)

0.8641
(0.024)

0.9294
(0.022)

0.9879
(0.025)

The standard error in parentheses.

Table A4. Estimation of the AR(1)-APARCH(1,1) model.

Epistar Kingspan Boralex Nibe Exxon Chevron Total Schlumberger

Coefficient Normal Distribution

µ
0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

φ
0.0463
(0.018)

0.0145
(0.014)

−0.0511
(0.019)

0.0019
(0.019)

−0.0529
(0.020)

−0.0246
(0.020)

−0.0151
(0.016)

−0.0218
(0.19)

ω
0.0005
(0.000)

0.0003
(0.000)

0.0000
(0.000)

0.0018
(0.000)

0.0001
(0.000)

0.0001
(0.000)

0.0009
(0.000)

0.0000
(0.000)

α
0.0498
(0.007)

0.0361
(0.05)

0.0307
(0.005)

0.0844
(0.010)

0.0881
(0.011)

0.0802
(0.010)

0.0653
(0.009)

0.0500
(0.007)

β
0.9396
(0.010)

0.9690
(0.003)

0.9697
(0.003)

0.9020
(0.013)

0.8988
(0.011)

0.9124
(0.009)

0.9279
(0.011)

0.9471
(0.006)

γ
0.3283
(0.094)

0.4062
(0.150)

0.4534
(0.108)

0.4670
(0.106)

0.3935
(0.076)

0.5248
(0.097)

0.8203
(0.112)

0.3714
(0.098)

δ
1.0739
(0.263)

0.7834
(0.253)

1.6283
(0.232)

0.7959
(0.159)

1.3440
(0.214)

1.2293
(0.202)

0.8168
(0.167)

1.4029
(0.226)

Skew-Normal Distribution

µ
−0.0001
(0.0005)

0.0007
(0.0003)

0.0004
(0.0003)

0.0011
(0.0002)

0.0001
(0.0002)

0.0002
(0.0002)

0.0000
(0.0001)

0.0004
(0.0003)

φ
0.0498

(0.0215)
0.0206

(0.0130)
−0.0590
(0.0190)

−0.0029
(0.0038)

−0.0553
(0.0196)

−0.0262
(0.0195)

−0.0167
(0.0042)

−0.0188
(0.0194)

ω
0.0005

(0.0005)
0.0002

(0.0000)
0.0000

(0.0000)
0.0018

(0.0012)
0.0001

(0.0001)
0.0001

(0.0001)
0.0010

(0.0007)
0.0001

(0.0001)

α
0.0495

(0.0103)
0.0373

(0.0013)
0.0305

(0.0020)
0.0795

(0.0108)
0.0947

(0.0114)
0.0807

(0.0103)
0.0544

(0.0155)
0.0499

(0.0066)

β
0.9378

(0.0156)
0.9675

(0.0003)
0.9682

(0.0015)
0.9062

(0.0132)
0.8916

(0.0117)
0.9118

(0.0100)
0.9422

(0.0216)
0.9474

(0.0061)
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Table A4. Cont.

Epistar Kingspan Boralex Nibe Exxon Chevron Total Schlumberger

γ
0.3413

(0.1006)
0.4763

(0.0991)
0.4041

(0.0759)
0.4901

(0.1130)
0.3914

(0.0754)
0.4775

(0.0945)
0.9037

(0.1513)
0.3765

(0.1012)

δ
1.0937

(0.2763)
0.8959

(0.0482)
1.7392

(0.0380)
0.7835

(0.1661)
1.3313

(0.2018)
1.2970

(0.1934)
0.7297

(0.2298)
1.3378

(0.2035)

ξ
1.0235

(0.0239)
1.0258

(0.0220)
1.0135

(0.0198)
1.0402

(0.0215)
0.8990

(0.0212)
0.8575

(0.0225)
0.9351

(0.0219)
0.9732

(0.0226)

Student’s t Distribution

µ
0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

φ
0.0240
(0.019)

0.0169
(0.019)

−0.0660
(0.018)

−0.0056
(0.017)

−0.0516
(0.018)

−0.0295
(0.019)

−0.0196
(0.020)

−0.0228
(0.018)

ω
0.0003
(0.000)

0.0002
(0.000)

0.0001
(0.000)

0.0011
(0.000)

0.0001
(0.000)

0.0001
(0.000)

0.0010
(0.000)

0.0001
(0.000)

α
0.0599
(0.009)

0.0440
(0.008)

0.1036
(0.029)

0.0842
(0.014)

0.0940
(0.014)

0.0764
(0.011)

0.0629
(0.009)

0.0514
(0.008)

β
0.9374
(0.010)

0.9611
(0.006)

0.8826
(0.037)

0.9087
(0.016)

0.8995
(0.013)

0.9190
(0.010)

0.9309
(0.012)

0.9494
(0.007)

γ
0.2804
(0.090)

0.4878
(0.140)

0.1524
(0.073)

0.4344
(0.112)

0.3965
(0.089)

0.4985
(0.108)

0.8705
(0.115)

0.4807
(0.115)

δ
1.1112
(0.253)

0.9558
(0.173)

1.6047
(0.266)

0.8777
(0.182)

1.2454
(0.235)

1.2586
(0.227)

0.7786
(0.180)

1.2967
(0.230)

ν
8.9644

(0.1609)
5.4858
(0.534)

5.9731
(0.315)

5.3611
(0.500)

7.0192
(0.854)

10.000
1.381

8.5843
(1.272)

8.1418
(1.068)

Skewed-t Distribution

µ
0.0000
(0.001)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

φ
0.0247
(0.020)

0.0170
(0.019)

−0.0663
(0.018)

−0.0042
(0.018)

−0.0547
(0.020)

−0.0335
(0.019)

−0.0226
(0.014)

−0.0227
(0.018)

ω
0.0003
(0.000)

0.0002
(0.000)

0.0001
(0.000)

0.0010
(0.000)

0.0001
(0.000)

0.0001
(0.000)

0.0010
(0.000)

0.0001
(0.000)

α
0.0604
(0.009)

0.0440
(0.008)

0.1040
(0.029)

0.0850
(0.014)

0.0939
(0.014)

0.0759
(0.011)

0.0613
(0.009)

0.0514
(0.008)

β
0.9369
(0.011)

0.9611
(0.006)

0.8819
(0.037)

0.9084
(0.016)

0.8985
(0.013)

0.9200
(0.010)

0.9324
(0.012)

0.9494
(0.007)

γ
0.2915
(0.091)

0.4885
(0.141)

0.1508
(0.074)

0.4317
(0.112)

0.3997
(0.089)

0.4903
(0.108)

0.8812
(0.116)

0.4808
(0.116)

δ
1.0959
(0.251)

0.9560
(0.173)

1.6053
(0.266)

0.8782
(0.183)

1.2520
(0.233)

1.2570
(0.219)

0.7915
(0.183)

1.2972
(0.231)

ν
8.8193
(1.553)

5.4835
(0.534)

5.9717
(0.315)

5.3631
(0.500)

7.2550
(0.914)

10.0000
(1.352)

8.4353
(1.239)

8.1419
(1.068)

λ
1.0373
(0.026)

0.9979
(0.025)

1.0150
(0.024)

1.0496
(0.028)

0.9347
(0.024)

0.8833
(0.025)

0.9256
(0.023)

1.0023
(0.026)

GED

µ
−0.0005
(0.000)

0.0007
(0.000)

0.0002
(0.000)

0.0004
(0.000)

0.0003
(0.000)

0.0004
(0.000)

0.0002
(0.000)

0.0004
(0.000)

φ
0.0192
(0.015)

0.0069
(0.018)

−0.0684
(0.017)

−0.0151
(0.020)

−0.0483
(0.019)

−0.0270
(0.020)

−0.0245
(0.005)

−0.0232
(0.019)
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Table A4. Cont.

Epistar Kingspan Boralex Nibe Exxon Chevron Total Schlumberger

ω
0.0005
(0.000)

0.0001
(0.000)

0.0000
(0.000)

0.0010
(0.001)

0.0001
(0.000)

0.0001
(0.000)

0.0011
(0.002)

0.0001
(0.000)

α
0.0550
(0.013)

0.0386
(0.002)

0.0412
(0.010)

0.0770
(0.014)

0.0933
(0.013)

0.0807
(0.011)

0.0551
(0.043)

0.0505
(0.007)

β
0.9378
(0.018)

0.9657
(0.000)

0.9536
(0.003)

0.9094
(0.018)

0.8958
(0.013)

0.9116
(0.011)

0.9416
(0.060)

0.9488
(0.006)

γ
0.3166
(0.104)

0.4740
(0.124)

0.2562
(0.067)

0.4785
(0.132)

0.3864
(0.088)

0.4722
(0.102)

0.8899
(0.355)

0.4355
(0.116)

δ
1.0750
(0.289)

0.9619
(0.060)

1.7863
(0.045)

0.9253
(0.210)

1.3296
(0.232)

1.2952
(0.218)

0.7131
(0.607)

1.2793
(0.223)

η
1.4721
(0.059)

1.3237
(0.046)

1.1369
(0.038)

1.2715
(0.041)

1.4668
(0.052)

1.7166
(0.064)

1.5221
(0.056)

1.4899
(0.052)

SGED

µ
−0.0003
(0.001)

0.0008
(0.000)

0.0003
(0.000)

0.0007
(0.000)

0.0001
(0.000)

0.0002
(0.000)

0.0001
(0.000)

0.0004
(0.000)

φ
0.0184
(0.020)

0.0075
(0.018)

−0.0704
(0.017)

−0.0130
(0.010)

−0.0565
(0.020)

−0.0303
(0.020) −0.0258(0.006)−0.0241

(0.019)

ω
0.0005
(0.000)

0.0001
(0.000)

0.0000
(0.000)

0.0010
(0.001)

0.0001
(0.000)

0.0001
(0.000)

0.0011
(0.001)

0.0001
(0.000)

α
0.0552
(0.014)

0.0388
(0.002)

0.0409
(0.018)

0.0785
(0.014)

0.0946
(0.014)

0.0794
(0.011)

0.0532
(0.003)

0.0504
(0.007)

β
0.9373
(0.019)

0.9656
(0.000)

0.9537
(0.002)

0.9088
(0.017)

0.8936
(0.013)

0.9133
(0.011)

0.9438
(0.003)

0.9488
(0.006)

γ
0.3225
(0.105)

0.4689
(0.124)

0.2533
(0.011)

0.4546
(0.124)

0.3995
(0.088)

0.4713
(0.101)

0.9123
(0.024)

0.4366
(0.116)

δ
1.0626
(0.289)

0.9603
(0.060)

1.7912
(0.109)

0.9259
(0.178)

1.3185
(0.234)

1.3070
(0.209)

0.7026
(0.129)

1.2759
(0.223)

η
1.4705
(0.059)

1.3252
(0.046)

1.1374
(0.038)

1.2718
(0.041)

1.4876
(0.053)

1.7570
(0.067)

1.5176
(0.056)

1.4911
(0.052)

ζ
1.0316
(0.024)

1.0082
(0.021)

1.0160
(0.023)

1.0526
(0.024)

0.9239
(0.023)

0.8652
(0.023)

0.9278
(0.022)

0.9878
(0.024)

Standard error in parentheses.

Table A5. Two-sample Kolmogorov-Smirnov tests, skewness and kurtosis estimation of standardized
residuals from AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1) and AR(1)-APARCH(1,1) models.

Normal Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

KS test Skewness Kurtosis KS test Skewness Kurtosis KS test Skewness Kurtosis

Epistar 0.34974 −0.02509 3.56091 0.58578 0.01060 3.51367 0.56405 0.01369 3.52055

Kingspan 0.00001 −0.02622 5.97671 0.00013 0.04630 5.45896 0.00011 0.05806 5.42608

Boralex 0.00644 −0.10020 6.77246 0.01180 0.01380 6.06245 0.00768 0.01185 6.06490

Nibe 0.00128 0.02981 8.25770 0.00157 0.09467 8.13498 0.00085 0.09749 7.76289

Exxon Mobil 0.00001 −0.32429 4.45371 0.00017 −0.33825 4.47172 0.00015 −0.33922 4.43026

Chevron 0.00001 −0.35244 3.87062 0.00003 −0.34835 3.76999 0.00003 −0.34522 3.73576

Total S.A 0.00095 −0.19559 4.09768 0.00914 −0.15077 3.87862 0.01180 −0.14697 3.83074

Schlumberger 0.00077 −0.14672 4.84447 0.00281 −0.13005 5.28481 0.00157 −0.15377 5.20671
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Skew-Normal Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

KS test Skewness Kurtosis KS test Skewness Kurtosis KS test Skewness Kurtosis

Epistar 0.34974 −0.02473 3.55932 0.54257 0.01167 3.51233 0.52138 0.01507 3.51885

Kingspan 0.00001 −0.02368 5.96416 0.00009 0.04878 5.45697 0.00009 0.06210 5.42004

Boralex 0.00492 −0.09972 6.76391 0.01085 0.01532 6.05871 0.00704 0.01297 6.05604

Nibe 0.00069 0.03401 8.26214 0.00095 0.10223 8.14003 0.00045 0.10469 7.75844

Exxon Mobil 0.00002 −0.32679 4.45798 0.00026 −0.34130 4.47621 0.00029 −0.34287 4.43726

Chevron 0.00001 −0.35726 3.88138 0.00005 −0.35196 3.78288 0.00004 −0.34844 3.74654

Total S.A 0.00128 −0.19884 4.10454 0.01515 −0.15259 3.88038 0.01180 −0.14812 3.83148

Schlumberger 0.00095 −0.14735 4.84126 0.00309 −0.13118 5.27491 0.00191 −0.15441 5.19833

Student’s t Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

KS test Skewness Kurtosis KS test Skewness Kurtosis KS test Skewness Kurtosis

Epistar 0.56405 −0.03986 3.70186 0.78183 0.00493 3.63943 0.73966 0.00840 3.64400

Kingspan 0.00007 −0.03756 6.03803 0.00033 0.06306 5.46181 0.00037 0.07129 5.44417

Boralex 0.07290 −0.19773 9.38079 0.05533 −0.11641 7.51664 0.07797 −0.10244 8.02954

Nibe 0.01284 0.04234 8.33048 0.03583 0.12275 8.24616 0.02645 0.12479 7.96779

Exxon Mobil 0.00000 −0.32580 4.48021 0.00003 −0.33700 4.48218 0.00002 −0.33900 4.45428

Chevron 0.00000 −0.35661 3.88572 0.00001 −0.35261 3.78892 0.00001 −0.34927 3.75188

Total S.A 0.00077 −0.19871 4.10470 0.00492 −0.15234 3.88005 0.00538 −0.14787 3.83225

Schlumberger 0.00041 −0.13753 4.89148 0.00173 −0.11563 5.50872 0.00142 −0.14305 5.42437

Skewed-t Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

KS test Skewness Kurtosis KS test Skewness Kurtosis KS test Skewness Kurtosis

Epistar 0.34974 −0.03887 3.69955 0.60772 0.00666 3.63809 0.58578 0.01031 3.64268

Kingspan 0.00003 −0.03578 6.02867 0.00021 0.06330 5.46192 0.00023 0.07161 5.44377

Boralex 0.02264 −0.19364 9.33015 0.03325 −0.11992 7.56109 0.04153 −0.10409 8.04632

Nibe 0.00173 0.04592 8.33099 0.00538 0.12563 8.23526 0.00340 0.12700 7.95628

Exxon Mobil 0.00002 −0.32652 4.48299 0.00011 −0.33788 4.48242 0.00012 −0.34041 4.45491

Chevron 0.00001 −0.35987 3.89653 0.00004 −0.35530 3.79812 0.00002 −0.35118 3.75814

Total S.A 0.00173 −0.20179 4.11535 0.01932 −0.15329 3.88020 0.01515 −0.14829 3.83103

Schlumberger 0.00041 −0.13768 4.89171 0.00173 −0.11566 5.50729 0.00142 −0.14302 5.42275

GED

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

KS test Skewness Kurtosis KS test Skewness Kurtosis KS test Skewness Kurtosis

Epistar 0.71801 −0.03908 3.65905 0.62978 0.00483 3.60380 0.62978 0.00927 3.60931

Kingspan 0.00002 −0.03973 6.04344 0.00011 0.05276 5.46952 0.00011 0.06141 5.44694

Boralex 0.01782 −0.12891 7.32284 0.01395 −0.04801 6.60500 0.00838 −0.02864 6.57144

Nibe 0.01395 0.03481 8.26940 0.03325 0.10989 8.18071 0.02857 0.11132 7.89423

Exxon Mobil 0.00000 −0.32378 4.46475 0.00006 −0.33762 4.47545 0.00004 −0.33892 4.44059

Chevron 0.00000 −0.35507 3.87463 0.00001 −0.35064 3.77825 0.00001 −0.34756 3.74339

Total S.A 0.00037 −0.19835 4.09900 0.00309 −0.15231 3.87994 0.00492 −0.14817 3.83287

Schlumberger 0.00062 −0.14245 4.86641 0.00173 −0.12185 5.39927 0.00128 −0.14757 5.31753
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SGED

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

KS test Skewness Kurtosis KS test Skewness Kurtosis KS test Skewness Kurtosis

Epistar 0.50054 −0.03816 3.65581 0.60772 0.00624 3.60313 0.56405 0.01103 3.60817

Kingspan 0.00001 −0.03759 6.03233 0.00008 0.05335 5.46925 0.00007 0.06230 5.44584

Boralex 0.00838 −0.12663 7.30907 0.00644 −0.04804 6.60818 0.00538 −0.02765 6.56856

Nibe 0.00142 0.03907 8.27474 0.00644 0.11483 8.17757 0.00538 0.11561 7.89235

Exxon Mobil 0.00003 −0.32639 4.46975 0.00023 −0.33964 4.47782 0.00017 −0.34140 4.44407

Chevron 0.00001 −0.35879 3.88791 0.00005 −0.35397 3.79038 0.00003 −0.35002 3.75210

Total S.A 0.00142 −0.20169 4.11009 0.01395 −0.15356 3.88053 0.01515 −0.14836 3.83142

Schlumberger 0.00085 −0.14257 4.86469 0.00173 −0.12218 5.39494 0.00157 −0.14773 5.31342

KS test column shows p-values in two-sample Kolmogorov-Smirnov test. The null hypothesis indicates that
standardized returns and standardized residuals were drawn from the same continuous distribution.
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Table A6. Ljung-Box test of standardized residuals from AR(1)-GARCH(1,1), AR(1)-GARCH(1,1) and AR(1)-APARCH(1,1) models.

Normal Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.75 0.57 0.66 0.60 0.64 0.97 0.66 0.66 0.63 0.65 0.85 0.60 0.90 0.52 0.96 0.68 0.64 0.61 0.93 0.75 0.73 0.65 0.98 0.74

2 0.94 0.68 0.90 0.79 0.86 0.40 0.85 0.50 0.89 0.61 0.97 0.81 0.99 0.50 0.97 0.55 0.90 0.59 1.00 0.88 0.92 0.52 0.97 0.54

3 0.93 0.78 0.97 0.63 0.59 0.46 0.85 0.20 0.89 0.73 0.99 0.65 0.71 0.63 0.89 0.21 0.90 0.70 1.00 0.74 0.61 0.62 0.87 0.18

4 0.58 0.31 0.99 0.27 0.71 0.58 0.92 0.29 0.57 0.35 1.00 0.27 0.81 0.73 0.96 0.28 0.58 0.36 1.00 0.31 0.71 0.71 0.95 0.26

5 0.71 0.10 0.48 0.31 0.44 0.67 0.97 0.30 0.70 0.10 0.53 0.33 0.64 0.84 0.98 0.35 0.71 0.10 0.52 0.37 0.59 0.82 0.98 0.31

6 0.77 0.08 0.59 0.43 0.56 0.47 0.94 0.19 0.77 0.06 0.66 0.45 0.75 0.59 0.97 0.20 0.78 0.07 0.64 0.49 0.70 0.56 0.97 0.17

7 0.64 0.11 0.70 0.37 0.59 0.57 0.97 0.26 0.62 0.09 0.76 0.36 0.75 0.69 0.99 0.25 0.63 0.10 0.75 0.38 0.73 0.67 0.98 0.23

8 0.58 0.15 0.12 0.47 0.49 0.45 0.77 0.27 0.54 0.12 0.10 0.47 0.57 0.59 0.82 0.29 0.55 0.14 0.11 0.48 0.59 0.55 0.84 0.25

12 0.84 0.09 0.11 0.27 0.58 0.61 0.44 0.29 0.82 0.06 0.08 0.27 0.69 0.69 0.50 0.33 0.84 0.06 0.09 0.25 0.69 0.65 0.49 0.28

20 0.45 0.08 0.23 0.23 0.49 0.45 0.52 0.40 0.44 0.04 0.21 0.22 0.59 0.58 0.67 0.43 0.46 0.05 0.24 0.23 0.61 0.55 0.68 0.41

Skew-Normal Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.78 0.59 0.67 0.63 0.39 0.54 0.46 0.58 0.66 0.66 0.83 0.61 0.63 0.79 0.95 0.64 0.67 0.61 0.92 0.76 0.61 0.92 0.99 0.70

2 0.95 0.69 0.91 0.81 0.67 0.34 0.71 0.48 0.91 0.61 0.97 0.81 0.89 0.59 0.96 0.54 0.91 0.59 0.99 0.88 0.86 0.57 0.96 0.53

3 0.93 0.79 0.97 0.64 0.50 0.41 0.76 0.19 0.90 0.73 0.99 0.65 0.68 0.71 0.89 0.21 0.90 0.70 1.00 0.74 0.60 0.66 0.87 0.18

4 0.59 0.32 0.99 0.28 0.63 0.53 0.87 0.28 0.58 0.35 1.00 0.27 0.78 0.80 0.96 0.28 0.59 0.36 1.00 0.31 0.70 0.75 0.95 0.26

5 0.71 0.11 0.48 0.32 0.39 0.64 0.94 0.30 0.70 0.10 0.53 0.33 0.63 0.89 0.98 0.35 0.71 0.10 0.52 0.37 0.59 0.85 0.98 0.31

6 0.77 0.08 0.59 0.44 0.51 0.44 0.91 0.19 0.77 0.06 0.65 0.45 0.73 0.64 0.97 0.20 0.78 0.07 0.64 0.50 0.70 0.58 0.97 0.17

7 0.64 0.12 0.70 0.37 0.54 0.55 0.95 0.26 0.62 0.09 0.76 0.37 0.74 0.73 0.99 0.25 0.63 0.10 0.74 0.38 0.73 0.69 0.98 0.23

8 0.58 0.15 0.12 0.48 0.45 0.43 0.74 0.26 0.55 0.12 0.10 0.47 0.56 0.62 0.82 0.29 0.55 0.14 0.11 0.48 0.59 0.57 0.84 0.25

12 0.84 0.10 0.11 0.28 0.54 0.60 0.42 0.28 0.83 0.06 0.08 0.27 0.68 0.73 0.51 0.33 0.84 0.06 0.09 0.25 0.69 0.67 0.50 0.28

20 0.45 0.08 0.23 0.23 0.46 0.44 0.50 0.39 0.44 0.04 0.21 0.22 0.57 0.60 0.67 0.43 0.46 0.05 0.23 0.24 0.61 0.56 0.69 0.41

Student’s t Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.17 0.23 0.20 0.39 0.61 0.82 0.53 0.55 0.13 0.27 0.16 0.56 0.88 0.73 0.79 0.65 0.13 0.27 0.23 0.60 0.77 0.88 0.81 0.63

2 0.38 0.38 0.38 0.61 0.84 0.40 0.76 0.45 0.32 0.38 0.35 0.75 0.98 0.59 0.94 0.52 0.32 0.37 0.43 0.77 0.93 0.59 0.95 0.49

3 0.54 0.52 0.56 0.54 0.58 0.46 0.79 0.18 0.47 0.52 0.54 0.64 0.69 0.69 0.87 0.18 0.47 0.50 0.61 0.69 0.60 0.66 0.85 0.15

4 0.36 0.19 0.72 0.23 0.70 0.58 0.89 0.26 0.32 0.24 0.71 0.29 0.79 0.79 0.95 0.24 0.33 0.25 0.77 0.31 0.71 0.75 0.94 0.21

5 0.49 0.05 0.36 0.28 0.45 0.68 0.95 0.29 0.45 0.07 0.35 0.36 0.63 0.88 0.98 0.32 0.45 0.08 0.40 0.39 0.59 0.85 0.98 0.28
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6 0.58 0.04 0.48 0.39 0.57 0.47 0.92 0.19 0.54 0.04 0.47 0.48 0.74 0.64 0.96 0.19 0.55 0.05 0.53 0.51 0.71 0.60 0.96 0.16

7 0.47 0.06 0.60 0.33 0.60 0.58 0.96 0.25 0.44 0.07 0.59 0.40 0.75 0.73 0.98 0.24 0.44 0.08 0.64 0.41 0.73 0.70 0.98 0.21

8 0.43 0.08 0.18 0.43 0.49 0.45 0.75 0.27 0.39 0.10 0.13 0.50 0.57 0.63 0.80 0.28 0.39 0.11 0.17 0.52 0.59 0.59 0.83 0.23

12 0.73 0.06 0.11 0.27 0.57 0.62 0.43 0.30 0.70 0.05 0.09 0.30 0.69 0.73 0.47 0.33 0.72 0.05 0.11 0.29 0.69 0.69 0.47 0.27

20 0.39 0.05 0.22 0.22 0.50 0.45 0.51 0.40 0.38 0.03 0.19 0.24 0.59 0.59 0.65 0.43 0.39 0.03 0.24 0.25 0.62 0.56 0.67 0.40

Skewed-t Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.17 0.23 0.20 0.39 0.61 0.82 0.53 0.55 0.13 0.27 0.16 0.56 0.88 0.73 0.79 0.65 0.13 0.27 0.23 0.60 0.77 0.88 0.81 0.63

2 0.38 0.38 0.38 0.61 0.84 0.40 0.76 0.45 0.32 0.38 0.35 0.75 0.98 0.59 0.94 0.52 0.32 0.37 0.43 0.77 0.93 0.59 0.95 0.49

3 0.54 0.52 0.56 0.54 0.58 0.46 0.79 0.18 0.47 0.52 0.54 0.64 0.69 0.69 0.87 0.18 0.47 0.50 0.61 0.69 0.60 0.66 0.85 0.15

4 0.36 0.19 0.72 0.23 0.70 0.58 0.89 0.26 0.32 0.24 0.71 0.29 0.79 0.79 0.95 0.24 0.33 0.25 0.77 0.31 0.71 0.75 0.94 0.21

5 0.49 0.05 0.36 0.28 0.45 0.68 0.95 0.29 0.45 0.07 0.35 0.36 0.63 0.88 0.98 0.32 0.45 0.08 0.40 0.39 0.59 0.85 0.98 0.28

6 0.58 0.04 0.48 0.39 0.57 0.47 0.92 0.19 0.54 0.04 0.47 0.48 0.74 0.64 0.96 0.19 0.55 0.05 0.53 0.51 0.71 0.60 0.96 0.16

7 0.47 0.06 0.60 0.33 0.60 0.58 0.96 0.25 0.44 0.07 0.59 0.40 0.75 0.73 0.98 0.24 0.44 0.08 0.64 0.41 0.73 0.70 0.98 0.21

8 0.43 0.08 0.18 0.43 0.49 0.45 0.75 0.27 0.39 0.10 0.13 0.50 0.57 0.63 0.80 0.28 0.39 0.11 0.17 0.52 0.59 0.59 0.83 0.23

12 0.73 0.06 0.11 0.27 0.57 0.62 0.43 0.30 0.70 0.05 0.09 0.30 0.69 0.73 0.47 0.33 0.72 0.05 0.11 0.29 0.69 0.69 0.47 0.27

20 0.39 0.05 0.22 0.22 0.50 0.45 0.51 0.40 0.38 0.03 0.19 0.24 0.59 0.59 0.65 0.43 0.39 0.03 0.24 0.25 0.62 0.56 0.67 0.40

GED

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.07 0.15 0.38 0.21 0.79 0.73 0.43 0.43 0.05 0.23 0.37 0.33 0.99 0.77 0.74 0.54 0.05 0.22 0.47 0.36 0.89 0.93 0.71 0.53

2 0.18 0.27 0.68 0.41 0.92 0.39 0.69 0.41 0.16 0.33 0.67 0.56 1.00 0.60 0.92 0.49 0.15 0.32 0.76 0.59 0.96 0.60 0.92 0.46

3 0.30 0.40 0.84 0.39 0.62 0.45 0.74 0.16 0.26 0.46 0.84 0.51 0.71 0.71 0.85 0.18 0.25 0.44 0.90 0.57 0.62 0.67 0.83 0.15

4 0.20 0.15 0.94 0.16 0.73 0.57 0.85 0.24 0.18 0.21 0.93 0.22 0.80 0.80 0.94 0.24 0.18 0.21 0.96 0.25 0.72 0.76 0.93 0.22

5 0.30 0.04 0.45 0.20 0.46 0.67 0.93 0.27 0.28 0.06 0.48 0.29 0.64 0.89 0.97 0.32 0.27 0.06 0.50 0.32 0.60 0.86 0.97 0.28

6 0.38 0.03 0.57 0.29 0.58 0.47 0.90 0.17 0.36 0.03 0.61 0.40 0.74 0.65 0.96 0.18 0.36 0.04 0.63 0.43 0.71 0.60 0.96 0.15

7 0.31 0.05 0.68 0.25 0.61 0.57 0.95 0.24 0.29 0.05 0.72 0.33 0.75 0.74 0.98 0.23 0.28 0.06 0.74 0.35 0.74 0.71 0.98 0.20

8 0.28 0.06 0.14 0.34 0.50 0.46 0.72 0.25 0.25 0.08 0.13 0.43 0.57 0.64 0.79 0.27 0.25 0.08 0.14 0.45 0.59 0.60 0.82 0.23

12 0.57 0.04 0.11 0.21 0.58 0.62 0.40 0.28 0.55 0.04 0.09 0.26 0.69 0.74 0.46 0.32 0.55 0.04 0.10 0.26 0.69 0.69 0.46 0.27

20 0.28 0.04 0.23 0.18 0.50 0.45 0.49 0.38 0.28 0.02 0.21 0.21 0.59 0.60 0.64 0.43 0.28 0.03 0.24 0.23 0.62 0.57 0.66 0.40
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SGED

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.07 0.16 0.33 0.30 0.42 0.47 0.29 0.41 0.05 0.23 0.34 0.39 0.59 0.96 0.63 0.51 0.05 0.23 0.41 0.43 0.57 0.92 0.66 0.49

2 0.19 0.29 0.62 0.52 0.69 0.32 0.54 0.40 0.14 0.33 0.63 0.63 0.87 0.62 0.87 0.48 0.14 0.33 0.71 0.66 0.83 0.58 0.88 0.45

3 0.31 0.42 0.80 0.47 0.51 0.39 0.63 0.16 0.24 0.46 0.81 0.55 0.66 0.73 0.83 0.17 0.23 0.45 0.86 0.60 0.58 0.67 0.83 0.15

4 0.20 0.15 0.91 0.19 0.63 0.52 0.77 0.24 0.17 0.21 0.92 0.23 0.76 0.81 0.93 0.24 0.17 0.22 0.94 0.26 0.69 0.76 0.92 0.21

5 0.30 0.04 0.43 0.24 0.40 0.62 0.87 0.26 0.26 0.06 0.46 0.30 0.62 0.90 0.97 0.31 0.25 0.06 0.48 0.33 0.58 0.86 0.97 0.27

6 0.39 0.03 0.55 0.34 0.52 0.43 0.85 0.17 0.34 0.03 0.59 0.41 0.73 0.65 0.95 0.18 0.34 0.04 0.61 0.45 0.69 0.59 0.96 0.15

7 0.31 0.05 0.66 0.29 0.55 0.54 0.91 0.23 0.27 0.05 0.70 0.34 0.74 0.74 0.98 0.23 0.27 0.06 0.72 0.36 0.73 0.70 0.98 0.20

8 0.28 0.07 0.13 0.38 0.45 0.42 0.68 0.24 0.24 0.08 0.12 0.44 0.56 0.63 0.80 0.27 0.24 0.09 0.13 0.46 0.58 0.58 0.82 0.23

12 0.58 0.04 0.10 0.24 0.55 0.59 0.38 0.28 0.53 0.04 0.08 0.26 0.68 0.74 0.48 0.32 0.54 0.04 0.10 0.26 0.68 0.68 0.48 0.27

20 0.29 0.04 0.22 0.20 0.47 0.43 0.47 0.38 0.27 0.02 0.20 0.22 0.58 0.60 0.65 0.43 0.27 0.03 0.23 0.23 0.61 0.57 0.68 0.39

Figures correspond to p-values for the Ljung-Box test, which null hypothesis is the absence of autocorrelation, m stands for lag order.

Table A7. Ljung-Box test of standardized squared residuals from AR(1)-GARCH(1,1), AR(1)-GARCH(1,1) and AR(1)-APARCH(1,1) models.

Normal Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.15 0.00 0.00 0.72 0.28 0.17 0.24 0.60 0.19 0.00 0.00 0.09 0.43 0.22 0.38 0.57 0.23 0.00 0.00 0.03 0.30 0.16 0.58 0.98

2 0.25 0.01 0.00 0.93 0.08 0.01 0.36 0.30 0.36 0.01 0.00 0.22 0.25 0.15 0.40 0.34 0.43 0.01 0.00 0.09 0.34 0.12 0.26 0.45

3 0.43 0.03 0.00 0.75 0.17 0.02 0.26 0.48 0.56 0.02 0.00 0.26 0.43 0.09 0.48 0.53 0.64 0.02 0.00 0.12 0.54 0.07 0.26 0.63

4 0.38 0.04 0.00 0.78 0.28 0.03 0.23 0.62 0.39 0.04 0.00 0.39 0.58 0.14 0.36 0.68 0.41 0.03 0.00 0.21 0.71 0.10 0.21 0.77

5 0.19 0.06 0.00 0.83 0.40 0.05 0.34 0.50 0.22 0.04 0.00 0.53 0.72 0.18 0.50 0.62 0.22 0.04 0.00 0.32 0.82 0.16 0.32 0.64

6 0.26 0.08 0.00 0.90 0.51 0.07 0.30 0.62 0.31 0.08 0.00 0.65 0.78 0.21 0.28 0.74 0.31 0.07 0.00 0.43 0.86 0.18 0.15 0.76

7 0.18 0.12 0.00 0.95 0.48 0.08 0.11 0.54 0.25 0.12 0.00 0.73 0.79 0.28 0.15 0.53 0.25 0.11 0.00 0.52 0.84 0.24 0.10 0.52

8 0.23 0.17 0.00 0.97 0.41 0.06 0.16 0.65 0.27 0.18 0.00 0.82 0.41 0.12 0.22 0.62 0.26 0.16 0.00 0.62 0.49 0.10 0.15 0.63

12 0.35 0.37 0.00 0.99 0.44 0.03 0.29 0.82 0.36 0.39 0.00 0.95 0.26 0.03 0.39 0.74 0.36 0.36 0.00 0.85 0.40 0.02 0.32 0.79

20 0.12 0.41 0.00 1.00 0.65 0.15 0.61 0.85 0.20 0.33 0.00 0.99 0.70 0.14 0.69 0.84 0.18 0.28 0.00 0.97 0.77 0.12 0.63 0.89
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Skew-Normal Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.15 0.00 0.00 0.73 0.27 0.16 0.28 0.60 0.19 0.00 0.00 0.10 0.42 0.25 0.43 0.57 0.23 0.00 0.00 0.03 0.29 0.17 0.61 0.98

2 0.25 0.01 0.00 0.94 0.10 0.02 0.38 0.31 0.36 0.01 0.00 0.25 0.30 0.13 0.39 0.34 0.43 0.01 0.00 0.10 0.37 0.11 0.24 0.45

3 0.42 0.03 0.00 0.74 0.20 0.02 0.24 0.49 0.56 0.02 0.00 0.28 0.49 0.09 0.45 0.53 0.64 0.02 0.00 0.12 0.58 0.07 0.23 0.63

4 0.38 0.04 0.00 0.78 0.32 0.04 0.21 0.62 0.39 0.04 0.00 0.41 0.64 0.14 0.32 0.68 0.41 0.04 0.00 0.21 0.74 0.10 0.18 0.77

5 0.19 0.06 0.00 0.82 0.45 0.06 0.32 0.50 0.22 0.05 0.00 0.54 0.77 0.18 0.45 0.63 0.22 0.04 0.00 0.32 0.84 0.15 0.28 0.64

6 0.26 0.08 0.00 0.90 0.57 0.07 0.26 0.63 0.32 0.08 0.00 0.67 0.82 0.21 0.24 0.75 0.32 0.07 0.00 0.44 0.88 0.18 0.12 0.76

7 0.19 0.13 0.00 0.94 0.52 0.08 0.10 0.54 0.26 0.13 0.00 0.75 0.83 0.28 0.13 0.53 0.26 0.12 0.00 0.53 0.86 0.23 0.08 0.52

8 0.23 0.18 0.00 0.97 0.45 0.07 0.15 0.65 0.28 0.19 0.00 0.83 0.42 0.12 0.19 0.62 0.27 0.17 0.00 0.63 0.48 0.10 0.13 0.63

12 0.35 0.38 0.00 0.99 0.49 0.04 0.27 0.82 0.36 0.40 0.00 0.95 0.26 0.03 0.35 0.74 0.36 0.37 0.00 0.85 0.38 0.02 0.28 0.79

20 0.12 0.41 0.00 1.00 0.69 0.18 0.59 0.85 0.20 0.33 0.00 0.99 0.70 0.13 0.65 0.84 0.18 0.28 0.00 0.97 0.76 0.12 0.58 0.89

Student’s t Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.37 0.00 0.14 0.57 0.23 0.21 0.34 0.70 0.40 0.01 0.00 0.07 0.37 0.29 0.39 0.48 0.47 0.01 0.02 0.05 0.27 0.20 0.62 0.79

2 0.62 0.01 0.28 0.83 0.10 0.01 0.36 0.31 0.69 0.02 0.00 0.19 0.28 0.10 0.38 0.40 0.77 0.02 0.07 0.13 0.34 0.10 0.22 0.50

3 0.78 0.02 0.34 0.72 0.19 0.02 0.19 0.49 0.84 0.04 0.00 0.22 0.46 0.08 0.45 0.57 0.87 0.04 0.09 0.15 0.53 0.07 0.22 0.66

4 0.43 0.03 0.43 0.77 0.32 0.03 0.15 0.64 0.36 0.06 0.00 0.34 0.62 0.13 0.34 0.73 0.34 0.06 0.14 0.25 0.70 0.10 0.18 0.80

5 0.14 0.0 0.58 0.83 0.44 0.05 0.24 0.49 0.15 0.08 0.00 0.47 0.75 0.16 0.48 0.64 0.13 0.07 0.23 0.37 0.81 0.15 0.28 0.66

6 0.18 0.06 0.67 0.91 0.56 0.06 0.18 0.62 0.20 0.13 0.01 0.60 0.81 0.19 0.27 0.76 0.18 0.12 0.29 0.49 0.85 0.17 0.13 0.77

7 0.09 0.10 0.77 0.95 0.49 0.07 0.07 0.56 0.13 0.19 0.01 0.69 0.81 0.26 0.14 0.54 0.11 0.18 0.39 0.59 0.82 0.23 0.09 0.52

8 0.14 0.15 0.77 0.98 0.47 0.06 0.11 0.66 0.16 0.27 0.01 0.78 0.49 0.11 0.20 0.63 0.14 0.25 0.39 0.69 0.53 0.09 0.13 0.63

12 0.23 0.36 0.87 0.98 0.54 0.03 0.21 0.84 0.23 0.48 0.03 0.93 0.37 0.03 0.37 0.80 0.21 0.45 0.51 0.88 0.47 0.02 0.28 0.82

20 0.10 0.42 0.34 0.99 0.69 0.15 0.51 0.85 0.17 0.36 0.01 0.98 0.78 0.13 0.68 0.87 0.14 0.32 0.15 0.97 0.81 0.12 0.59 0.91

Skewed-t Distribution

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.37 0.00 0.14 0.57 0.23 0.21 0.34 0.70 0.40 0.01 0.00 0.07 0.37 0.29 0.39 0.48 0.47 0.01 0.02 0.05 0.27 0.20 0.62 0.79

2 0.62 0.01 0.28 0.83 0.10 0.01 0.36 0.31 0.69 0.02 0.00 0.19 0.28 0.10 0.38 0.40 0.77 0.02 0.07 0.13 0.34 0.10 0.22 0.50

3 0.78 0.02 0.34 0.72 0.19 0.02 0.19 0.49 0.84 0.04 0.00 0.22 0.46 0.08 0.45 0.57 0.87 0.04 0.09 0.15 0.53 0.07 0.22 0.66

4 0.43 0.03 0.43 0.77 0.32 0.03 0.15 0.64 0.36 0.06 0.00 0.34 0.62 0.13 0.34 0.73 0.34 0.06 0.14 0.25 0.70 0.10 0.18 0.80
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5 0.14 0.05 0.58 0.83 0.44 0.05 0.24 0.49 0.15 0.08 0.00 0.47 0.75 0.16 0.48 0.64 0.13 0.07 0.23 0.37 0.81 0.15 0.28 0.66

6 0.18 0.06 0.67 0.91 0.56 0.06 0.18 0.62 0.20 0.13 0.01 0.60 0.81 0.19 0.27 0.76 0.18 0.12 0.29 0.49 0.85 0.17 0.13 0.77

7 0.09 0.10 0.77 0.95 0.49 0.07 0.07 0.56 0.13 0.19 0.01 0.69 0.81 0.26 0.14 0.54 0.11 0.18 0.39 0.59 0.82 0.23 0.09 0.52

8 0.14 0.15 0.77 0.98 0.47 0.06 0.11 0.66 0.16 0.27 0.01 0.78 0.49 0.11 0.20 0.63 0.14 0.25 0.39 0.69 0.53 0.09 0.13 0.63

12 0.23 0.36 0.87 0.98 0.54 0.03 0.21 0.84 0.23 0.48 0.03 0.93 0.37 0.03 0.37 0.80 0.21 0.45 0.51 0.88 0.47 0.02 0.28 0.82

20 0.10 0.42 0.34 0.99 0.69 0.15 0.51 0.85 0.17 0.36 0.01 0.98 0.78 0.13 0.68 0.87 0.14 0.32 0.15 0.97 0.81 0.12 0.59 0.91

GED

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.24 0.00 0.00 0.63 0.25 0.19 0.29 0.67 0.30 0.01 0.00 0.09 0.40 0.25 0.39 0.50 0.34 0.00 0.00 0.05 0.28 0.18 0.60 0.83

2 0.43 0.01 0.00 0.88 0.08 0.01 0.36 0.31 0.55 0.01 0.00 0.22 0.26 0.13 0.37 0.37 0.62 0.01 0.00 0.14 0.33 0.11 0.23 0.47

3 0.63 0.02 0.00 0.73 0.17 0.02 0.22 0.50 0.74 0.03 0.00 0.24 0.44 0.09 0.45 0.55 0.79 0.03 0.00 0.16 0.53 0.07 0.23 0.65

4 0.42 0.03 0.00 0.78 0.28 0.03 0.18 0.64 0.38 0.05 0.00 0.37 0.60 0.14 0.34 0.71 0.37 0.05 0.00 0.27 0.70 0.10 0.19 0.78

5 0.15 0.05 0.00 0.84 0.41 0.05 0.28 0.50 0.16 0.06 0.00 0.51 0.73 0.17 0.48 0.63 0.15 0.06 0.00 0.40 0.81 0.15 0.29 0.65

6 0.20 0.07 0.00 0.91 0.52 0.06 0.23 0.62 0.23 0.11 0.00 0.64 0.79 0.21 0.27 0.75 0.21 0.10 0.00 0.52 0.85 0.18 0.13 0.76

7 0.12 0.10 0.00 0.95 0.47 0.07 0.09 0.55 0.16 0.16 0.00 0.72 0.80 0.28 0.15 0.54 0.15 0.15 0.00 0.61 0.83 0.24 0.09 0.52

8 0.16 0.15 0.00 0.98 0.43 0.06 0.13 0.66 0.19 0.23 0.00 0.81 0.43 0.11 0.21 0.63 0.17 0.22 0.00 0.71 0.50 0.09 0.14 0.63

12 0.28 0.36 0.00 0.99 0.47 0.03 0.24 0.84 0.28 0.45 0.00 0.95 0.30 0.03 0.37 0.78 0.27 0.42 0.01 0.90 0.42 0.02 0.29 0.81

20 0.11 0.42 0.00 1.00 0.67 0.15 0.56 0.85 0.18 0.35 0.00 0.99 0.73 0.13 0.69 0.86 0.16 0.31 0.00 0.98 0.78 0.11 0.60 0.90

SGED

AR(1)-GARCH(1,1) AR(1)-EGARCH(1,1) AR(1)-APARCH(1,1)

m Epistar King
span Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar Kingspan Boralex Nibe Exxon

Mobil Chevron Total
S.A

Schlum
berger Epistar King

span Boralex Nibe Exxon
Mobil Chevron Total

S.A
Schlum
berger

1 0.24 0.00 0.00 0.64 0.26 0.18 0.34 0.67 0.30 0.01 0.00 0.10 0.42 0.27 0.44 0.49 0.34 0.00 0.00 0.05 0.29 0.18 0.65 0.82

2 0.43 0.01 0.00 0.88 0.10 0.01 0.38 0.31 0.55 0.01 0.00 0.23 0.31 0.11 0.38 0.37 0.61 0.01 0.00 0.15 0.38 0.10 0.22 0.47

3 0.63 0.02 0.00 0.73 0.20 0.02 0.21 0.50 0.75 0.03 0.00 0.26 0.51 0.09 0.43 0.55 0.79 0.03 0.00 0.17 0.58 0.07 0.20 0.64

4 0.43 0.03 0.00 0.78 0.32 0.03 0.16 0.64 0.38 0.05 0.00 0.39 0.66 0.14 0.31 0.71 0.37 0.05 0.00 0.28 0.74 0.10 0.16 0.78

5 0.16 0.05 0.00 0.83 0.45 0.05 0.26 0.49 0.16 0.06 0.00 0.52 0.79 0.17 0.44 0.63 0.15 0.06 0.00 0.40 0.85 0.15 0.25 0.65

6 0.21 0.07 0.00 0.91 0.57 0.07 0.20 0.62 0.23 0.11 0.00 0.65 0.84 0.20 0.23 0.75 0.22 0.10 0.00 0.53 0.88 0.18 0.11 0.76

7 0.12 0.11 0.00 0.95 0.51 0.07 0.08 0.55 0.16 0.16 0.00 0.74 0.84 0.27 0.12 0.54 0.15 0.15 0.00 0.62 0.86 0.23 0.07 0.52

8 0.17 0.16 0.00 0.97 0.46 0.06 0.12 0.66 0.19 0.23 0.00 0.82 0.46 0.11 0.18 0.63 0.18 0.22 0.00 0.72 0.51 0.09 0.11 0.63

12 0.29 0.37 0.00 0.99 0.52 0.04 0.23 0.84 0.28 0.46 0.00 0.95 0.30 0.03 0.33 0.78 0.27 0.43 0.01 0.90 0.42 0.02 0.25 0.80

20 0.12 0.42 0.00 1.00 0.70 0.17 0.53 0.85 0.19 0.36 0.00 0.99 0.74 0.12 0.64 0.86 0.16 0.31 0.00 0.98 0.79 0.12 0.55 0.90

Figures correspond to p-values for the Ljung-Box test, which null hypothesis is the absence of autocorrelation, m stands for lag order.
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Figure A1. Prices for different energy stocks.
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