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Abstract: Biodiesel is an alternative, eco-friendly and renewable source of energy. It can be produced
from a wide range of feedstocks which can be grown in marginal land use. It has drawn more attention
to the researchers. In this study, the oil extraction, biodiesel conversion, and physiochemical properties
of Macadamia (Macadamia integrifolia) and Grapeseed (Vitis vinifera) biodiesels are presented. The
experimental investigation of diesel engine performance, emissions and combustion characteristics
were conducted using B5 (5% biodiesel and 95% diesel by volume) and B10 (10% biodiesel and 90%
diesel by volume) blends. The engine performance parameters, such as brake power (BP), brake
specific fuel consumption (BSFC), and brake thermal efficiency (BTE) have been investigated in this
experiment. The emission parameters, for example, carbon monoxide (CO), the ratio of CO2/CO,
nitrogen oxide (NOx), hydrocarbon (HC), particulate matter (PM) have been measured during the
experiment. Finally, the combustion parameters such as cylinder pressure (CP) were recorded,
and heat release rate (HRR) was analysed and compared with that of diesel fuel. The study revealed
that the Macadamia biodiesel performed better than Grapeseed biodiesel and behaved closely to
that of diesel fuel. A significant reduction of engine emissions was found in the case of Macadamia
biodiesel with a minimal reduction of engine performance. Further analysis of energy, exergy and
tribological characteristics of the Macadamia biodiesel is recommended for assessing its feasibility for
commercial application.

Keywords: biodiesel; macadamia biodiesel; grapeseed biodiesel; brake specific fuel consumption;
brake thermal efficiency; CO; HC emission; NOx emission; cylinder pressure; heat release rate

1. Introduction

The energy demand is growing faster than the population growth in the world. The total
population which is overgrowing in recent decades is expected to be 10 billion people to reside in the
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globe by 2050. So, the demand for energy will increase substantially every year. In recent times, energy
has become one of the most leading necessities for humanity. In order to sustainably fulfil the energy
crisis, the world’s growing population has required more energy for their survival. The increase in
population, modernisation of the community, and improvement in lifestyle have been rising the energy
demand. The growth in the energy sector from other sources will fulfil this demand [1]. Moreover,
the increase in energy demand leads us towards finding an alternative source of renewable energy.
With the growing concern for climate change and pollution, protecting the environment has become
the prime focus of the developed countries. Therefore, renewable energy such as biodiesel has been
considered as the preferred form of alternative energy, because it is eco-friendly and biodegradable,
and it can be used commercially in the diesel engine. Biofuel has some advantageous characteristics
over the normal diesel fuel as it has less toxicity, and a considerable reduction in sulfur oxides (SOx)
gases and has less carbon monoxide (CO) and polyaromatic hydrocarbons and has produced less
smoke and particulate matter.

Biodiesel, as a renewable energy source, has drawn the attention of many researchers because it
is considered to be one of the potential substitutes for diesel fuel [2,3]. It is a long-chain fatty acids
inclusion of mono-alkyl esters refined from vegetable oil or animal fats which meet the requirements of
the American Society for Testing and Materials ASTM D6751 standards [4]. Biodiesel can be made from
a wide range of feedstocks such as biomass [5] and other raw materials such as starch, simple sugars
and lignocellulose [6–8]. The biofuels have been extracted from edible vegetable oil, such as cottonseed
oil and sunflower oil, which are categorised as the first-generation biofuel. The second-generation
biofuels are extracted from non-edible vegetable oils, for example, Jatropha oil, Karanja oil, Grapeseed
oil, Calophyllum inophyllum [9,10], moringa oil [11], and microalgae as the third generation [12–14].
The extreme uses of biofuels from edible vegetable oils can cause an increase in food price, that
leads to possible devastation and starvation [15]. Recent research has concentrated on non-edible or
second-generation feedstocks instead of the first-generation feedstocks [16].

Literature reported that various non-edible vegetable oil feedstocks are one of the sources for
biodiesel production [17–20]. For instance, Abhilash et al. [21] noticed that Jatropha carcass is one of the
most dominant and available sources of biofuel. It belongs to the Euphobiaceae family, with a usual
plant height of 5 to 7m [22] and it can be planted in drought and degraded or surplus agricultural
lands [23]. As this is a tropical plant, it requires an average rainfall of 250 mm to 1200 mm and can
survive about 30 to 50 years and produces seed after one only year of cultivation [22]. The seed oil
content is around 43 to 59% [22]. These studies revealed that Jatropha carcass is a promising energy
crop for large-scale production of biodiesel, and researchers have undertaken several studies to obtain
a good insight into biofuel production [24].

The study of the physiochemical properties of biodiesel is crucial to be considered in the
experiments to see how close the properties are in comparison with the regular diesel fuel. For example,
Ali et al. [25] investigated the effect of the physicochemical properties of biofuels. The result showed
that biodiesel has higher kinematic viscosity which results in poor fuel atomisation into the engine
cylinder. The higher density of biodiesel leads to higher fuel consumption and an increase in mass flow
rate during fuel injection. Some other important fuel properties such as pour point of biodiesel can be
used to identify the performance at low temperatures, and the cloud point helps in understanding the
performance of biodiesel at higher temperatures.

Likewise, Miri et al. [6] examined the effects of physicochemical properties that are found in almost
all biodiesels. They stated that the flashpoint of any oil can be referred to as the lowest temperature at
which the oil starts to vaporise when the ignition is commenced. Again, the study revealed that any oil
which has a higher flash point could be considered safe to store the fuel. This can lead to avoiding the
undesirable ignition of the fuel during the combustion process [6].

The conversion of bio-oil to biodiesel is an important process to maintain the quality of the
fuel. According to the literature, transesterification is one of the widely used processes for biodiesel
conversion. For instance, Nisar et al. [26] considered the calcinated waste bones as a heterogeneous
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catalyst in the transesterification process for Jatropha oil. During the experiments, potassium hydroxide
was used as a catalyst derived from animal bones in the production yield of 96.01%. In addition,
Eloka-Eboka and Inambao [27] performed an analysis combining Jatropha and Moringa oil and
confirmed that the technique of in-situ and ex-situ hybridisation could appear as an increase in the
production of biodiesel. Furthermore, they ensured that this technique could produce improved
biodiesel. The use of biodiesel in a diesel engine is crucial to justify the suitability of the fuel.

The modern diesel engines have the capability of running on bio-diesel unmodified, and most
of the companies have properly stated that engine warranties will not be invalid using biodiesel
blends [24]. It has been documented that an unmodified diesel engine will produce slightly less
power and torque running with biodiesel. Some researchers used Karanja oil in their experiments.
For example, Agarwal [28] experimented on a diesel engine varying the fuel injection pressure and
fuel injection timing using Karanja oil. In comparison to mineral diesel, a higher brake specific fuel
consumption from Karanja oil was produced due to the lower calorific value of the biodiesel [28].
In another experiment, Sahoo et al. [29] used blends of Jatropha oil on a diesel engine varying the
engine speed from 1200 rpm to 2100 rpm. The experimental results of the engine performance and
emission using Jatropha oil were compared with the regular diesel fuel. The blend JB20 (a blend of 20%
Jatropha biodiesel and 80% mineral diesel) at a lower speed of 1200 rpm resulted in an insignificant
difference in the power generation. As the speed was increased gradually from 1200 rpm, an increase
in power was noticed. Additionally, with the increase in the percentage of Jatropha blends, the brake
specific energy consumption (BSEC) was increased [29]. With regards to the emission produced from
using Jatropha, Sahoo et al. [30] reported a reduction in carbon monoxide and hydrocarbon, however,
an increase in nitrogen oxide was found in their study which is not desirable.

In addition, Dhar et al. [31] conducted an experiment using Neem oil with its varied blends in a
single-cylinder and four-stroke diesel engine. Engine performance with the Neem oil and its blends
showed an increase of brake specific fuel consumption (BSFC) in comparison with the mineral diesel.
With the increase in the percentage of blends of Neem oil, the brake thermal efficiency (BTE) showed a
slight decrease. Correspondingly, the emission of CO was observed to be almost the same as mineral
diesel. On the other hand, a higher NOx emission was reported, which is due to the higher contents of
oxygen of biodiesel [31].

Furthermore, Nalgundwar et al. [32] performed an experimental study in a single-cylinder diesel
engine by using a twin blend of biodiesel (Palm oil, Jatropha oil, and mineral diesel). They found that
the lower blend of biodiesel D90PB5JB5 (diesel 90%, Palm oil 5% and Jatropha oil 5%) demonstrated
better capability to reduce emission compared to other blends. Again, they confirmed that the lower
viscosity and a higher calorific value leads to an increase in brake power [32,33]. Due to the lower
calorific value of biodiesel, the reduction in the BSFC results in more fuel consumption with an increase
of blend percentage. The calorific value and the oxygen content in the fuel alter the BTE. A decrease in
BTE was noticed with the use of a higher blend of biodiesel. From the emission analysis, a reduced
exhaust temperature was noticed in comparison with the mineral diesel. Nalgundwar et al. [32] also
confirmed that the exhaust gas temperature was inversely dependent on combustion efficiency. The
higher content of oxygen in biodiesel improved the combustion that would result in lower carbon
monoxide emissions.

On the contrary, the higher viscosity and density possessed in biodiesel can lead to incomplete
combustion [32]. Thus, with the increase in the content of biodiesel in the blends, an emission with
higher carbon monoxide was noticed [32,34]. The lower biodiesel blends produced a noticeable carbon
monoxide from the exhaust gas outlet. The proper harvesting techniques and processing system also
play an important role in producing high-quality biodiesel. Furthermore, the government and farmers
in developing countries might be much interested in farming edible oil vegetable plants among these
non-edible oil feedstocks to improve the socio-economic aspects of sustainable biofuels [35,36].

Literature reported different feedstocks for biodiesel production and applications in diesel engines.
The study identified potential feedstocks such as macadamia and grapeseed for further comparative
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analysis due to limited studies on engine performance and emission being found for those feedstocks.
For example, Venkatesan et al. [37] evaluated biodiesel production from grapeseed oil using the
surface methodology and found a 97.7% conversion yield. Chelladorai et al. [38] experimented on the
effect of hydrogen induction with grapeseed oil in a CI engine and identified the dual-fuel improves
BTE and reduces emissions. In addition, Vedagiri et al. [39] investigated the effect of a different
engine chamber on engine characteristics using nano-additives blends with grapeseed biodiesel. They
identified the combustion chamber shape has a direct impact on performance and noted 13.2% less
NOx emissions [40]. Furthermore, Praveena et al. [41] studied the effect of exhaust gas recirculation
(ECR) with nano-emulsive blends of grapeseed biodiesel and found a NOx emission reduction, which is
expected. On the other hand, a few research groups investigated many feedstocks including macadamia
biodiesel [42,43]. For example, Azad et al. [44] conducted a study on the physiochemical fuel properties
of macadamia biodiesel. This research team also conducted a preliminary experiment on a diesel
engine using this biodiesel to assess the sustainability of this fuel as an alternative fuel. Additionally,
this study assessed the different potential of this biodiesel as an alternative fuel for automobiles in
Australia. Currently, only 10% renewable fuel from other biodiesel sources is mixed with petroleum
diesel commercially in Australia. In addition, the experimental studies on engine performance and
various emission parameters were summarised from recent literature [45,46].

The research identified that an inadequate study is available in the literature on the comparative
analysis of engine performance and emissions using Macadamia and Grapeseed biodiesel on a diesel
engine. Therefore, there is a need to perform an experimental study on diesel engine performance and
emissions using B5 (5% biodiesel and 95% diesel by volume) and B10 (10% biodiesel and 90% diesel by
volume) blends. This study considered the engine performance parameters such as BP, BSFC, and BTE
for the experimental analysis using multi-stage fuel injection with full engine load condition by varying
speeds from 1200 rpm to 2400 rpm. The emission parameters such as CO, NOx, HC, PM and the ratio
of CO2/CO emissions were measured and compared with the regular diesel fuel. In addition, cylinder
pressure and the heat release rate have been analysed. The results of the proposed study shall provide
valuable information and necessary data which would predict a significant reduction of emissions for
the proposed biodiesels.

2. Materials and Methods

2.1. Biodiesel Preparation

In the current study, crude Grapeseed and Macadamia oil were extracted from the kernel by
the solvent extraction method using n-hexane as a solvent. The seed has been crushed to the
approximate particle size of 0.25 mm before oil extraction. The crude oil was converted into biodiesel
via transesterification reaction [47]. The standard transesterification reaction was performed at 60 ◦C
reaction temperature for 1-h reaction time, keeping the molar ratio of oil and methanol at 1:6 with
1% KOH as the catalyst. The mixture was stirred continuously at 750 rpm using a magnetic stirrer
and heater (C-MAG HS7, IKA-Werke GmbH & Co. KG, Germany). The glycerin was separated into
three different stages for biodiesel production. The unreacted methanol was removed by heating at
80 ◦C for 1 h. The remaining unreacted catalyst was removed by washing using demineralised (DM)
water. Finally, the pure biodiesel was dried at 110 ◦C for 45 min to remove moisture and residual water
particles. All the chemicals used in this study were obtained from Chem-supply. A gas chromatography
(GC-2010 SHIMADZU, Kyoto, Japan) was used to identify the fatty acid methyl esters (FAMEs) in
biodiesel following the AOCS Ce 1a-13 standard method. Table 1 shows the percentage of FAMEs in
each of the biodiesels. As can be seen from the table, the Macadamia biodiesel contains 22 fatty acids,
whereas Grapeseed biodiesel comprises 8 fatty acids. In the case of Macadamia biodiesel, oleic acid
(C18:1) shared the maximum percentage of 61.09% followed by palmitoleic acid (C16:1) 15.39% and
palmitic acid (C16:0) 8.25%. On the contrary, major fatty acids in Grapeseed biodiesel are linoleic acid
(C18:2) 69.1%, oleic acid (C18:1) 19%, palmitic acid (C16:0) 6.9% and stearic acid (C18:0) 4% [44]. The
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study identified 96.58% and 100% methyl esters in Macadamia and Grapeseed biodiesel, respectively.
The physiochemical fuel properties of the biodiesels were measured according to the American Society
for Testing and Materials (ASTM) standards and compared with diesel as presented in Table 2. For this
study, total biodiesel produced about 5 letters for engine testing due to the four-cylinder 3.32 letter
engine setup. The biodiesel blends were prepared by mixing biodiesel and diesel in a volume ratio of
5:95 (B5) and 10:90 (B10) for each of the biodiesels.

Table 1. Fatty acid methyl esters (FAMEs) composition of the biodiesels measured by gas
chromatography (GC) according to the ISO 11024 standard.

Fatty Acid Name Lipid Relative Contents (% vol.) in Biodiesel

Macadamia Grapeseed

Lauric acid C12:0 0.06 -
Myristic acid C14:0 0.58 0.2
Tetradecenoic C14:1 - -

Pentadecylic acid C15:0 - -
Ginkgolic acid C15:1 - -
Palmitic acid C16:0 8.25 6.9

Palmitoleic acid C16:1 15.39 0.2
Margaric acid C17:0 0.03 -
Ginkgolic acid C17:1 0.08 -

Stearic acid C18:0 3.55 4
Oleic acid C18:1 61.09 19

Linoleic acid C18:2 1.86 69.1
Linolenic acid C18:3 0.11 0.3
Arachidic acid C20:0 2.94 0.3
Eicosenoic acid C20:1 2.55 -
Eicosadienoic C20:2 0.06 -
Eicosatrienoic C20:3 0.03 -

Eicosapentaenoic C20:5 0.97 -
Behenic acid C22:0 0.04 -
Erucic acid C22:1 0.16 -

Gadolenic acid C22:2 0.13 -
Docosahexaenoic C22:6 0.02 -

Tricosylic acid C23:0 0.06 -
Lignoceric acid C24:0 0.08 -
Nervonic acid C24:1 0.13 -

Table 2 illustrates the comparison of the physicochemical fuel properties of the Grapeseed and
Macadamia biodiesels with other biodiesels using the ASTM standards from the literature [48]. The
Macadamia and Grapeseed biodiesel were found within the range of standard limits in comparison to
other biodiesels [49]. The study used the corresponding ASTM standard testing methods for analyzing
the fuel properties as shown in Table 2. A higher density and viscosity of the Macadamia and Grapeseed
biodiesels were found compared to the standard diesel, however, these properties are within the
acceptable range of other biodiesels such as Kesambi, Simarouba, Mandarin and Apricot. In addition,
higher values of cetane number of Macadamia and Grapeseed biodiesels and other biodiesels attributed
to a higher saturated fatty acid composition. The study found a slightly lower calorific value of the
biodiesels compared to diesel because of the higher saturated fatty acid composition as reported in
the literature. In addition, the Macadamia biodiesel showed a better flashpoint as compared to other
biodiesels. The Macadamia biodiesel offered a low acid value as compared to other biodiesels which
showed its effectiveness towards loss corrosion [50,51].
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Table 2. Physicochemical fuel properties of the biodiesels.

Property Specification Unit Grapeseed
Biodiesel

Macadamia
Biodiesel

Kesambi
Biodiesel

[52]

Simarouba
Biodiesel

[53]

Mandarin
Biodiesel

[47]

Apricot
Biodiesel

[54]
Diesel Standard

Methods

Density at 15 ◦C kg/m3 881 868 875.6 862 866 879.4 832 ASTM D1298
Viscosity at 40 ◦C mm2/s 4.13 4.57 4.71 3.1 4.10 4.21 4.10 ASTM D445
Cetane number - 48 57.5 - 56.8 44 49.87 44 ASTM D613
Calorific value MJ/kg 39.79 39.98 42.27 40.32 45.66 38.30 45.67 ASTM D240

Cold filter plugging point ◦C −6 −4 4 - −7.3 - −3 ASTM D6371
Flash point ◦C 175 135 173 178 60 170 60 ASTM D93
Cloud point ◦C −2 6 5 17 −8.6 −4 −8.6 ASTM D2500
Pour point ◦C −6 −3 4 14 −15 −8 −15 ASTM D97

Iodine number g/100 g 138 76.44 - - 106.21 100.7 - ASTM D1959
Acid value mgKOH/g 0.27 0.15 - 0.4 0.22 0.08 0.5 ASTM D664

Oxygen content % 11.18 11.71 - - - - 0 -

2.2. Experimental Setup for Engine Performance and Emission Measurement

Figure 1 shows the schematic diagram of the experimental setup used for the analysis of combustion,
engine performance, and emission. A 4-cylinder (98 × 110 mm) diesel engine (Kubota V3300) with
multi-stage fuel injection facilities was employed in the current study. The total displacement, rated
output power and rated torque of the engine were 3.318 L, 53.9 kW at 2600 rpm and 230 N.m at
1400 rpm, respectively. The experiment was performed for an engine speed between 1200 rpm and
2400 rpm at full load conditions. The cylinder pressure and crank angle data were measured by a
piezoelectric transducer which was equipped on the head of the cylinder. The heat release rate varies
with a crank angle that provides information on ignition delay, start, end and duration of combustion,
which can be estimated by the following equation:

dQ
dθ

=
γ

γ− 1
× P×

dV
dθ

+
1
γ− 1

×V ×
dP
dθ

(J/CA) (1)

where dQ/dθ indicates the heat release rate in J/◦CA, P refers cylinder pressure in N.m, V represents
cylinder volume in m3, γ is the specific heat constant, and θ denotes the engine crank angle ◦CA. The
exhaust gas such as carbon-mono-oxide (CO), the ratio of CO2/CO, hydrocarbon (HC), and nitrogen
oxide (NOx) was identified using an exhaust gas analyser. The particulate matter (PM) was measured
using the MAHA MPM-4M particulate measurement device, which is suitable for particle sizes of
<100 nm to >10 microns. The PM meter has been installed along with a probe to the exhaust pipe
for real-time measurement of DPM concentration, including total carbon and elemental carbon. This
device is widely used in the mining industry and non-road laboratory experiments.
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3. Results and Discussions

3.1. Engine Performance Analysis

3.1.1. Brake Power (BP)

Figure 2 illustrates the reduction in brake power using biodiesel blends in comparison to that of
diesel for the engine speed ranging from 1200 rpm to 2400 rpm. It can be seen from the figure that
all the blends tend to have a lower brake power than diesel. The increase of biodiesel blend resulted
in a reduction in BP due to the lower heating value of the biodiesel compared to diesel as agreed by
Ong et al. [55]. In addition, the higher density and viscosity of the biodiesel could be the reason for
poor atomisation, vaporisation and mixing of the fuel droplets with air during combustion can lead the
reduction of BP [25,56]. The higher viscosity of the fuel can cause poor combustion performance which
results in lower BP and unwanted pollutions [57,58]. Figure 2 illustrates that the reduction of BP for
Macadamia B5 was about 0.5% to 3% whereas for B10 it was about 1.5% to 4% compared to diesel. The
t-test has been performed in this study where equal variances are assumed with a 95% confidence level
and 5% significance level for the statistical analysis. In addition, there are two important conditions
(a) statistically significant when p-value < 0.05) and (b) statistically insignificant when p-value > 0.05
that have been considered for interpretation of the results. The study found insignificant BP variation
(p-value = 0.443) in a comparison between B5 and B10 Macadamia biodiesel blends. On the contrary,
the Grapeseed B5 blend showed better BP output compared to that of the B10 blend. The Grapeseed
B5 blend reduced the BP by 1.5% to 6.5% whereas the B10 blend reduced by 2 to 8% compared to
diesel throughout the speed range. All the biodiesel blends had the lowest percentage of reduction in
brake power at 1400 rpm because of the rated torque generating capability of the engine at that speed.
However, a further increase in engine speed reduced the brake power output for all the biodiesel
blends. From the t-test, the p-value of 0.098 shows the insignificant BP variation within the speed range
for B5 and B10 Grapeseed blends.
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Figure 2. Comparison of brake power (BP) reduction using B5 and B10 biodiesel blends.

In comparison between Grapeseed and Macadamia biodiesels, Macadamia blends show better
performance compared to Grapeseed blends due to some of its distinguished fuel properties [59]. For
instance, the lower density, higher calorific value, higher certain number and iodine numbers of the
Macadamia biodiesel compared to Grapeseed biodiesel as shown in Table 2. Although Macadamia
blends have slightly higher viscosity compared to Grapeseed, it has a lower density, higher calorific
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value as well as higher oxygen content leading to better combustion and improvement in brake
power [57]. The higher certain number of Macadamia blends implies better combustion efficiency by
shortening ignition delay and prolonging combustion duration. Similar reasons have been reported
in the literature [60]. Furthermore, the higher iodine number of Grapeseed implies a higher degree
of unsaturation of the fuel, which indicates a greater number of double bonds present in the carbon
chain leads to poor combustion performance compared to Macadamia biodiesel. The statistical t-test
indicates the insignificant variation of BP (p-value = 0.078) between Macadamia and Grapeseed B5
blends, however, significant variation of BP ((p-value = 0.008)) has been noted for B10 blends between
Macadamia and Grapeseed biodiesel.

3.1.2. Brake Specific Fuel Consumption (BSFC)

BSFC depends on the BP generation in the engine at a specific engine speed and the mass of fuel
flow at that speed [18]. Figure 3 shows the variation of percentage in BSFC using biodiesel blends with
respect to diesel at engine speeds between 1200 rpm and 2400 rpm. It can be observed from the figure
that the BSFC for all the biodiesel blends increases when compared to that of diesel fuel. The high
BSFC in the case of biodiesel blends was due to the lower calorific value of the biodiesel as shown in
Table 2. The fuel having a lower calorific value, requires a greater amount of fuel to be introduced into
the cylinder to produce the same amount of power compared with the higher calorific value fuel [57].
The percentage increase of BSFC using the Macadamia B10 blend was about 3 to 11% at various engine
speeds, and it was about 2 to 8.5% using the Macadamia B5 blend. Grapeseed B10 blend, having higher
biodiesel in the blend has the highest increment in BSFC among all other biodiesel blends used in this
investigation. In addition to this, the BSFC of Grapeseed B10 blend varies significantly when compared
to that of the Grapeseed B5 blend. Azad and Rasul [61] also noted the similar increasing trend of BSFC
with the increase in biodiesel percentage into the blend. As the calorific value in biodiesel is lower
than diesel, the addition of more biodiesel in the blend reduces the gross calorific value of the blend,
which results in higher BSFC [62]. It can also be seen from the figure that the maximum BSFC value
was observed at 1200 rpm for all the biodiesel blends. On the other hand, the lowest BSFC value was
noted at an engine speed of 2400 rpm for all the blends.Energies 2020, 13, 2748 9 of 21 
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Figure 3. Comparison of the brake specific fuel consumption (BSFC) increase using B5 and B10
biodiesel blends.

The t-test has identified the statistically significant variation of BSFC for Grapeseed B5 and B10
(p-value = 0.001) blends; Macadamia B10 and Grapeseed B10 blends (p-value = 0.009), respectively.
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On the other hand, the variation of BSFC is statistically insignificant because of p-value = 0.202
for B5 vs. B10 Macadamia biodiesel; p-value = 0.483 between Macadamia B5 and Grapeseed B5
blends, respectively.

3.1.3. Brake Thermal Efficiency (BTE)

The BTE is considered one of the key aspects for the evaluation of fuel performance when used in
a diesel engine [25]. Figure 4 illustrates the decrease in BTE for biodiesel blends compared to that of
diesel fuel at an engine speed ranging from 1200 rpm to 2400 rpm. The figure also shows that the BTE
decreases for all biodiesel blends when compared with diesel. This may be due to the lower calorific
value, higher density and viscosity of all the biodiesel blends compared to diesel. Higher density and
viscosity of biodiesel blends cause poor vaporisation and atomisation of fuel, which results in improper
air-fuel mixture due to the formation of large droplets as agreed by the literature [63,64]. Biodiesel
B10 blend exhibited a higher decrease in BTE compared to B5 for both Macadamia and Grapeseed
biodiesels because the higher kinematic viscosity of B10 than that of B5 increased the fuel consumption
and extended the ignition delay. In the case of the Macadamia B5 blend, the decrease in the percentage
of BTE for an engine speed range between 1200 rpm and 2400 rpm was about 2 to 7%, and for the
Macadamia B10 blend it was 2 to 9%. The Grapeseed B5 blend and Grapeseed B10 blend resulted in a
reduction of approximately 3 to 6% and 6 to 12.5% in BTE when compared to that for diesel fuel. The
similar results also identified by the t-test that the statistically significant variation of BTE indicated by
the p-value of 0.008 and 0.028 for Grapeseed B5 vs. B10 and B10 Macadamia vs. Grapeseed blends,
respectively. Macadamia biodiesel blends showed better BTE compared to Grapeseed biodiesel blends
due to the higher cetane number of Macadamia than Grapeseed biodiesel. The BTE of biodiesel
blends tends to increase with the engine speed and reaches the maximum BTE value at 2400 rpm for
all the biodiesel blends. The statistical analysis summaries show the BET variations are statistically
insignificant, which is indicated by the p-value of 0.391 and 0.367 for Macadamia B5 vs. B10 and
Macadamia vs. Grapeseed B5, respectively.Energies 2020, 13, 2748 10 of 21 
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Figure 4. Effect of B5 and B10 biodiesel blends on brake thermal efficiency BTE compared to diesel.
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3.2. Emission Analysis

3.2.1. Carbon-Mono-Oxide (CO) Emission

Figure 5 represents the variation in CO emission from different biodiesel blends in comparison to
diesel at engine speeds between 1200 rpm and 2400 rpm. From the figure, it can be found that all the
biodiesel blends investigated in this study reduced the CO emission when compared with diesel fuel.
This emission reduction happened due to the higher content of oxygen and higher cetane number in
biodiesel compared to that of diesel fuel [57]. The higher oxygen content in biodiesel could enhance the
combustion of the fuel in the combustion chamber [65]. In general, the B10 biodiesel blends resulted
in a higher reduction in CO emission than B5 blends for both Macadamia and Grapeseed biodiesel
blends. The increase of biodiesel percentage in blends indicates the increase of oxygen content in the
blends, which ensures the complete combustion of fuel and reduction of CO emissions.Energies 2020, 13, 2748 11 of 21 
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Figure 5. Reduction of carbon-mono-oxide (CO) emission using B5 and B10 biodiesel blends compared
to diesel.

The Macadamia B5 blend showed a CO emission reduction of 7 to 25% whereas, the Macadamia
B10 blend showed a further reduction with a value of 10 to 34%. In the case of Grapeseed biodiesel
blends, B10 resulted in about 12 to 30% reduction in CO emission, while B5 caused about 17 to 34%
reduction. The CO reduction is statistically significant for both Macadamia and Grapeseed blends as
indicated by the p-value of 0.047 and 0.004 from the t-test, respectively. This result is in agreement with
the previous works published in the literature, where the authors reported an approximately 8.6 to
40% reduction in CO emission with biodiesel [57]. The highest reduction in CO emission using the
Macadamia B5 blend was noted at 2400 rpm and for the Macadamia B10 blend it was at 1600 rpm. The
Grapeseed B5 blend showed maximum reduction at the lowest engine speed, whereas the Grapeseed
B10 blend showed it at the highest engine speed. Besides, the comparison between B5 blends of
Macadamia vs. Grapeseed and B10 blends of Macadamia vs. Grapeseed CO reduction shows it is
statistically insignificant due to a p-value of 0.924 and 0.196, respectively.
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3.2.2. Balancing of CO2/CO Ratio

Figure 6 demonstrates the variation in CO2/CO ratio of Macadamia and Grapeseed biodiesel
blends in comparison to diesel at engine speeds between 1200 rpm and 2400 rpm. In the case of
Macadamia biodiesel blends, the value of CO2/CO ratio at 1200 rpm was much lower compared
to diesel and Grapeseed biodiesel blends. In contrast, the CO2/CO ratio was found to increase for
Grapeseed biodiesel blends B10 and B5 at 1200 rpm. The lower emission in the case of Macadamia
biodiesel blends could be due to the higher cetane number of Macadamia biodiesel, which reduces the
ignition delay and improves the combustion. In addition, with the increase in engine speed, the ratio
was seen to increase to close that of diesel. The higher CO2/CO ratio for Grapeseed biodiesel at the
engine speed of 1200 rpm was due to the improper fuel atomisation. Apart from this, the value of the
CO2/CO ratio was reduced with the increase in the engine speed for Grapeseed biodiesel blends. This
may be due to the increase in temperature as a result of higher fuel consumption at the higher engine
speed. However, the opposite trend was observed in the case of Macadamia biodiesel blends.Energies 2020, 13, 2748 12 of 21 
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Figure 6. Variation of CO2/CO ratio balancing with the variation of engine speed.

3.2.3. Hydrocarbon (HC) Emission

Figure 7 reveals the reduction in hydrocarbon emission from biodiesel blends. The reduction in
HC emission using the Macadamia B5 blend was about 5 to 10%, whereas the use of the Macadamia
B10 blend reduced the HC emission by 4 to 17%. Grapeseed B5 and B10 resulted in approximately
32 to 60% and 30 to 50% reduction in HC emission, respectively. The reason behind the reduction in
HC emissions for biodiesel blends could be due to the presence of a higher percentage of oxygen in
biodiesel, which enhances the oxidation reaction and burns the HC [66,67]. Additionally, the higher
cetane number present in biodiesel decreases the combustion delay and ultimately burns the higher
amount of HC in the cylinder [57]. Li et al. [57] also observed a reduction in HC emissions using
biodiesel when compared with diesel fuel. The Grapeseed B5 blend demonstrated the maximum
reduction in HC emissions and found it to be increased with the increase in engine speed. When the
HC emission from Grapeseed blends was compared with that from Macadamia blends, Grapeseed
blends exhibited a higher percentage of HC emission reduction.
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Figure 7. Hydrocarbon (HC) emission reduction compared to diesel using B5 and B10 biodiesel blends.

The t-test indicates HC reductions are statistically significant (p-value < 0.05) as indicated by
the p-value of 0.022 for Macadamia B5 vs. B10; the p-value of 0.0001 for both B5 and B10 blends of
Macadamia vs. Grapeseed. However, HC reduction is insignificant (p-value = 0.163) for Grapeseed B5
vs. B10 blends where the p-value was > 0.05.

3.2.4. Particulate Matters (PM) Emission

Figure 8 presents the percentage reduction of PM emission for biodiesel blends with respect
to diesel at various engine speeds between 1200 rpm and 2400 rpm. The PM emission was found
reduced for all the biodiesel blends. The presence of a higher amount of oxygen in biodiesel leads
to the complete combustion of fuel and reduces the PM emission during combustion [68,69]. The
percentage reduction of PM in the case of Macadamia B5 blend was observed between the range from
5% to 22.5%, while the value of PM emission reduction for Macadamia B10 blend was between 17%
and 34% compared to diesel. Grapeseed B5 blend and B10 blend reduced the PM emission by 5 to
25% and 15 to 41%, respectively compared to that of diesel. Grapeseed biodiesel blends produced
lesser PM emission compared to that of Macadamia biodiesel blends. The higher reduction in PM
emission for Grapeseed blends was most likely due to the lower carbon chain length in Grapeseed than
Macadamia biodiesel. It could be noted the reduction of PM is statistically significant for Macadamia
B5 vs. B10 blends (p-value = 0.004); Grapeseed B5 vs. B10 (p-value = 0.001), respectively. However,
an insignificant reduction was found due to the p-value 0.607 and 0.100, which is higher than 0.05
when comparing between B5 and B10 Macadamia vs. Grapeseed blends, respectively.

3.2.5. Nitrogen Oxide (NOx) Emission

The diesel engine emits a significant amount of NOx during the combustion of fuel [70] and is
highly dependent on the ratio of air-fuel mixture and in-cylinder temperature [71,72]. Figure 9 shows
the increase in NOx emission from the biodiesel blends compared to diesel at engine speeds from
1200 rpm to 2400 rpm. In general, the biodiesel blends showed higher NOx emission compared to diesel
due to the presence of a higher percentage of oxygen in biodiesel than the diesel [57]. Higher cetane
number and oxygen content in biodiesel improves the combustion process and increases in-cylinder
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temperature, leading to an increase in NOx emission [73,74]. However, compared to Grapeseed
biodiesel blends, Macadamia biodiesel blends exhibited much higher NOx emission. In the case of
Macadamia biodiesel blends B5 and B10, the NOx emission was increased by 24 to 28% and 21 to 24%
and for Grapeseed blends B5 and B10 it was 0.1 to 4% and 2 to 10%, respectively. It can also be seen
from the figure that biodiesel blend B10 resulted in higher NOx emission compared to B5 for both
Macadamia and Grapeseed biodiesel due to the presence of a higher oxygen content in the B10 blend.
For both Macadamia and Grapeseed biodiesel blends, NOx emission was reduced with the increase in
engine speed as shown in Figure 9. The t-test indicates the increase of NOx emissions is statistically
significant as indicated by a p-value lower than 0.05 for all the cases compared to diesel.Energies 2020, 13, 2748 14 of 21 
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Figure 8. Particulate matters (PM) emission reduction compared to diesel using B5 and B10
biodiesel blends.Energies 2020, 13, 2748 15 of 21 
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Figure 9. Effect on nitrogen oxide (NOx) emission compared to diesel using B5 and B10 biodiesel blends.
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3.3. Combustion Analysis

3.3.1. Cylinder Pressure (CP)

Figure 10 represents the cylinder pressure at full engine load conditions for diesel and biodiesel
blends used in this study. At 360◦ crank angle, diesel has the peak cylinder pressure of 67 bar.
No noticeable difference in-cylinder pressure was observed between the diesel and Grapeseed biodiesel
blends, though the Grapeseed biodiesel has higher kinematic viscosity than the diesel. The higher
cylinder pressure for Grapeseed was also measured approximately 65 bar at a 360◦ crank angle.
A similar effect of biodiesel on cylinder pressure was observed by Ghazali et al. [57] who stated that
there was no distinct variation in peak cylinder pressure with biodiesel blends when compared to
diesel [75,76]. However, Macadamia biodiesel blends B10 and B5 resulted in a slight increase in the
in-cylinder pressure at 355 to 375◦ crank angle. The increase in-cylinder pressure for Macadamia
biodiesel blends may be due to the higher cetane number of Macadamia biodiesel, which reduces the
ignition delay [57,77].Energies 2020, 13, 2748 16 of 21 
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3.3.2. Heat Release Rate (HRR)

The heat release rate (HRR) of diesel, Macadamia B5, Macadamia B10, Grapeseed B5, and
Grapeseed B10 biodiesel blends are presented in Figure 11. The experimental results suggested that the
ignition occurred before the 360◦ crank angle; however, the peak heat release rate was noted only after a
370◦ crank angle. Azad and Rasul [61] stated that this time lag is required to attain the peak combustion
after the ignition of the fuel. Although there was a variation in the physicochemical properties, for
instance, kinematic viscosity, cetane number, the calorific value between diesel and biodiesel blends;
the heat release rate of biodiesel blends was almost the same as that of diesel, as shown in Figure 11.
Ghazali et al. [57] investigated the heat release rate of diesel, biodiesel blends and neat biodiesel and
reported almost the same heat release rate for all the fuels. In addition, Karthickeyan [78] investigated
the effect of piston geometry on engine combustion, performance and emission using Pumpkin seed
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oil and Moringa oleifera and found closer HRR with higher BTE and lower NOx emission compared to
other blends.Energies 2020, 13, 2748 17 of 21 
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4. Conclusions and Recommendations

In the current study, the feasibility of using Macadamia and Grapeseed biodiesel in diesel engines
was investigated under different engine speeds ranging between 1200 rpm and 2400 rpm. According
to the experimental results and discussions, the following specific conclusions can be drawn.

• The experimental results suggest a higher BSFC for biodiesel blends compared to that of diesel.
BSFC increased by 2 to 8.5% for B5 biodiesel blend and 3 to 16% for B10 biodiesel blend. On the
contrary, BP and BTE were reduced in the case of biodiesel blends when compared with diesel
fuel. The reduction in BP and BTE for B5 biodiesel blend was in the range of 0.5 to 6.5% and 2
to 7%, respectively, and for B10 biodiesel blend it was 0 to 8% and 2 to 12.5%, respectively. The
higher BSFC and lower BP and BTE in the case of biodiesel blends were due to the lower calorific
value of biodiesel than diesel fuel.

• The use of biodiesel blends in a diesel engine exhibited better emissions profile compared to diesel,
particularly in the case of CO, the ratio of CO2/CO, HC and PM emissions. It was observed that
CO, CO2/CO ratio, HC and PM emissions were significantly reduced when B5 and B10 biodiesel
blends of Macadamia and Grapeseed biodiesel were used in the diesel engine instead of diesel
only. The findings were also verified by conducting the t-test analysis. However, the increase in
NOx emission was observed for all biodiesel blends.

• The variation in-cylinder pressure and heat release rate with the crank angle for all the biodiesel
blends was nearly the same as that of diesel fuel. Only a slight increase in-cylinder pressure was
observed for Macadamia biodiesel blends B10 and B5 at a crank angle from 355 ◦CA to 375 ◦CA.

Although the biodiesel blends investigated in this study showed mixed engine responses in
comparison to diesel, Macadamia and Grapeseed biodiesel can be a feasible alternative to diesel for the
compression engine. Cleaner combustion of Macadamia and Grapeseed biodiesel due to the higher
oxygen content in biodiesel can help in reducing environmental pollution. The study recommends
further analysis on the tribological behaviour of the biodiesel blends and a comprehensive life-cycle
economic analysis before recommending it for commercial application.
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