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Abstract: The development of prediction tools for production performance and the lifespan of shale
gas reservoirs has been a focus for petroleum engineers. Several decline curve models have been
developed and compared with data from shale gas production. To accurately forecast the estimated
ultimate recovery for shale gas reservoirs, consistent and accurate decline curve modelling is required.
In this paper, the current decline curve models are evaluated using the goodness of fit as a measure
of accuracy with field data. The evaluation found that there are advantages in using the current
DCA models; however, they also have limitations associated with them that have to be addressed.
Based on the accuracy assessment conducted on the different models, it appears that the Stretched
Exponential Decline Model (SEDM) and Logistic Growth Model (LGM), followed by the Extended
Exponential Decline Model (EEDM), the Power Law Exponential Model (PLE), the Doung’s Model,
and lastly, the Arps Hyperbolic Decline Model, provide the best fit with production data.

Keywords: valuation; shale gas reservoirs (SGR); decline curve models; decline curve analysis (DCA);
estimated ultimate recovery (EUR)

1. Introduction

In recent years, shale gas reservoirs (SGR) or unconventional reservoirs have steadily become the
main bases of natural gas production around the world [1]. Wang [2] notes that shales and sediments
are the richest sedimentary rocks in the Earth’s crust and, according to recent activities, shale gas will
constitute the largest component in gas production globally, as conventional reservoirs continually
decrease. It is further mentioned by Wang [2] that SGR, unlike conventional reservoirs, tend to be more
costly to develop and require special tools to enable the gas to be produced at a cost-effective rate due
to their extremely low matrix permeability and porosity [3]. Accordingly, the modelling of shale gas
production and its decline is essential to predict how fast the gas can be produced and turned into
revenue from each well, as well as the feasibility of producing natural gas from operated shale plays
from a cost perspective [2].

Currently, the oldest and most commonly used tool for the modelling of shale gas production is
the rate versus time decline curve estimation due to its ease. Current efforts in decline curve analysis
(DCA) have been concentrating on a computer statistical approach, the basic objective being to arrive at
a distinctive “unbiased” interpretation [2]. In recent years, several DCA models have been suggested
and compared with previous shale gas production figures, prior to being used on more reservoirs [4].
This paper focusses on the evaluation and sensitivity of the current DCA models and proposes a new
hybrid model to be investigated in SGR decline analysis. The main ideas are (a) to characterise and
evaluate the current decline curve models used to explain shale gas reservoir forecasting and (b) use
the goodness-of-fit regression test to assess the sensitivity of the decline curve models in (a).
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2. Overview of Shale Gas Production

Yuan et al. [5] specified that due to the rise in energy demand and the decrease in conventional oil
and gas production, shale gas has received increasing attention worldwide. Shale gas presently makes
up more than 20% of the drilled gas production in the United States (US) [6]. The manipulation of shale
gas is land-based and generally requires a sizeable quantity of wells to achieve beneficial recovery
rates [6]. Nwaobi and Anandarajah [7] explained that shale gas reservoir production and viability have
been investigated globally but that progress has been slow due to a number of concerns, one of which is
a precise production forecast. Nwaobi and Anandarajah [7] went on to define that the quantity of shale
gas reserve that can be recovered is the estimated ultimate recovery (EUR) for the petroleum industry.
The EUR is a key factor for stakeholders and policymakers in evaluating petroleum resources [7].

Shale gas production has been vital in providing the US, which was formerly a natural gas
importer, with the ability to export natural gas [5]. This development aided the US to effectively ensure
its energy security and decrease its carbon emissions considerably. Canada has become the second
nation to attain viable exploitation of its shale gas reserves. The positive development of shale gas in
Canada has resuscitated the nation’s natural gas production, which had formerly experienced a rapid
decrease [5].

3. Characteristics and Production Behavior of Shale Gas

Shale gas reservoir possesses the characteristics such as ultra-low permeability, no trap mechanism,
and the gas is tightly absorbed to the rock particle, which is the opposite of a conventional reservoir [8].
Hydraulic fracturing is often used in reservoirs with low permeability that is not able to reach economic
production rates [8]. This is very different in character to the naturally fractured reservoirs that are
classified as having a dual porosity [8]. There are four different flow regimes that can occur in a
hydraulically fractured reservoir and several flow periods can exist during the life cycle of a shale gas
well [8,9]. These consist of fracture linear flow, fracture boundary flow, matrix linear flow, and lastly
matrix boundary flow [10]. Joshi [10] explained the different flow regimes for shale gas reservoirs
as follows.

• Fracture/Early Linear Flow: A transient flow regime that occurs when the production flow is linear
to the single fractures. This flow regime governs the known life of most shale wells. A negative
half slope on a log-log plot of rate versus time can be used to differentiate this linear flow.

• Fracture Boundary Flow: Follows after a certain period of production when an interference occurs
i.e., from linear to simulated reservoir volume (SRV). Many of the existing horizontal shale wells
have not experienced this regime, but some of the newer wells with huge fracture treatments have
been observing this regime early. This can be observed on a log-log plot by deviation from a –1/2
slope line on a log-log plot of rate versus time.

• Matrix Linear Flow: When production from the matrix, beyond the SRV, starts to govern the
production, a linear type flow will be seen. This regime is most likely will not be observed in the
economic life of the well. Comparable to fracture linear flow, this regime can be observed using a
negative half slope line on a log-log plot of rate versus time.

• Matrix Boundary Flow: After the outer matrix transient has reached the drainage boundaries of
the well, a deviation from the negative half slope, corresponding to matrix linear flow, will be
observed. This deviation is equivalent to matrix boundary flow. Similar to the matrix, linear flow
will most likely not be observed.

4. Overview of Decline Curve Models

Consistently forecasting the long-term production performance of shale (unconventional)
reservoirs has been a challenge [11]. The petroleum industry requires simple, useful, and speedy
means of predicting production and assessing reserves; hence, DCA has been an attractive alternative
in contrast to other methods [11]. Due to the relative ease of DCA, it is considered the most used
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method in the industry [11]. The current DCA models will be evaluated based on their characteristics,
strengths, weaknesses, and sensitivity to production data.

4.1. Arps Decline Curve and the Modified Hyperbolic Decline Model (MHD)

Arps decline curve analysis is the most commonly used method of estimating ultimate recoverable
reserves and future performance [12]. Paryani et al. [13] reasons this to reliable history match (even with
b > 1) and its simplicity. The model process is based on vital assumptions: that past operating conditions
will remain unaffected, a well is produced at or near capacity, and the well’s drainage remains constant
and is produced at a constant bottom-hole pressure [14]. Notably, the Arps model is only applicable
in pseudo-steady flows when the flow regime transfers from linear flows to boundary-dominated
flows (BDF) [15]. This indicates the Arps equations are not applicable to the production forecasting of
the entire decline process of horizontal wells in low-permeability reservoirs [16]. The Arps decline
curve analysis can be summarised into three types: exponential Equation (1), hyperbolic Equation (2),
and harmonic Equation (3) [17,18].

q = qie−Dt (1)

q =
qi

(1 + bDit)
1
b

(2)

q =
qi

1 + Di
(3)

where q is the flow rate in STB/day or Mscf/day, qi is the initial flow rate in STB/day or Mscf/day, D is
the decline constant while Di is the initial decline constant, which are both measured in days − 1, and b
is the decline exponent.

The most commonly employed hyperbolic form of Arps decline Equation (2) is used for shale
reservoirs. The hyperbolic decline equation is suitable to use due to the “best fit” that it provides for
the long transient linear-flow regime observed in shale gas wells with b values greater than unity [18].
The model results in post-production overestimation due to the decrease in the decline rate with
production time. Due to the overestimation, Robertson et al. [19] suggested a revised version of the
hyperbolic decline model for shale gas production decline. The equation is given as:

q =
qi

(1 + nDit)
1/n

(D > Dlim) (4)

q = qi exp(−Dlimt) (D ≤ Dlim) (5)

where q is the production rate in m3/d or STB/day, Dlim is the decline rate in d−1, and n is the time
exponent. They suggested that the hyperbolic decline model sometimes yields unrealistically high
reserve estimates. They made an assumption that the rate of decline starts at 30% of flow and usually
declines in a hyperbolic way [19]. This modified model considers when the hyperbolic decline in the
early life of a well transfers to exponential decline in the late life [19]. The switching process can be
determined by applying computer programs. The switching point is when the decline rate is smaller
than a certain limit (usually 5%) [19]. The MHD model addresses the overestimation limitation of EUR;
however, it is still unable to determine Dlim for production data [15].

To test the behavior of the Arps hyperbolic model and the modified version shown in Figure 1,
a semi log plot (log q versus t) illustrates the sensitivity of the models to various estimated field data.
The R2 values denote the goodness of fit or the degree of linear correlation, which is a measure of the
level of association of a group of actual observations to the model’s forecasts [20]. As observed from
the regression lines for the various data, the resulting fit appears to capture the trend in the data well.
Arps fits Data 1 and 2 fairly, similarly for the MHD. However, the methods matches the other cases
poorly, because it cannot model multiple flow regimes. In the instance of the MHD model, there is a
shift in the curves downward, which results in a change in the R2 value. Upon closer inspection of the
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EUR values for both models, which are shown in Table 1, it is evident that the MHD model corrects for
the overestimation of the Arps model.
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Table 1. Summary of estimated ultimate recovery (EUR). MHD: Modified Hyperbolic Decline Model.

EUR (bscf) Data 1 Data 2 Data 3 Data 4

Arps Model 0.31 20.52 18.13 5.21
MHD 0.18 4.13 13.18 4.18

4.2. Power Law Exponential Model (PLE)

Ilk et al. [22] presented the PLE, which is an extension of the exponential Arps formula for the
decline degree in shale reservoirs. This model was developed precisely for SGR and approximates the
rate of decline with a power law decline. The PLE model matches production data in both the transient
and boundary-dominated regions without being hypersensitive to remaining reserve estimates [23].
Seshadri and Mattar [24] presented that the PLE model can model transient radial and linear flows,
while Kanfar and Wattenbarger [25] proved that the model is reliable for linear flow, bilinear flow
followed by linear flow, and linear flow followed by BDF, or bilinear flow followed by linear flow and
finished with BDF flow. Vanorsdale [26] deduced that when the flow regime changes throughout the
initial 10 years of the well, the PLE model will yield a very optimistic recovery. The model characterizes
the decline rate by infinite time, D∞which is defined as a “loss ratio” (which is assumed to be constant
from Arp) [16]. The production rate is derived as follows:

q
dq/dt

= −b (6)

b = D∞+Dit−(1−n̂) (7)

where dq/dt is the slope, D∞ is the decline rate over a long-term period, and n̂ is the time exponent.
By substituting the above equations, the production rate is obtained:

q(t) = q̂ie[−D∞t−D̂itn̂]. (8)

In this model, there are four unknown variables: q̂i, D̂i, D∞ and n̂, which result in several degrees
of freedom and may be clumsy to use or solve [27]. According to Johnson et al. [28], the D∞ parameter
is difficult to determine. However, there are advantages to this model in that the extra variables
permit for both transient and boundary flow, and the equation for production rate seems comparable
to the Arps exponential equation [13]. With the PLE model (Figure 2), which uses a log-log plot
(log q versus log t) to test the sensitivity of the data, the resulting fit appears to capture the trend in
the data better compared to the Arps Hyperbolic Model. This model fits Data 1, 2, 3, and 4 fairly
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accurately. This can be attributed to the PLE model, matching production data in both transient and
boundary-dominated regions.
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Figure 2. Data sensitivity using the Power Law Exponential Model [4,13,14,21].

4.3. Stretched Exponential Decline Model (SEDM)

Valkó, Valkó, and Lee [29,30] applied the SEDM in shale wells, which is an empirical method
different from Arps equations, as it describes the decline trend of production data obtained from
unconventional reservoirs. It was developed to fit transient flow regimes [10,25]. The significant
advantages of the model are the bounded nature of estimated ultimate recovery (EUR) without limits
on time or rate, and the straight-line behavior of a recovery potential expression [30]. The model
differs from other models, since it does have a basis in physics and is directed by a major differential
equation [14]. It is used to model aftershock decay rates [31]. The production rate declines with time
according to the following equations:

dq
dt

= −n
( t
τ

n)q
t

(9)

q = qi exp
[
−

( t
τ

)n]
(10)

Ǫ =
qi
n

n{
r
[1
n

]
− r

[1
n
·

( t
τ

)n]}
(11)

EUR =
qi
n

τ

τ

[1
n

]
. (12)

This method defines a characteristic number of periods, τ, and a dimensionless exponent, n, of
the ratio of time, t. It also uses observed cumulative production along with theoretical cumulative
production derived from the integral of the rate-time equation to estimate remaining technically
recoverable volumes. Equation (10) appears similar to the PLE model; however, it differs, as it does not
rely on a single interpretation of parameters. Instead, it uses two-parameter gamma functions [29].
In addition, there is no single τ and n parameters, but instead, a sum of multiple exponential declines,
which follows the fat tail distribution [30]. Stretched Exponential Decline Model (SEDM) requires
an iterative process to determine the value of the parameter, n. The model can only estimate the
recoverable volumes with an abandonment rate of zero as opposed to commercial volumes with
economic cut-off rates and has not been widely used [32]. However, Can et al. [32] showed that in tight
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formations where transient flow period is extremely long, SEDM has been successful in modeling the
rate-time behavior and provides more realistic reserve estimates compared to Arps decline relations.

Testing the behavior of the SEDM, Figure 3, which is a plot of production rate versus the cumulative
production (q versus Q) to test the sensitivity of the data, the resulting fit appears to capture the trend
in the data poorly. The SEDM method fits all cases inaccurately (lower R2 values). This is due to the
SEDM model’s transient flow rather than boundary-dominated flow and requirement for a sufficiently
long production time (usually >36 months) to accurately estimate the parameters τ and n [33].
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4.4. The Extended Exponential Model (EEDM)

Zang et al. [11] presented a renewed experimental method, the EEDM, as a simple formula to
forecast shale oil and gas well performance. They proposed a mechanism of “growing drainage
volume” to conceptualize and model the performance of shale wells. This model combines the
exponential decline equation proposed by Fetkovich et al. [34] Equation (13) with the derived empirical
Equation (14). The EEDM includes both transient and BDF flow in a single equation, and it can
match the historical data with a smooth curve throughout the transition period from transient to
BDF flow regimes. Furthermore, the model is simple and can easily be applied [11]. It is also able to
project the future production by fitting all of the historical production data from the beginning of the
production decline.

Paryani et al. [13] stated that the model contains two decline constants and a decline exponent;
particularly noteworthy, the production data fits using a smooth curve through the whole flow
systems [16]. The advantage of the model is that both early and late production profiles can be captured
once βe and βl have been calibrated using the production data [11]. However, as parameter βl has an
incomplete influence on the curve fitting, it is therefore fixed.

q = qie−at (13)

a = βl + βe (14)
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where a is the nominal decline rate, βl is the late-life period constant, and βe is the early period constant.
Combining Equations (13) and (14) and taking the logarithm of each side, the equation below (the
exponential decline equation) is obtained.

In q
qo

t
= βl + βee−tn

(15)

where qo is the initial production rate in m3/s. Using the EEDM (Figure 4), which is a plot of −ln q
qo /t

versus t to test the sensitivity of the data, the resulting fit appears to also capture the trend in the data
poorly. The method fits all cases inaccurately (lower R2 values). This type of method is best to forecast
short-term trends in the absence of recurring variations. Hence, the EEDM would only be accurate
when a realistic amount of stability between the past and future is assumed.
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4.5. Doung’s Decline Model

Doung [35] presented an unconventional rate decline method to evaluate the performance of
shale gas wells that does not depend on the fracture types. The model assumes linear or near-linear
flow, as indicated by a log-log plot of rate over cumulative production versus time, which yielded a
straight-line tendency [36]. The rate is calculated in the model using the following equation [27]:

q(t) = qit(a, m) + q∞ (16)

where t (a,m) is the time constant in 1/s, and q∞ is the production rate at infinite time in m3/s.
The cumulative production and time constant is calculated as:

Gp =
qt(a, m)

at−m (17)

t(a, m) = t−m exp
( a

1−m

(
t1−m

− 1
))

(18)

where Gp is the cumulative gas production in Bcf and m is the slope.
Paryani et al. [13] indicated the key restrictions of the model: if the well is closed for extended

periods, a proper rate initialization against pressure is required to obtain precise values of parameters
a and m and, secondly, that in the event of water breakthrough, there is a sudden decrease in the



Energies 2020, 13, 2765 8 of 16

decline rate, and this causes an increase in the values of the a and m parameters. Vanorsdale [26],
similar to in the case of the PLE model, also indicated that the Doung model will yield a very optimistic
recovery when the flow regime changes throughout the initial 10 years. He went on to indicate that the
model may provide conservative recovery estimate in vertical, non-hydraulic fractured classical shale
wells [26]. However, Lee et al. [36] has indicated that the Doung’s model appears to fit field data from
various shale plays quite well and provides an effective alternative to Arps hyperbolic model. With the
Duong’s model (Figure 5), which uses a log-log linear plot (log q versus log t) to test the sensitivity
of the data, the resulting fit appears to capture the trend in the data well. The method fits Data 1, 2,
and 4 fairly accurately. For Case 3, the method fits the data poorly with a lower R2 value of 0.8371.
The model probably provides a good fit because it was specifically developed for unconventional
reservoirs with very low permeability.
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4.6. Logistic Growth Model (LGM)

Logistic Growth Models developed belong to a group of mathematical models used to forecast
growth in numerous applications [36] and were previously used to model population growth [37,38].
It was developed to forecast reservoirs with extremely low permeability [27]. LGM is very flexible
and confident in modelling long transient boundary-dominated performances of unconventional
reservoirs [16]. The model incorporates known physical volumetric quantities of oil and gas into the
forecast to constrain the reserve estimate to a reasonable quantity. LGM is capable of trending existing
production data and providing reasonable forecasts of future production. The logistic growth model
does not extrapolate to non-physical values [38]. Tsoularis and Wallace [39] discussed a development in
this regard by Verhulst [40], who considered that for the population model, a steady population would
consequently possess a saturation level characteristic, typically called the carrying capacity, K, which
forms a numerical upper bound on the growth size. In order to include this limiting characteristic, they
introduced the logistic growth equation as an extension to the exponential model [39]. Zhang et al. [1]
adopted this model for SGR with very low permeability and developed the LGM as an empirical
method to forecast the gas production. The LGM can be represented as follows:

q(t) =
dQ
dt

=
Knbtn−1

(a + tn )2 (19)
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where K is the carrying capacity.
The main benefit of the LGM is that the reserve estimate is inhibited by the parameter K as well

as the production rate, which terminates at infinite time [1]. The main assumption in this model is
that the whole reservoir can be drained by a single well over a suitably long period and requires the
approximation of at least two parameters, or parameters as per the available well information [4,7].
Figure 6, a plot of production rate versus time (q versus t), illustrates the sensitivity of the model to
various estimated field data. As observed from the regression lines for the various data, the resulting
fit appears to capture the trend in the data well. The LGM fits Data 1 and 2 fairly. However, the method
matches the other cases poorly, as indicated by the lower R2 values. This could be attributed to the
data size, which is too small to yield an accurate fit, since the underlying principle of this model is
population growth, which stipulates that growth is only possible up to a certain size.
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4.7. Autoregressive Intergrated Moving Average (ARIMA) and Neutral Network Models (NNM) (Hybrid Model)

The accuracy of time series forecasting is challenging for scientists [41]. Time series data often
comprise linear as well as non-linear components [42]. In some cases, linear-based approaches might be
more suitable than non-linear ones due to the data characteristics. The hybrid method is a combination
of ARIMA and the neural network method. According to Faruk [42], hybrid methods have a higher
degree of accuracy than neural networks. ARIMA can recognize time-series patterns well but not
non-linear data patterns. On the other hand, neural networks only handle non-linear data. Therefore,
hybrid models combine the advantages of ARIMA with respect to linear modelling and neural networks
in terms of non-linear edge modelling [43]. Notwithstanding, in some circumstances, the single model
approach can outperform hybrid models [41].

Mathematically, time-series data can be expressed as a combination of linear and non-linear
components [44]:

Yt = Lt + Nt (20)

where Yt shows the time-series data, Lt indicates the linear components, and the non-linear components
are represented by Nt.

Mathematically, the neural network model for residual of n input nodes can be expressed as
the following:

et = f (et−1 + et−2, . . . , et−n) (21)
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where f is a non-linear function that is specified by the neural network. With regard to the results of
the prediction error of Nt, the combination forecast using the hybrid method can be expressed as:

ŷt = L̂t + N̂t (22)

There has been limited work conducted using this model for shale gas reservoirs. Hence, the next
step would be to investigate this model for shale gas reservoirs.

To summarize all eight DCA models for an easy reference of readers, Table 2 lists the name of
each model, its DCA equation, the characteristic, strength, weakness, and lastly the related references.
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Table 2. Summary of decline curve analysis (DCA) models. BDF: boundary-dominated flows, SGR: shale gas reservoirs.

No Model Equation Production
Behaviour Strength Weakness Reference

1 Arps Hyperbolic
Decline

q =
qi

(1+bDit)
1
b

linear to BDF flow reliable and simple to use post-production
overestimation [12–18]

2 Modified Hyperbolic
Curve

q
=

qi

(1+nDit)
1/n (D > Dlim)

q
= qi exp(−Dlimt) (D ≤ Dlim)

transient and
BDF flow

addresses the overestimation
limitation of EUR

still unable to determine Dlim
for production data [15,19]

3 Power Law
Exponential Decline q(t) = q̂ie[−D∞t−D̂itn̂] transient and

BDF flow developed precisely for SGR four unknown
variables to solve [13,16,20,23–27]

4 Stretched Exponential
Decline q = qi exp

[
−

(
t
τ

)n]
transient flow

bounded nature of EUR and
straight-line behavior of

recovery potential expression

requires sufficiently long
production times [10,14,26,28–32]

5 The Extended
Exponential Model

In q
qo

t = βl + βee−tn transient and
BDF flow

both early and late production
profiles can be captured

parameter βl has an incomplete
influence on the curve fitting

and is therefore fixed
[11,13,16,33]

6 Doung’s Decline
t(a, m)

= t−mexp
(

a
1−m

(
t1−m

− 1
)) linear or

near-linear flow
appears to fit field data from

various shale plays

extended periods, a proper rate
initialization against pressure
is required, and in the event of

water breakthrough,
a and m increases

[13,20,27,34,35]

7 Logistic Growth q(t) = dQ
dt = Knbtn−1

(a+tn )2
long transient

boundary-dominated

reserve estimate is inhibited by
K as well as the production

rate, which terminates at
infinite time

growth is only possible up to a
certain size [1,16,20,35–39]

8 Hybrid Model ∅ (B)(1− B)dYt = θ(B)εt linear and non-linear high degree of accuracy approach can be found to not
be fit all types of data [40–43]
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5. Accuracy of Current Decline Curve Models with Field Data

Yuhu et al. [15] discussed comparisons of EURs with five types of decline models from single-well
production data. They explained that according to the prediction results, the highest predicted EUR
was gained by the hyperbolic decline model, followed by the Modified Hyperbolic Model (MHD),
Doung’s Model, PLE and, lastly, the EDM. Hu et al. [27] conferred production data for wells with a
production time greater than 10 years, for which the PLE decline model was recommended for multiple
flows. It was also pointed out that the hyperbolic decline model predicted higher estimates of reserves
than the PLE decline model. Another study that they reviewed recommended the MHD rather than
the PLE decline model, which in their view was complicated.

It is noted that the differences in EURs with different decline models decrease with an increase
in production time [45]. On the other hand, prediction consistency increases with an increase in
production time. Based on this distinctive production data, the order of predicted EURs from high
to low were through the hyperbolic decline model, the MHD, the PLE decline model, and the EDM
respectively [45]. The predicted EURs decreased with an increase of production time for the hyperbolic
decline and the modified hyperbolic decline model. The predicted EURs increase with an increase of
production time for the PLE decline and the EDM model [45]. Currently, the applicability of these
different decline models is uncertain. The general trend found in their paper was that the hyperbolic
decline model overestimates the production and that the other decline models will still have to be
investigated for reliability and accuracy [45].

In their study, Guo et al. [46] investigated shale gas wells in the Barnett shale play, where they
found that from the results of goodness of fit, the hyperbolic curve fits well for both the aggregate
and individual shale gas wells. On the other hand, Kenomore et al. [47] in their production decline
study of the Barnett shale found that either the Arps hyperbolic or Doung’s model can be used only if
the historical data exceeds 10 months. They used root mean square error (RMSE) analysis and the
results indicated that the Arps hyperbolic model showed better forecasting compared to the Doung’s
model for the top three longest production histories. Zhang et al. [1] concurred with the findings of the
Doung’s model in their paper, noting that it is more accurate for linear flow and bilinear flow; however,
if the production history is shorter than 18 months, this model provides unreliable results for EUR.
In most circumstances, the Doung’s model overestimates the total EUR. Harris [48], in his research
study of the Elm Coulee field production data, found that the Duong method will produce the most
optimistic forecasts followed by the Arps model with 5% minimum decline, and then the SEPD model.
Shah [49] in his research developed new methods of combining the SEPD and Arps hyperbolic equation,
the Doung’s with the Arps hyperbolic equation, and the Arps super hyperbolic combined with the
Arps hyperbolic decline equation. He found that the SEPD and Arps hyperbolic equation gave the
most conservative results of all the methods in the study, even if there was insufficient data available.
This equation can also work without enough boundary-dominated flow (BDF) data available.

Hu et al. [27] studied DCA techniques for the Eagle Ford and Austin Chalk reservoirs. They found
that in the case of the Eagle Ford reservoir, the MHD and the Doung’s model provided the highest EUR
estimations and the two lowest matching errors, while the PLE decline model with D∞ , 0 produced
the lowest EUR estimates with the highest matching errors in all cases. In another study, according to
the results of goodness of fit (R2 and N-RMSE), the hyperbolic model fits well with aggregated well
data and with individual wells [1]. Further, in their study, Hu et al. [27] explain that the LGM and PLE
model with D∞ = 0 gave production projections neither too positive nor too traditional with modest
matching errors. Therefore, they recommend both the MHD and Doung’s model for this reservoir.
However, Zhang et al. [11] developed the EEDM and verified their model using field data from the
Eagle Ford. They found this model to be more rigorous in that it will include the effects of interference
among adjacent fractures, variable permeability, and discontinuous pressure distribution, which are
difficult to capture and model with other DCA methods [11]. In the case of the Austin Chalk reservoirs,
all DCA methods resulted in fairly similar EUR forecasts and matching errors; hence, any method can
be used [27]. Figure 7, which uses estimated production data versus time values, indicates that using
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the R2 values as a goodness of fit to determine the accuracy of the different decline models, the SEDM,
followed by the LGM, EEDM, PLE, Doung’s decline model and, lastly, the hyperbolic decline model
would predict the EUR accurately.
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During their case study analysis, Paryani et al. [13] found that the LGM, PLE, and Doung’s models
overcame Arps limitations to a certain degree. The PLE model always predicted the lowest forecasts of
all the models with the most conservative production forecasting and reserve estimation. Doung’s
model performed the best for longer when less noisy production data was available; however, erratic
EUR was observed, which indicates that this model requires further improvements [13]. The LGM
gave reasonable EUR estimates when compared to the Arps model. There was an 81% fit of the
wells’ past production rate and cumulative production. The LGM also appears most effective at
historically matching past production and predicting finite reasonable EUR. However, Tan et al. [4]
found that due to the constraints of K and the vanishing production rate at infinity time, the LGM
provides a finite estimate of EUR. They also determined by using normalized and logarithmic rate-time
residuals that the limitations of the Arps model are overcome and accuracy improves in cases of
unconventional reservoirs.

6. Conclusions

Shale gas reservoirs have become an essential source for providing natural gas globally and the
process of hydraulic fracking has been used in the extraction of shale gas. During the fracking process,
there are different flow regimes, which occur during the life cycle of SGRs, these being fracture linear
flow, fracture boundary flow, matrix linear flow, and matrix boundary flow. They are significant
because they impact both the production and decline behavior of SGRs.

Based on previous studies conducted, it was found that the Arps hyperbolic decline, the MHD
and Doung’s models provided the best fit with production data. However, contrary to the reviewed
studies when estimated production data was used in the evaluation process for the basis of this paper,
using the goodness-of-fit technique, the PLE and Doung’s decline models aligned the best with the
production data compared to the other models.

It is evident from the accuracy assessment decline curve modelling impacts the EUR of SGRs, and it
was observed that all decline models yield a different EUR result, which is either over or underestimated.
Studies have revealed that the production time significantly impacts the EUR depending on which
decline model is being used. When each model was assessed for accuracy once again using the
goodness-of-fit technique, the results indicated the SEDM, followed by the LGM, EEDM, PLE, Doung’s
decline model and, lastly, the hyperbolic decline model align with the production data.

It is evident from the decline curve evaluation there are advantages in using the current DCA
models; however, they also have limitations associated with them, which have to be addressed.
Therefore, the next step will be to evaluate the use of the hybrid model in evaluating the decline of SGR.
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