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Abstract: The strong expansion of residential rooftop photovoltaic (PV) and battery storage systems
of recent years is expected to rise further. However, it is not yet clear to which degree buildings will
be equipped with decentral energy producers. This study seeks to quantify the effects of different
PV and battery installation rates on the residential residual loads and grid balancing flows. A land
surface model with an integrated residential energy component is applied, which maintains spatial
peculiarities and allows a building-specific set-up of PV systems, batteries, and consumption loads.
The study area covers 3163 residential buildings located in a municipality in the south of Germany.
The obtained results show minor impacts on the residual loads for a PV installation rate of less than
10%. PV installation rates of one third of all residential buildings of the study region lead to the highest
spatial balancing via the grid. The rise in self-consumption when utilizing batteries leads to declined
grid balancing between the buildings. For high PV installation rates, regional balancing diminishes,
whereas energy excesses rise to 60%. They can be decreased up to 10% by the utilization of battery
systems. Therefore, we recommend subsidy programs adjusted to the respective PV installation rates.

Keywords: residential PV systems; battery storage systems; energy flow modeling; regional grid
balancing effect; PV self-consumption

1. Introduction

The global energy supply has been identified as a major driver of anthropogenic climate change.
In 2010 for instance, the generation of electricity and heat accounted for 26% of the anthropogenic
greenhouse gas emissions [1]. In recent years, the global CO2-emissions arising from the combustion
of fossil fuels have continuously increased by 1% p.a. on average [2]. Therefore, the transformation of
the energy systems to renewable sources is an essential mitigation measure [3].

The expansion of non-fossil resources will increase the demand for space. In contrast to conventional
combustion plants, renewable production systems usually have a low energy density [4]. This means
that a larger area is needed to produce the same amount of electrical energy as by a conventional
plant. The expansion of renewables can especially in highly populated regions raise the potential for
land-use conflicts [5]. As an exception, photovoltaic (PV) systems mounted on rooftops can significantly
contribute to the reduction of greenhouse gas emissions in the residential electrical sector [6] but their
installation does not intensify this competition for land. Thus, this renewable energy resource belongs
to the most accepted by the public [7]. Consequently, the expansion of rooftop PV is an integral part in
the energy policies of many countries. Germany for instance, has introduced a law, which includes a
fixed minimum remuneration for PV energy [8]. China has enacted the 13th Five Year Plan for energy,
which offers special feed-in tariffs for small-scale, residential systems [9].
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Due to the attractive economic conditions, more and more PV systems have been installed on
rooftops. In 2018 for instance, the worldwide performance of rooftop PV accounted for 27.9 GWp in
total [10]. Until 2023, it is expected that the installation rates continue to rise by between 14.3 GW and
46.8 GW in total [10]. However, the growing decentralization of the energy production presents a
challenge to the local electricity networks. This development fundamentally changes the structure
of the regional energy systems [11]. Rising amounts of grid-connected PV systems can lead to poor
power quality, when the residential PV excesses are fed into the grid [12].

Coincidently with the expansion of rooftop PV, the utilization of residential battery storage systems
has also strongly increased. In Germany, every second newly installed PV system was coupled to a
battery storage in 2017 [13]. This may be reasoned in the higher profitability of the residential PV
systems when additionally utilizing batteries [14]. The storages increase the degree of self-consumption
by 13–24% [15], as they balance mismatches between the production rate of the PV system and the
residential consumption. Due to this, they have the potential of decreasing harmful backflows into the
grids [16]. The potential impact of PV and battery systems on the grids is assessed by detailed analyses
of single systems or small parts of the local voltage grids. Various pricing schemes and management
strategies for residential batteries have been developed, which target the integration into the grids
apart from maximizing the benefits for the owners [17–19]. These studies offer detailed analyses of
single systems and their effects on grid flows.

Emerging challenges of the expansion of PV systems and the impact of batteries are also analyzed
on a larger spatial scale. In these regional analyses, the interrelations of the residential energy systems
can be assessed when multiple buildings are equipped with PV and residential batteries. The PV
energy yields are subject to significant spatial variations when regarding technical, meteorological,
social, and economic constraints [20,21]. Even on neighborhood level, the PV potential is subject to
strong variation, which also influences the integration of rooftop PV [22]. The spatial variations in the
potential consequently affect the residual loads, which can be partly balanced via the grids [23].

The majority of the studies focus on high PV installation rates on the selected rooftops. However,
it is not clear when and to which extent consumers will decide for the installation of residential PV
and additional battery systems [24]. Therefore, the future role of rooftop PV production in the energy
systems is still unknown. This raises the question how the energy flows are influenced in a regional
energy system if the residential buildings are partially equipped with PV and batteries. There is still a
lack of understanding of the influence of the PV and battery installation rate on the relation between
regional grid balancing, energy excesses and self-consumption rates on regional scale. In this context,
the study sets out to quantify the influence of the PV and battery installation rate on the regional energy
excesses and self-consumption of residential buildings. We evaluate how far the residual energy flows
can be balanced in dependency of the degree of PV and battery installation due to spatial variations in
the potentials. The study further aims to assess how far the partial utilization of PV and residential
batteries affects the residual loads of the residential buildings on a regional scale.

To address these objectives, we apply a land surface model with an integrated domestic energy
system component. This tool enables the simulation of power flows from various residential
buildings considering local differences in consumption, PV plants and batteries designs, as well
as the topographical and weather conditions. We use statistical data combined with spatial information
to dimension residential consumption rates and PV systems. In this way, we are able to evaluate the
effects of different PV installation and battery-coupling rates on self-consumption, regional balancing,
and the energy excesses in a regional energy system.

2. Materials and Methods

2.1. Model Environment

In order to simulate the residential energy flows of the residential buildings we apply the Processes
of Radiation, Mass, and Energy Transfer (PROMET) land surface model. It offers an integrated
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residential energy system component and has been tested successfully in various study areas at
different scales [25,26]. The PROMET model is fully spatially distributed and raster-based. This means
that each building in the study area can be attributed to a grid point in the raster and the processes are
simulated in spatially explicit way. This model approach allows the assessment of regional PV and
battery effects with physically based simulations of PV production rates and battery flows.

The temporal and spatial resolution in the following study is set to 1 h and 100 m. The meteorological
input for the PROMET model includes temperature, precipitation, wind speed, cloud cover, and air
humidity. Provided as point values at installed stations, the weather conditions are interpolated to
the raster points with the inverse squared distance weighting method considering local statistical
dependencies of the meteorological parameters on topographical conditions. The radiation fluxes
relevant for the PV model are determined on the raster resolution from air temperature and degree of
cloudiness using a simple atmospheric radiative transfer model. Snow depth and coverage impeding
the production of PV energy are estimated from the precipitation sums, radiation fluxes, heat fluxes,
and air temperature [25,26].

The domestic energy system component embedded in the PROMET model consists of three
submodules [23], which are interconnected in the following way: First, the hourly electrical energy
production is simulated by the PV model considering the building-specific slopes and orientations
of the roofs. The amount of direct and diffuse solar irradiation and the reflection striking the PV
panels is determined from the spatially resolved radiation fluxes derived from the meteorological
input data. The electrical energy yield is calculated from the hourly irradiation conditions following
the method of [27] under the constraints of temperature effects, module efficiencies, ageing losses.
At snow depth exceeding 2 cm it is assumed that the PV systems are fully covered by snow and the
production is stopped due to suboptimal radiation conditions [28,29]. The losses from the MPP-tracker
are considered by constant efficiency parameters. The PV model is further described comprehensively
in a technical report [30]. The PV model was successfully validated with hourly measurement data of
several PV systems located in the study area.

In the consumption module, the magnitude of the residential energy load is determined on hourly
scale. The input of this component includes the average, annual consumption rates, which are spatially
resolved to raster resolution according to the building locations. The yearly consumption rates are
calculated from these reference values using annual adjustment parameters. The temporal course
of the energy consumption is determined from the obtained annual consumption rates by hourly
load profiles [31,32]. The derivation of hourly consumption rates is further described in a dedicated
modelling documentation [33]. The consumption component was successfully validated with 15 min
measurement data of the study area.

In the next step, the differences between production and consumption rates are determined on
building scale. The PV energy is transformed to alternative current (AC) via inverter assuming a
constant efficiency. The PV self-consumption is determined as the amount of energy produced by the
PV panel which is simultaneously consumed by the building.

The third submodule also includes the simulation of the battery storages, if coupled to PV
systems. The battery model calculates the charging and discharging flows of the battery storages
from the available energy excess or deficit of the residential energy system before the conversion
to AC [34,35]. It is assumed that the battery systems are rechargeable and always connected to the
grid. The magnitude of the charging and discharging flows are determined considering the maximum
charging and discharging power, self-discharging, ageing effects, and the influences of temperature
and current. The selected operation strategy maximizes the self-consumption of the PV production,
which is currently the common management strategy for residential buildings employed by the battery
retailers [36]. This means that the battery is charged as soon as excess energy is generated by the PV
system and discharged when the hourly energy consumption exceeds the production.

The residual load is defined as the energy flow between the public and residential grid network.
Grid supply is defined as a positive residual load, whereas negative loads denote PV excesses fed into
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the grids. The amount of PV excesses available in the grids and consumed by the other residential
buildings is termed as regional balancing flow. It is assumed that the energy flows between the
buildings are not constrained by grid limitations. In this way, the upper bounds for the supply with
regionally generated PV energy from rooftop-mounted systems can be quantified. PV self-consumption
is defined as the annual share of PV energy that can be directly consumed by the building, whereas
self-sufficiency denotes the percentage of consumption that is produced by the residential PV plant
per year. The energy production, which is neither consumed by the own household nor by the other
residential buildings is termed as energy excess.

Three different energy supply options exist for each building in the study area: (1) full grid supply,
(2) supply by a rooftop PV system and the grid, and (3) supply by PV, an additional battery and the
grid. It is assumed that PV and battery systems are jointly used in buildings with multiple households,
so that only one PV and battery system is potentially installed per building. The regional effects of the
partial equipment with PV systems and coupled batteries are assessed sequentially by the increase of
the installation rates in increments of 1%. The buildings, which are equipped with PV systems and
additional batteries, are selected randomly. The resulting energy flows are first determined on building
scale and then aggregated to raster resolution.

2.2. Description of the Study Area

The study area covers the district town Bad Tölz, which is located in the Alpine foreland in the
southeast of Germany (see Figure 1). The study area belongs to a region in Germany characterized by
a high potential for photovoltaic energy production. Within the municipal area, the average global
incoming irradiation ranges between 1.167 kWh/m2 in the north and 1.145 kWh/m2 in the south at
higher elevation levels [37].
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Figure 1. Location of the study area and distribution of residential buildings (Data source: [38–40]).

The city covers 3080 ha with an average population density of 564 persons per km2 [41]. In total,
20.1% of the study region is classified as residential and traffic area, of which 233 ha belong to residential
settlements. In 2017, 18,647 inhabitants living in 3289 residential buildings were registered in Bad Tölz
(see Figure 1). One or two person households account for the most common form of housing [41].
An average building has 2.75 apartments with 84.2 m2 and 5.67 residents. The city of Bad Tölz has an
annual energy consumption of 69.693 GWh (measured between 2013 and 2016), of which 38.0% are
contributed to the residential sector [42]. On average, the households in the study region consumed
3093 kWh of electrical energy per year, which is similar to the German mean of 3168 kWh/yr [43].
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2.3. Input Data

The period of five years from 2014 to 2018 is simulated using hourly climate data from
1236 measurement stations of the German weather service, of which 44 are located within or in
max. 50 km distance to the study region. The essential input for the land surface model PROMET
includes spatially resolved data sets for elevation [38] and land use [44]. The domestic energy system
component needs further input data for the PV, battery and consumption component. Table 1 shows
the values of the PV and battery parameters, which are kept constant for all systems. We assumed that
the PV systems featured crystalline silicon type solar panels, which is the dominant configuration used
in the past few years [45]. The use of lithium-ion accumulators is simulated, as this is currently the
primarily purchased type for residential applications [13].

Table 1. Specification of the input parameters of the PV and battery model.

Parameter Value Source

PV model

Efficiency module [–] 0.173 [45]
Efficiency inverter [–] 0.98 [45]
Temperature coefficient [–] 0.45 [28]
Constant [–] 30.5 [28]
Ageing factor [–] 0.001 [45]

Battery model

Nominal voltage [V] 3.6 [46]
Power energy density ratio [W/Wh] 1 [46]
Maximum number of cycles [–] 3000 [46]
Hourly losses [–] 0.00000625 [47]
(Dis-) Charging Efficiency [–] 0.99 [46]
Initial maximum depth of discharge [–] 0.60 [46]

2.4. Temporal and Spatial Downscaling of the Consumption Rates

For the presented analysis we use 3163 residential buildings located in our study region, which we
extracted from a digital building model provided by the Bavarian Agency for Digitization, High-Speed
Internet and Surveying [39].

This data set contains georeferenced, building-specific information as construction heights,
base areas, roof shapes, and the types of utilization for instance. It was generated from airborne laser
scanning data and the national real estate cadaster.

The annual residential consumption rates are provided by the local energy supplier and cover
the years 2014 to 2016 [42]. As the energy consumption of electrically based heating systems is
reported separately in this data set, the applied residential consumption loads exclude the additional
energy demand from heating pumps. The energy consumption rates for the years 2017 and 2018 are
extrapolated using the moving average of the previous two years. Standardized load profiles for
households are applied to temporally downscale the annual consumption rates (see Figure A1) [32,33].

As the use of building-specific energy loads allows the determination of the PV self-consumption,
the annual consumption rates are spatially downscaled from the municipal to the building level.
The method applied in this study is based on the assumption that the electrical energy consumption is
proportional to the living space. The exact positions of the buildings provided by the digital building
model are transformed to the grid system used in the applied land surface processes model.

The building-specific consumption rates are derived in the following way:
In the first step, the number of floors NF is determined for each building B of the study area

according to Equation (1).

NF(B) = (HE(B) −HB(B) −H0)/(HR + HC) (1)

The altitude of the building is calculated from eaves heights HE and the ground level HB provided
by the building data set. For H0, which is the distance from the ground surface to the first floor,
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we use a height of 0.85 m. This value is reasonable for regions, which are prone to flooding and have
consequently raised ground floors for flood protection. We further assume an average room height
HR of 2.50 m. This is in line with the room heights of the dwellings constructed in Germany in the
recent decades. Since more than 70% of the residential buildings in Bad Tölz were built in the second
half of 20th century [48], the assumed room height is a reasonable value for the study area. We further
assume a thickness of 0.4 m for the height of the ceiling construction Hc as the sum of 20 cm height for
the load-bearing layer and 20 cm for the floor construction. These are typical heights for the current
construction heights of German dwellings.

Equation (2) shows the determination of the total living area AL based on the obtained numbers of
floor NF, the effective area for living Nea, and the gross floor AB, which is provided by the digital building
model. According to the guidelines of the Association of German Engineers (VDI), the percentage of
the effective living area to the gross floor is between 59% and 71% for residential buildings [49]. Based
on this, we assume an effective area for living Nea of 65%:

AL(B) = NF(B)·Nea·AB(B) (2)

The applied dimensioning approach results in a high share of residential buildings with two floors
(see Figure 2). This seems plausible, as the study area is characterized by a large number of detached
two-story houses. The resulting living area of 229.87 m2 per building is in line with the statistical mean
of 229.61 m2 obtained in the municipality of Bad Tölz for 2014 [50].
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of the average consumption rates per building.

In the next step, the consumption rate is spatially distributed based on the obtained living areas of
the buildings. It is assumed that the annual, municipal energy consumption is equally distributed over
the living areas. In total, the residential energy use of the municipality accounted for 26,603.86 MWh on
average and varies by 0.3%, which amounts to 36.10 kWh/m2 between 2014 to 2016 [42]. The obtained
annual consumption rates presented in Figure 2 range between 0.88 MWh and 67.70 MWh per building
at an average of 8.30 MWh.

2.5. Dimensioning of the PV Systems and Batteries

The installed capacities of residential PV systems underlie a high variability, as they are influenced
by several factors. The installation of rooftop mounted PV systems is not allowed for buildings kept
under a preservation order. This applies to 1% of the residential buildings located in the study region,
which are excluded from the potential for a PV and battery expansion.
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PV sizes are subject to technical and spatial constraints concerning the inclination angels of the
roofs, the available areas, and the orientations of the buildings relative to the sun. Apart from these
limitations, different motivations with the purchase but also the development of the incentives and
prices have a strong influence on the installation capacities of the PV systems [13]. In our study,
we consider both aspects by dimensioning the PV system sizes in two steps.

First, the spatial constraints of the potential PV systems are determined individually for each
building. For this purpose, we calculate the statistical energy yields PVpot for the available rooftops R
of each building B (see Equation (3)). The information for areas AR, orientations OR, and inclination
angels θR of the roofs is taken from the building model [39]:

PVpot(R, B) = 0.9·AR(R, B)·
12∑

s=1

IR(s)·c(s, OR(R, B),θR(R, B)) (3)

The size of the potential PV system is curtailed to 90% of the roof area AR to consider roof areas
covered by windows, snow guards, chimneys, and the space needed for installation and access. It is
assumed that the orientation OR and the inclination of the PV panels θR correspond to those of the
rooftops. The statistical irradiation striking the roof areas is based on the average monthly incoming
global irradiation IR on the horizontal plane [37]. The inclinations between the solar irradiation and
the PV panels are considered through seasonal correction factors c, which are adjusted for Bavarian
conditions [51].

For each building, we determine the rooftop with the highest estimated energy yield as the
technical potential. The nominal potential PV power is derived from the available roof area assuming
a rated power of 170 W/m2 [45].

To consider the actual variability of the PV installation capacities and not only technical constraints,
we use the statistical distribution of the nominal PV power rates obtained from central registry of
renewable energy systems, which is operated by the German Federal Network Agency [52]. Based on
this data set, the panel areas of the selected PV systems are further reduced to reproduce the different
shares of the PV sizes. Figure 3a shows the resulting distribution of the PV installation rates with
an average nominal power of 9.30 kWp. For almost half of the buildings the ratio between the PV
production capacity and annual electrical energy demand is 1.0−1.5 kWp/MWh (see Figure 3b).
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The sizes of battery storages are dimensioned from the nominal PV power of the systems with
one kWp per kWh useable battery storage capacity. This ratio follows the average dimensioning rate
of the new-installations in 2017 [13].

3. Results

3.1. Regional Balancing and Self-Sufficiency

In order to assess the impact of the PV and battery installation rate on municipal scale,
the rate of installed PV systems and coupled battery storages is increased in 1% steps leading
to 10,201 simulation runs.

The PV installation and battery-coupling rate has different effects on the regional balancing and
self-sufficiency. Figure 4 shows the share of regional balancing and self-sufficiency of the total energy
consumption as functions of the PV installation rate and the percentage of battery coupling.
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The degree of rooftops with installed PV systems has a higher impact on the regional balancing
than the additional utilization of batteries. As presented in Figure 4 left, the PV installation rate
influences the regional balancing of the residual loads in a non-linear way. The maximum amount of
the consumed energy, which is produced externally by the PV systems of other residential buildings,
reaches 18.7% at a PV rate of 32%. With the further increase of the PV rate, the regional balancing effect
declines. At a PV installation rate of 99% for instance, the regional balancing is marginal with a value
of only 3.5%.

The utilization of residential batteries reduces the regional balancing effects as the mismatches
between PV production and consumption are already levelled within the building. The impact of
batteries is apparent in particular for the PV installation rates around 30%. The balancing effects are
decreased by 4.4% by equipping all PV systems with additional batteries. At high PV installation rates,
a change of the battery coupling rate has only minor influence.

In contrast to the regional balancing, the degree of residential self-sufficiency rises linearly with
increasing the PV or battery installation rates (see Figure 4 right). If only PV-systems are expanded,
the regional self-sufficiency reaches a maximum of 36.3%, when all buildings are equipped with PV
systems. Batteries additionally raise the self-supply due to the balancing of residential energy excesses
and deficits. The strongest effect of the storages is observable at a PV installation rate of 99%. The
additional utilization of batteries increases residential self-sufficiency by 21.3% to 57.6%.
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3.2. Self-Consumption and Energy Surplusses

The PV installation rate and the share of systems coupled to storages influence the PV
self-consumption and excesses in different ways as presented in Figure 5. The degree of direct
self-consumption stays more or less constant at 28.9% on average for all PV rates (Figure 5b). For higher
shares of buildings equipped with PV, the charging and discharging of residential storages increases
the self-consumption from 28.9% to a mean value of 46.8% depending on the battery-coupling rate.
However, for low PV installation rates the degree of self-consumption reaches its maximum at 55.8%.Energies 2020, 13, x FOR PEER REVIEW 9 of 18 
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In contrast, the energy excesses are strongly determined by the PV installation rate. At PV
installation rates of less than 10%, the total amount of generated PV power is so low that the residential
buildings fully consume the available production rates by either self-consumption or regional balancing.
If the PV installation rate exceeds this threshold, the degree of energy surpluses rises linearly. At an
installation rate of 99%, the highest share of excesses is obtained with 67.9%.

With the additional equipment of the residential energy systems with battery storages,
the production surpluses are partially damped, as mismatches between PV production and consumption
of the residential energy systems are balanced by the storages. With a reduction of 16.3% to 51.2%, the
highest effect of battery utilization is obtained for a PV installation rate of 99%.

3.3. Residual Loads and Regional Balancing Flows

We first analyze the impact of the PV installation rate on the energy flows without the utilization
of the residential storage systems. Figure 6 shows the distributions of the total residual loads and
regional grid balancing flows between the residential buildings by indicating the number of hours,
at which a certain value is exceeded.

Increasing PV installation rates raises the hours and the magnitudes of energy excesses.
The expansion of PV systems leads to a reduction of the positive residual loads in the medium
range between 4.0 MW and 2.0 MW, whereas the peak hours with maximum consumption are not
significantly affected. In contrast, the magnitudes and hours of negative residual loads rise with
increased PV capacities. At an installation rate of 99% for instance, the maximum excess is equivalent
to 69.1% of the installed capacity.
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The balancing flows are in contrast to the distribution of the residual load. Whereas an installation
rate of 32% leads to the maximum total balancing effects, the highest magnitude of power flows
between the buildings is obtained at PV installation rate of 40%. A further increase of the PV rate
reduces the balancing flows in the medium range, whereas the extrema stay more or less constant.

Figure 7 shows the residual loads and balancing flows for different battery-coupling rates for the
PV installation rate of 32%. The impact of residential battery storages systems is analyzed exemplarily
for this degree of PV expansion as it shows in the highest regional balancing effects.
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Figure 7. Duration curves of (a) residual loads and (b) balancing flows for different battery-coupling
rates at a PV installation rate of 32%.

As the batteries partially balance the energy excesses and deficits already within the buildings,
the utilization of the storages leads to a decrease of the residential residual loads. However, this effect
is not equally distributed over the year. Figure 7 shows that the residual loads are mainly reduced
in hours of medium residential deficits between 2.5 MW and 5.0 MW. The additional equipment of
battery storages reduces the remaining energy demand by up to 22.2%. The fraction of hours per
year with energy excesses declines from 16.8% to 12.5% when additionally using batteries. However,
hours with peak demand are not affected by the utilization of batteries. The analysis of the regional
residential energy excesses follows a similar distribution. The utilization of batteries significantly
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reduces the lower positive excesses flows of less than 2.5 MW. Feed-in peaks remain unaffected if
residential buildings are additionally equipped with batteries that are managed with the goal of
maximizing self-consumption.

Similar to the residual load, the storage operations of the batteries influence the flows between
the residential buildings mainly in the medium range. They reduce the regional balancing by up to
90%, if all PV systems are coupled to batteries. The balancing flows peaking 3.0 MW remain constant
independently of the degree of coupled batteries.

Figure 8 shows that for high PV expansions, the impact of storages on residual load and balancing
flows is reversed. The residual loads are reduced in a much stronger way than the balancing flows if
the PV systems are additionally coupled to batteries. Especially the energy excesses in the medium
ranges are decreased by the utilization of batteries. The decline of the negative grid flows between
0 MW and −16.5 MW ranges from 0.5 kW to 2.5 kW if all residential buildings are equipped with
PV systems and batteries. However, the highest PV excesses of less than −16.5 MW remain constant
independently of the degree of battery utilization. When analyzing the energy deficits, the storage
effect becomes also visible for the range of positive residual loads by a reduction of 19.5% on average.

Energies 2020, 13, x FOR PEER REVIEW 11 of 18 

 

reduces the lower positive excesses flows of less than 2.5 MW. Feed-in peaks remain unaffected if 
residential buildings are additionally equipped with batteries that are managed with the goal of 
maximizing self-consumption. 

Similar to the residual load, the storage operations of the batteries influence the flows between 
the residential buildings mainly in the medium range. They reduce the regional balancing by up to 
90%, if all PV systems are coupled to batteries. The balancing flows peaking 3.0 MW remain constant 
independently of the degree of coupled batteries. 

Figure 8 shows that for high PV expansions, the impact of storages on residual load and 
balancing flows is reversed. The residual loads are reduced in a much stronger way than the 
balancing flows if the PV systems are additionally coupled to batteries. Especially the energy excesses 
in the medium ranges are decreased by the utilization of batteries. The decline of the negative grid 
flows between 0 MW and −16.5 MW ranges from 0.5 kW to 2.5 kW if all residential buildings are 
equipped with PV systems and batteries. However, the highest PV excesses of less than −16.5 MW 
remain constant independently of the degree of battery utilization. When analyzing the energy 
deficits, the storage effect becomes also visible for the range of positive residual loads by a reduction 
of 19.5% on average. 

(a)  (b) 

Figure 8. Duration curves of (a) residual loads and (b) balancing flows for different battery-coupling 
rates at a PV installation rate of 99%. 

In contrast to the residual loads, the balancing flows are marginal at the PV installation rate of 
99%. Consequently, the decreasing effect of the battery storages on grid balancing is much weaker 
than for lower PV installation rates. Especially, in the medium range, the balancing flows decline by 
less than 1% when simulating the additional utilization of the battery storages. The highest reduction 
from 3.26 MW to 2.56 MW is obtained at the peak load when all PV systems are additionally equipped 
with batteries. 

4. Discussion 

4.1. Relation Between Regional Balancing, Energy Surplusses and Self-Consumption 

In this paper, we analyzed the effects of PV installation rates and battery coupling on self-
consumption and excesses in a regional case study. We used the example of a real distribution of 
houses in Southern Germany and the hourly electricity consumption patterns to study through 
simulations the effects. 

The integration of residential PV energy and the potential effects of battery storages are strongly 
dependent on the installation and coupling rates. At PV installation rates of less than 10%, the 
decentral energy production has limited impact on the residual load of the residential buildings. As 
the majority of buildings are entirely supplied by the grid, backflows arising from PV surpluses can 
be fully consumed by the residential buildings. As the PV production is low compared to the total 

Figure 8. Duration curves of (a) residual loads and (b) balancing flows for different battery-coupling
rates at a PV installation rate of 99%.

In contrast to the residual loads, the balancing flows are marginal at the PV installation rate of
99%. Consequently, the decreasing effect of the battery storages on grid balancing is much weaker
than for lower PV installation rates. Especially, in the medium range, the balancing flows decline by
less than 1% when simulating the additional utilization of the battery storages. The highest reduction
from 3.26 MW to 2.56 MW is obtained at the peak load when all PV systems are additionally equipped
with batteries.

4. Discussion

4.1. Relation Between Regional Balancing, Energy Surplusses and Self-Consumption

In this paper, we analyzed the effects of PV installation rates and battery coupling on
self-consumption and excesses in a regional case study. We used the example of a real distribution
of houses in Southern Germany and the hourly electricity consumption patterns to study through
simulations the effects.

The integration of residential PV energy and the potential effects of battery storages are strongly
dependent on the installation and coupling rates. At PV installation rates of less than 10%, the decentral
energy production has limited impact on the residual load of the residential buildings. As the majority
of buildings are entirely supplied by the grid, backflows arising from PV surpluses can be fully
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consumed by the residential buildings. As the PV production is low compared to the total energy
consumption, the influence of PV systems and residential batteries on the energy flows is marginal on
regional scale.

This is different for a higher PV installation rate as balancing effects and self-sufficiency rise when
increasing the PV installation rate. In our example, the spatial grid balancing due to differences in
the residual loads reaches its maximum if one third of the buildings are equipped with PV systems.
Residential buildings with positive residual loads can partly consume PV excesses from the grids.
For this reason, a higher share of PV energy can be used for the supply of the residential buildings
additionally to self-consumption.

The additional utilization of battery storage systems reduces these grid-balancing effects by raising
self-consumption, which is especially observable at PV installation rate around 30%. Energy excesses,
which would supply the other residential buildings, are then used for charging the batteries. The shifts
in the energy flows also become apparent in the distribution of the residual loads. The utilization of
batteries generally reduces the negative residual loads. However, the hours with residential energy
deficits are increased by up to 4%, as the higher self-consumption leads to less energy surpluses in the
grids available for regional balancing. Consequently, the share of energy consumption covered by
residential PV energy production remains at the same level. The decrease of the total energy excesses
through the storages is limited.

As the grids are not simulated in our study, bottlenecks impeding the energy exchange between the
buildings are not considered. It is assumed that the grid enables the full energy exchange between the
residential buildings. This means that the obtained values are upper bounds for the spatial balancing
effects, which can be reached if the grid infrastructure is adjusted to the obtained flows.

For a high PV installation rate of more than 80%, the grid balancing effects diminish, whereas
self-sufficiency rises. This can be explained by the increasing number of buildings equipped with PV
systems. The high self-supply reduces the residential energy deficits, so that rising PV surpluses can
be less effectively balanced via the grid. For PV rates of 99% for instance, the consumption of the PV
power production is solely dependent on residential self-consumption, as the regional balancing effect
decreases to almost zero.

Consequently, high PV installation rates have strong effects on the residual loads leading to an
extreme rise of backflows. At full PV expansion, the maximum negative residual load is increased up
to three times the peak demand.

The utilization of batteries significantly reduces the arising energy excesses to the benefit of
increasing self-consumption rates. As the regional balancing effect diminishes for high PV installation
rates, the storages are charged by PV surpluses, which would otherwise entirely lead to excesses in the
grids. Especially negative residual loads in the lower and medium range are decreased when using
the batteries.

The average increase in self-consumption of 29% obtained in this study exceeds the values found
in Ref. [15]. This may be explained by increased efficiency rates of PV and battery systems compared to
earlier studies. We consider the obtained results to be robust due to the large numbers of buildings with
varying PV sizes, battery capacities, and consumption loads. The temporal extent of the simulations
set to five years is also long enough in order to represent average meteorological conditions for
PV production.

However, the utilization of residential battery storage systems does not contribute to the reduction
of extreme backflows, as the highest negative residual loads remain unaffected by the utilization of
storages. This can be explained by the selected battery charging strategy optimized for maximizing
self-consumption. The obtained peaks usually occur in summer days, when the inclinations between
panels and sun have reached the optimum and a large amount of PV energy is produced. During
these days, the PV surplus of the late midday hours is completely fed into the grids as the batteries
are already fully charged by the energy excesses of the morning hours. Our results are in line with
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previous studies [17,18,23] showing that on sunny days reverse power flows are likely despite the
utilization of the storages.

4.2. Applicability of the Results to Other Municipalities

Two factors decide about the direct transferability of the obtained findings to other regions:
The first aspect is the irradiation potential, which decides on the productivity of the PV systems.
With an average annual irradiation of 1150 kWh/m2, the study region is representative e.g., for the
mid-latitudes of Central Europe. For areas with higher PV potentials, grid-balancing effects will
probably reach their maxima already at lower PV installation rates. Residential energy excesses occur
at lower shares of buildings equipped with PV systems, which are available for the other households of
the community. In order to understand how far grid balancing effects and the PV installation rate are
influenced under higher natural potentials, further research is necessary at this point. However, the
impact of residential battery storages, which increase self-consumption rates at declining grid-balancing
effects, remains similar.

One aspect, which is not considered in this study, is the effect of shading of neighboring buildings,
vegetation, or obstacles on the roofs. Their incorporation would impose unsatisfiable requirements
to the availability of data and computational resources and is thus neglected in the study design.
Although it is assumed that these effects are eliminated as far as possible by the optimal selection of
the PV location, they still can reduce the PV production of a building especially in months of low solar
inclination angles. It is not yet clear, how far these effects become apparent on regional scale.

The second factor affecting the transferability to other municipalities is the distribution of the
residential energy consumption. The results obtained in this study are valid for regions with a similar
relation between PV potential and energy consumption rates shown in Figure 2b. This accounts for
municipalities in rural or suburban areas with high shares of detached and terraced houses. In these
regions, shading effects by neighboring buildings could be of lower impact compared to cities which
are commonly characterized by much smaller site areas.

The results cannot be directly applied to heavily urbanized communities with high shares
of multistory buildings. These types of buildings have smaller ratios of their PV production
potentials to consumption rates due to the limited space for rooftop mounted PV systems at a
high number of residents. This indicates that the degree of self-consumption is much higher compared
to detached houses, which reduces regional balancing effects. In these cases, the PV installation rate,
which maximizes grid balancing, is shifted from 30% as obtained for the study region to higher values.

Apart from the utilization of batteries, heat pumps or electric cars also have the potential to
decrease residential PV energy excesses within a house grid network. The utilization of an electrically
powered heating or car raises consumption rates and varies residual loads due to different load
profiles. These two parameters strongly influence the degree of self-consumption of a building and the
magnitude of energy excesses fed into the grids. For this reason, at a high degree of electrification of
traffic and heating in a municipality, the presented approach will need to undergo an update of the
framework condition.

4.3. Policy Implications

Several conclusions can be drawn concerning political incentives facilitating the transition to
renewable energy systems in regions dominated by detached or terraced residential buildings. At low
shares of residential PV systems, financial support for PV systems can be offered without leading to
significant changes in the residential residual loads in a regional energy system. The expansion of
net metering models could contribute to the PV integration more efficiently than subsidies for battery
storages. At medium PV-rates of 30%, the financial support of residential batteries would not lead to
an enhanced grid integration of PV systems, as the batteries raise self-consumption at the expense of
the regional balancing. A sufficiently large grid infrastructure between the residential buildings leads
to similar effects as the broad utilization of batteries. Therefore, potential funding could better focus
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on the expansion and reinforcement of the local grids than on the expansion of batteries, if regional
balancing flows are limited by an insufficient grid infrastructure.

If a large share of residential buildings is already equipped with PV systems, the utilization of the
residential storages can help to reduce energy excesses. In this case, incentives for battery systems
could be a suitable instrument to motivate households to purchase residential storages. If the energy
systems are dominated by the residential sector, additional measures like central storages or feed-in
limits are necessary in order to reduce the extreme energy excesses.

5. Conclusions

In the transition to renewable energy systems, residential PV and battery storage systems are
among the most popular technologies for house owners. Consequently, they are often fostered by
governmental institutions. The expansion of rooftop PV power fundamentally changes the structure of
the energy systems posing new challenges to the grid suppliers. The impact of the prosumers on the
residential residual loads and resulting requirements for their integration is thereby dependent on the
PV and battery installation rate:

• If less than 10% of the residential buildings are equipped with PV systems, the prosumers induce
minor changes of the residential residual load on regional scale under the assumption of an
adequate grid infrastructure. This is also valid, if batteries are additionally utilized. State subsidies
for residential PV can be fully offered without constraints.

• For PV installation rates of one third, the balancing arising from differences in the residual loads
of the buildings reaches a peak value. At the maximum, 18% of the total residential consumption
is produced on other buildings. The utilization of decentral battery storage systems mainly
decreases this balancing effect while raising self-consumption. The magnitudes of energy excesses
are not significantly reduced by the storages. Due to this, financial supporting schemes should
concentrate on grid expansion and the removal of bottlenecks to enable the full energy exchange
between the buildings. Incentives for residential storages do not lead to the further integration of
the PV systems.

• For high degrees of buildings equipped with rooftop mounted PV systems, two third of the
produced PV power cannot be consumed by the residential buildings. In this case, residential
batteries can contribute to a better grid integration of residential PV by reducing low and
intermediate negative residual loads. With the utilization of batteries, the residential degree of
self-sufficiency reaches the maximum of 58%. The energy excesses, which cannot be consumed
by the residential buildings, still account for half of the total PV production. If the residential
PV expansion has already reached these high levels, state incentives should set the focus on the
increased purchase of battery storage systems instead of single PV systems, as the storages help to
reduce backflows into the local grids. Additional mitigation measures become mandatory for
energy systems dominated by the residential sector in order to prevent power quality issues.

The obtained results are valid for rural or suburban municipalities at mid-latitudes with high
shares of detached or terraced houses and sufficient potential for installing PV systems on their roofs.
For these areas of application, we recommend a flexible adjustment of governmental subsidies for
battery systems to the current levels of residential PV expansion in order to push the energy transition
forward and reduce the efforts for the grid integration of rooftop PV. For rural regions with higher PV
potentials, the maximum of regional balancing flows will be obtained at lower PV installation rates.
This paper shows that further research is necessary to assess the needs for grid strengthening between
the residential buildings for the partial PV expansion and battery utilization.
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