
energies

Article

An Efficient Analytical Approach for the Solution of
Certain Fractional-Order Dynamical Systems

Ya Qin1,2, Adnan Khan 3, Izaz Ali 3, Maysaa Al Qurashi4, Hassan Khan 3,*, Rasool Shah 3 and
Dumitru Baleanu 5,6,7

1 Data Recovery Lab of Sichuan Province, Neijiang Normal University, Neijiang 641112, China;
qinyaqy@126.com

2 School of Mathematics and Information Science, Neijiang Normal University, Neijiang 641112, China
3 Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan;

adnanmummand@gmail.com (A.K.); izaz.ali@awkum.edu.pk (I.A.); rasoolshah@awkum.edu.pk (R.S.)
4 Department of Mathematics, King Saud University, Riyadh 11495, Saudi Arabia; maysaa@ksu.edu.sa
5 Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey;

dumitru@cankaya.edu.tr
6 Institute of Space Sciences, 077125 Magurele-Bucharest, Romania
7 Department of Medical Research, China Medical University, 40402 Taichung, Taiwan
* Correspondence: hassanmath@awkum.edu.pk

Received: 18 March 2020; Accepted: 12 May 2020; Published: 28 May 2020
����������
�������

Abstract: Mostly, it is very difficult to obtained the exact solution of fractional-order partial differential
equations. However, semi-analytical or numerical methods are considered to be an alternative to
handle the solutions of such complicated problems. To extend this idea, we used semi-analytical
procedures which are mixtures of Laplace transform, Shehu transform and Homotopy perturbation
techniques to solve certain systems with Caputo derivative differential equations. The effectiveness
of the present technique is justified by taking some examples. The graphical representation of the
obtained results have confirmed the significant association between the actual and derived solutions.
It is also shown that the suggested method provides a higher rate of convergence with a very small
number of calculations. The problems with derivatives of fractional-order are also solved by using
the present method. The convergence behavior of the fractional-order solutions to an integer-order
solution is observed. The convergence phenomena described a very broad concept of the physical
problems. Due to simple and useful implementation, the current methods can be used to solve
problems containing the derivative of a fractional-order.

Keywords: Homotory perturbation method; Shehu transform; Burger equation; Caputo operator

1. Introduction

Coupled schemes of fractional-order partial differential equations (PDEs) are commonly applied in
phenomena that occur in biomechanics and engineering. Various implementations of coupled
PDE schemes arise in the modeling of electrical movement of the heart in biomechanics (see,
for instance, [1–3]). They similarly occur when modeling other problems in biochemical and physical
engineering, such as a device that includes a continuous stirred boiler container and a series plug or
container [4,5]. The coupled FPDEs can be used for the combination of different-deformable objects
with a fractional-order continuum of standard lightly surfaces [6,7]. Coupled PDE schemes also occur
in modeling several significant gravitational and electromagnetic problems (see, for instance, [8–13]).
In 1965, Harry Bateman introduced a differential equation [14], which was later renamed as the
Burger equation [15]. In science and engineering, the Burger equation has several implementations,
particularly in problems that have the structure of non-linear problems. The Burger equation has
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interesting and important applications and defines various types of physical processes such as dynamic
modeling, turbulence, acoustic waves heat transfer, and several others [16–18]. In many other cases,
this type of non-linear PDE should be addressed utilizing special techniques because it does not support
analytical approaches. In modern years, several scholars and mathematicians have developed an
analytical technique for the solution of fractional-order problems such as the high order spectral volume
formulation of Kannan et. al. [19–23], homotopy perturbation (HPM), differential transformation,
homotopy analysis, variational iteration and Adomian decomposition methods [24–28].

Recently, researchers have shown a greater interest in the study of fractional-calculus and Fractional
differential equations (FDEs). Several important implementations have been explored in a number of
different fields [29–33]. Researchers have also shown that several engineering and practical phenomena
can be described well by FDEs systems as compared to classical differential equation systems and that
equivalent FDEs and fractional integral equations give better precise and practical insights into the
systems under discussion [34–38]. Many of these engineering challenging problems are addressed by
using deterministic mathematical models that are represented by either partial differential equations of
integer order or fractional-order. These mathematical models can further be classified into a scheme
of ordinary differential equations, integro differential equations, and partial differential equations
[39,40]. The existence of fractional differential equations is also discussed in [41]. In 1998, He [42,43]
introduced HPM. In this technique, the solution is assumed to be in series form with a large number of
terms that converge quickly towards the actual derived solution. The technique has the capability
to solve nonlinear PDEs adequately. The HPTM results were compared with the actual solution to
the problems and confirmed a higher degree of accuracy. This technique has also been used to solve
address non-linear wave equations [44], bifurcation of nonlinear problems [45], and boundary value
problems [46].

In the present research work, an efficient analytical technique is utilized to solve fractional-order
Burger equations. The current is found to be very effective for the systems of FDEs. The present
methodology is very attractive and has less computational cost. The present technique has shown a
sufficient degree of accuracy.

2. Preliminaries

In this section, we present fractional calculus definitions along with properties of Laplace and
Shehu transform theory.

Definition 1. The Rieman–Liouville fractional integral is defined by [47–49]

Iγ0 h(τ) =
1

Γ(γ)

∫ τ

0
(τ− s)γ−1h(s)ds, (1)

showing that the integral on the right side converges.

Definition 2. Caputo‘s fractional-order derivative of h(τ) is given as [47–49]

Dγ
τh(τ) =

In−γ f n, n− 1 < γ < n, n ∈ N
dn

dτn
h(τ), γ = n, n ∈ N.

(2)

Definition 3. Shehu transformation is new and similar to other integral transformation which is
defined for functions of exponential order. We take a function in the set A define by [50–53]

A = {ν(τ) : ∃,ρ1,ρ2 > 0, |ν(τ)| < Me
|τ|
ρi , i f τ ∈ [0,∞), (3)



Energies 2020, 13, 2725 3 of 14

The Shehu transformation which is defined by S(.) for a function ν(τ) is expressed as

S{ν(τ)} = V(s,µ) =
∫
∞

0
ν(τ)e

−sτ
µ ν(τ)dτ, τ > 0, s > 0. (4)

The Shehu transformation of a function ν(τ) is V(s,µ): then ν(τ) is called the inverse of V(s,µ)
which is defined as

S−1{V(s,µ)
}
= ν(τ), f or τ ≥ 0, S−1is inverse Shehu trans f ormation. (5)

Definition 4. Shehu transform for nth derivatives. The Shehu transformation for nth derivatives is
defined as [50–53]

S
{
ν(n)(τ)

}
=

sn

un V(s, u) −
n−1∑
k=0

( s
u

)n−k−1
ν(k)(0). (6)

Definition 5 (Shehu transform for fractional order derivatives [50–53]). The Shehu transformation for
the fractional order derivatives is expressed as

S
{
ν(γ)(τ)

}
=

sγ

uγ
V(s, u) −

n−1∑
k=0

( s
u

)γ−k−1
ν(k)(0), 0 < β ≤ n, (7)

3. Homotopy Perturbation Shehu Transform Method

In this section, we explain the main idea of Homotopy Perturbation Shehu Transform
Method [50–53].

Dγ
τξ(ν, τ) + Mξ(ν, τ) + Nξ(ν, τ) = h(ν, τ), τ > 0, 0 < γ ≤ 1,

ξ(ν, 0) = g(ν), ν ∈ <.
(8)

where Dγ
τ = ∂γ

∂τγ is Caputo‘s derivative, M, N are the linear and nonlinear operators in ν and h(ν, τ)
represents source terms.

Using Shehu transform, we can write Equation (8) as [50–53]

S[Dγ
τξ(ν, τ) + Mξ(ν, τ) + Nξ(ν, τ)] = S[h(ν, τ)], τ > 0, 0 < γ ≤ 1,

R(ν, s, u) =
g(ν)

s
+

uγ

sγ
S[h(ν, τ)] −

uγ

sγ
S[Mξ(ν, τ) + Nξ(ν, τ)].

(9)

Now, by taking inverse Shehu transform, we get [50–53]

ξ(ν, τ) = F(ν, τ) − S−1
(uγ

sγ
S[Mξ(ν, τ) + Nξ(ν, τ)]

)
, (10)

where

F(ν, τ) = S−1[
g(ν)

s
+

uγ

sγ
S[h(ν, τ)]] = g(ν) + S−1

[uγ

sγ
S[h(ν, τ)]

]
. (11)

Now, perturbation technique having parameter ε in the form of power series is given as

ξ(ν, τ) =
∞∑

k=0

εkξk(ν, τ), (12)

where ε is perturbation parameter and ε ∈ [0, 1].
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The nonlinear term can be expressed as

Nξ(ν, τ) =
∞∑

k=0

εkHk(ξk), (13)

where Hn are He‘s polynomials in term of ξ0, ξ1, ξ2, ..., ξn, and can be determined as

Hn(ξ0, ξ1, · · · , ξn) =
1

γ(n + 1)
Dk
ε

N
 ∞∑

k=0

εkξk



ε=0

, (14)

where Dk
ε =

∂k

∂εk .
Putting Equations (13) and (14) in Equation (10) and introducing the Homotopy, we get the couple

of HPSTM as

∞∑
k=0

εkξk(ν, τ) = F(ν, τ) − ε×

S−1

uγ

sγ
S{M

∞∑
k=0

εkξk(ν, τ) +
∞∑

k=0

εkHk(ξk)}


. (15)

On comparing coefficient of ε on both sides, we obtain

ε0 : ξ0(ν, τ) = F(ν, τ),

ε1 : ξ1(ν, τ) = S−1
[uγ

sγ
S(Mξ0(ν, τ) + H0(ξ))

]
,

ε2 : ξ2(ν, τ) = S−1
[uγ

sγ
S(Mξ1(ν, τ) + H1(ξ))

]
,

...

εk : ξk(ν, τ) = S−1
[uγ

sγ
S(Mξk−1(ν, τ) + Hk−1(ξ))

]
, k > 0, k ∈ N.

(16)

The component ξk(ν, τ) can be calculated easily, which leads us to the convergent series rapidly.
By taking ε→ 1, we obtain

ξ(ν, τ) = lim
M→∞

M∑
k=1

ξk(ν, τ). (17)

Similarly, the procedure of the Laplace transform as special case for u = 1 of Shehu transform is
used to derived similar results as Shehu transformation.

4. Applications

In this section, the solutions of numerical examples are presented to confirm the validity of the
suggested methods.

Example 1. Consider the following system of fractional-order Burger’s equations [54–56]

ξ
γ
τ − ξνν − 2ξξν + (ξζ)ν = 0

ζ
γ
τ − ζνν − 2ζζν + (ξζ)ν = 0

(18)

with initial conditions
ξ(ν, 0) = sin(ν), ζ(ν, 0) = sin(ν), (19)
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Taking the Shehu Transform of Equation (18), we have

sγ

uγ
S[ξ(ν, τ)] = ξ(0)(ν, 0)

sγ−1

uγ
+ S(ξνν + 2ξξν − (ξζ)ν),

sγ

uγ
S[ζ(ν, τ)] = ζ(0)(ν, 0)

sγ−1

uγ
+ S(ζνν + 2ζζν − (ξζ)ν),

(20)

S[ξ(ν, τ)] =
1
s

sin(ν) +
uγ

sγ
[S(ξνν + 2ξξν − (ξζ)ν)],

S[ζ(ν, τ)] =
1
s

sin(ν) +
uγ

sγ
[S(ζνν + 2ζζν − (ξζ)ν)].

(21)

Taking Inverse Shehu Transform, we obtain

ξ(ν, τ) = sin(ν) + S−1
[uγ

sγ
{
S(ξνν + 2ξξν − (ξζ)ν)

}]
,

ζ(ν, τ) = sin(ν) + S−1
[uγ

sγ
{
S(ζνν + 2ζζν − (ξζ)ν)

}]
.

(22)

By applying homotopy perturbation method as in Equation (16), we get

∞∑
k=0

εkξk(ν, τ) = sin(ν) + ε

S−1

uγ

sγ
S


 ∞∑

k=0

εkξk(ν, τ)


νν

+ 2

 ∞∑
k=0

εkξk(ν, τ)


 ∞∑

k=0

εkζk(ν, τ)


ν

−

 ∞∑
k=0

εkξk(ν, τ)
∞∑

k=0

εkζk(ν, τ)


ν





∞∑
k=0

εkζk(ν, τ) = sin(ν) + ε

S−1

uγ

sγ
S


 ∞∑

k=0

εkζk(ν, τ)


νν

+ 2

 ∞∑
k=0

εkξk(ν, τ)


 ∞∑

k=0

εkζk(ν, τ)


ν

−

 ∞∑
k=0

εkξk(ν, τ)
∞∑

k=0

εkζk(ν, τ)


ν





(23)

On comparing coefficient of ε on both sides, we obtain

ε0 : ξ0(ν, τ) = sin(ν)

ε0 : ζ0(ν, τ) = sin(ν)

ε1 : ξ1(ν, τ) = S−1
(uγ

sγ
S[ξ0νν + 2ξ0ξ0ν − (ξ0ζ0)ν]

)
= −

τγ

Γ(γ+ 1)
sin(ν)

ε1 : ζ1(ν, τ) = S−1
(uγ

sγ
S[ζ0νν + 2ζ0ζ0ν − (ξ0ζ0)ν]

)
= −

τγ

Γ(γ+ 1)
sin(ν)

ε2 : ξ2(ν, τ) = S−1
(uγ

sγ
S[ξ1νν + 2(ξ1ξ0ν + ξ0ξ1ν) − (ξ1ζ0 + ξ0ζ1)ν]

)
=

τ2γ

Γ(2γ+ 1)
sin(ν)

ε2 : ζ2(ν, τ) = S−1
(uγ

sγ
S[ζ1νν + 2(ζ1ζ0ν + ζ0ζ1ν) − (ξ1ζ0 + ξ0ζ1)ν]

)
=

τ2γ

Γ(2γ+ 1)
sin(ν)

...

(24)
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Thus, by taking ε→ 1 we get convergent series form solution as

ξ(ν, τ) = ξ0 + ξ1 + ξ2 + · · ·

= sin(ν) −
τγ

Γ(γ+ 1)
sin(ν) +

τ2γ

Γ(2γ+ 1)
sin(ν) + · · · = sin(ν)

(
1−

τγ

Γ(γ+ 1)
+

τ2γ

Γ(2γ+ 1)
+ · · ·

)
ζ(ν, τ) = ζ0 + ζ1 + ζ2 + · · ·

= sin(ν) −
τγ

Γ(γ+ 1)
sin(ν) +

τ2γ

Γ(2γ+ 1)
sin(ν) + · · · = sin(ν

(
1−

τγ

Γ(γ+ 1)
+

τ2γ

Γ(2γ+ 1)
+ · · ·

) (25)

Particularly, putting γ = 1, we get the exact solution

ξ(ν, τ) = exp−τ sin(ν)

ζ(ν, τ) = exp−τ sin(ν)
(26)

The homotopy perturbation Laplace transform method which is the special case for u = 1 of the
homotopy perturbation Shehu transform method is used to obtain the same results of Example 1.

In Figure 1, the graphs a and b represent the exact and HPSTM solutions of Example 1. It is
observed that the exact and HPSTM solutions are in closed contact and justify the validity of the
proposed method. In Figure 2, the sub-graphs a and b have shown the plot of HPSTM solutions at
various fractional-order of the derivatives in two and one dimensions of Example 1 respectively. The
convergence phenomena of the fractional-order solutions towards integer-order solution is observed
by using sub-graphs a and b.

Figure 1. Plot of (a) Exact (b) HPSTM solutions of ξ γ = 1 for Example 1.

Figure 2. The plot of HPSTM solutions of ζ example 1 at (a) various values of γ (b) τ = 0.5.
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In Table 1, the solutions of Example 1 at fractional-orders γ = 0.8, 1 have been investigated.
For this purpose, the homotopy perturbation method (HPM) with two different transformations is
implemented to obtain the solutions. The results of HPM, homotopy perturbation Laplace transform
method (HPLTM) and homotopy perturbation Shehu transform method (HPSTM) are compared in
Table 1 for the variable ξ and ζ. The comparison has confirmed the best contact among the solutions of
the suggested methods. The comparisons have been done in terms of absolute error. It is analyzed
from the table that the proposed techniques have the desire degree of accuracy towards the exact
solution of the problems.

Table 1. HPLTM, HPSTM and HPM solutions comparison of Example 1 at ξ(ν, τ) and ζ(ν, τ) for
different fractional-order of γ absolute error.

HPLTM HPLTM HPSTM HPSTM HPM [54] HPM [54]

τ ν γ = 0.8 γ = 1 γ = 0.8 γ = 1 γ = 0.8 γ = 1

1 8.19373 × 10−05 7.06835 × 10−08 8.19373 × 10−05 7.06835 × 10−08 8.19373 × 10−05 7.06835 × 10−08

2 8.85419 × 10−05 7.63809 × 10−08 8.85419 × 10−05 7.63809 × 10−08 8.85419 × 10−05 7.63809 × 10−08

0.1 3 1.37414 × 10−05 1.18540 × 10−08 1.37414 × 10−05 1.18540 × 10−08 1.37414 × 10−05 1.18540 × 10−08

4 7.36928 × 10−05 6.35714 × 10−08 7.36928 × 10−05 6.35714 × 10−08 7.36928 × 10−05 6.35714 × 10−08

5 9.33742 × 10−05 8.05496 × 10−08 9.33742 × 10−05 8.05496 × 10−08 9.33742 × 10−05 8.05496 × 10−08

1 1.40490 × 10−04 2.32077 × 10−06 1.40490 × 10−04 2.32077 × 10−06 1.40490 × 10−04 2.32077 × 10−06

2 1.51814 × 10−04 2.50784 × 10−06 1.51814 × 10−04 2.50784 × 10−06 1.51814 × 10−04 2.50784 × 10−06

0.2 3 2.35611 × 10−04 3.89208 × 10−06 2.35611 × 10−04 3.89208 × 10−06 2.35611 × 10−04 3.89208 × 10−06

4 1.26354 × 10−04 2.08726 × 10−06 1.26354 × 10−04 2.08726 × 10−06 1.26354 × 10−04 2.08726 × 10−06

5 1.60100 × 10−04 2.64471 × 10−06 1.60100 × 10−04 2.64471 × 10−06 1.60100 × 10−04 2.64471 × 10−06

1 1.92364 × 10−04 1.79300 × 10−05 1.92364 × 10−04 1.79300 × 10−05 1.92364 × 10−04 1.79300 × 10−05

2 2.07869 × 10−04 1.93753 × 10−05 2.07869 × 10−04 1.93753 × 10−05 2.07869 × 10−04 1.93753 × 10−05

0.3 3 3.22607 × 10−04 3.00698 × 10−05 3.22607 × 10−04 3.00698 × 10−05 3.22607 × 10−04 3.00698 × 10−05

4 1.73008 × 10−04 1.61259 × 10−05 1.73008 × 10−04 1.61259 × 10−05 1.73008 × 10−04 1.61259 × 10−05

5 2.19214 × 10−04 2.04327 × 10−05 2.19214 × 10−04 2.04327 × 10−05 2.19214 × 10−04 2.04327 × 10−05

Example 2. Consider the following system of fractional PDEs [47]

ξ
γ
τ + ζνηµ − ζµην = −ξ

ζ
γ
τ + ηνξµ − ξνηµ = ζ

η
γ
τ + ξνζµ − ξµζν = η,

(27)

with initial conditions

ξ(ν,µ, 0) = expν+µ

ζ(ν,µ, 0) = expν−µ

η(ν,µ, 0) = expµ−ν
(28)
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Taking Shehu Transform of Equation (27), we have

sγ

uγ
S[ξ(ν,µ, τ)] = ξ(0)(ν,µ, 0)

sγ−1

uγ
+ S

(
−ζνηµ + ζµην − ξ

)
.

sγ

uγ
S[ζ(ν,µ, τ)] = ζ(0)(ν,µ, 0)

sγ−1

uγ
+ S

(
−ηνξµ + ξνηµ + ζ

)
.

sγ

uγ
S[η(ν,µ, τ)] = η(0)(ν,µ, 0)

sγ−1

uγ
+ S

(
−ξνζµ + ξµζν + η

)
.

(29)

S[ξ(ν,µ, τ)] =
1
s

expν+µ+
uγ

sγ
[
S
(
−ζνηµ + ζµην − ξ

)]
S[ζ(ν,µ, τ)] =

1
s

expν−µ+
uγ

sγ
[
S
(
−ηνξµ + ξνηµ + ζ

)]
S[η(ν,µ, τ)] =

1
s

expµ−ν+
uγ

sγ
[
S
(
−ξνζµ + ξµζν + η

)] (30)

Taking Inverse Shehu Transform, we get

ξ(ν,µ, τ) = expν+µ+S−1
[uγ

sγ
{
S
(
−ζνηµ + ζµην − ξ

)}]
.

ζ(ν,µ, τ) = expν−µ+S−1
[uγ

sγ
{
S
(
−ηνξµ + ξνηµ + ζ

)}]
.

η(ν,µ, τ) = expµ−ν+S−1
[uγ

sγ
{
S
(
−ξνζµ + ξµζν + η

)}]
.

(31)

By applying homotopy perturbation method as in Equation (16), we get

∞∑
k=0

εkξk(ν,µ, τ) =eν+µ + ε

S−1

uγ

sγ
S

−

 ∞∑

k=0

εkζk(ν,µ, τ)


ν

 ∞∑
k=0

εkηk(ν,µ, τ)


y


+


 ∞∑

k=0

εkζk(ν,µ, τ)


µ

 ∞∑
k=0

εkηk(ν,µ, τ)


ν

−
∞∑

k=0

εkξk(ν,µ, τ)



,

∞∑
k=0

εkζk(ν,µ, τ) =eν−µ + ε

S−1

uγ

sγ
S

−

 ∞∑

k=0

εkηk(ν,µ, τ)


ν

 ∞∑
k=0

εkξk(ν,µ, τ)


µ


+


 ∞∑

k=0

εkξk(ν,µ, τ)


ν

 ∞∑
k=0

εkηk(ν,µ, τ)


µ

+
∞∑

k=0

εkζk(ν,µ, τ)



,

∞∑
k=0

εkηk(ν,µ, τ) =eµ−ν + ε

S−1

uγ

sγ
S

−

 ∞∑

k=0

εkξk(ν,µ, τ)


ν

 ∞∑
k=0

εkζk(ν,µ, τ)


µ


+


 ∞∑

k=0

εkξk(ν,µ, τ)


µ

 ∞∑
k=0

εkζk(ν,µ, τ)


µ

+
∞∑

k=0

εkηk(ν,µ, τ)



.

(32)
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On comparing coefficient of ε on both sides, we obtain

ε0 : ξ0(ν,µ, τ) = expν+µ

ε0 : ζ0(ν,µ, τ) = expν−µ

ε0 : η0(ν,µ, τ) = expµ−ν

ε1 : ξ1(ν,µ, τ) = S−1
(uγ

sγ
S[−ζ0νη0µ + ζ0µη0ν − ξ0]

)
= −

τγ

Γ(γ+ 1)
expν+µ

ε1 : ζ1(ν,µ, τ) = S−1
(uγ

sγ
S[−η0νξ0µ + ξ0νη0µ + ζ0]

)
=

τγ

Γ(γ+ 1)
expν−µ

ε1 : η1(ν,µ, τ) = S−1
(uγ

sγ
S[−ξ0νζ0µ + ξ0µζ0ν + η0]

)
=

τγ

Γ(γ+ 1)
exp−ν+µ

ε2 : ξ2(ν,µ, τ) = S−1
(uγ

sγ
S[(ζ1µη0ν + ζ0µη1ν) − (ζ1νη0ν + ζ0νη1µ) − ξ1]

)
=

τ2γ

Γ(2γ+ 1)
expν+µ

ε2 : ζ2(ν,µ, τ) = S−1
(uγ

sγ
S[ζ1 − (η1νξ0µ + η0νξ1µ) − (ξ1νη0µ + ξ0νη1µ)]

)
=

τ2γ

Γ(2γ+ 1)
expν−µ

ε2 : η2(ν,µ, τ) = S−1
(uγ

sγ
S[η1 − (ξ1νζ0µ + ξ0νζ1µ) − (ξ1µζ0ν + ξ0µζ1ν)]

)
=

τ2γ

Γ(2γ+ 1)
expµ−ν

...

(33)

Thus, by taking ε→ 1 we get convergent series form solution as

ξ(ν,µ, τ) = ξ0 + ξ1 + ξ2 + · · ·

= expν+µ −
τγ

Γ(γ+ 1)
expν+µ+

τ2γ

Γ(2γ+ 1)
expν+µ+ · · · = expν+µ

(
1−

τγ

Γ(γ+ 1)
+

τ2γ

Γ(2γ+ 1)
+ · · ·

)
ζ(ν,µ, τ) = ζ0 + ζ1 + ζ2 + · · ·

= expν−µ+
τγ

Γ(γ+ 1)
expν−µ+

τ2γ

Γ(2γ+ 1)
expν−µ+ · · · = expν−µ

(
1 +

τγ

Γ(γ+ 1)
+

τ2γ

Γ(2γ+ 1)
+ · · ·

)
η(ν,µ, τ) = η0 + η1 + η2 + · · ·

= expµ−ν+
τγ

Γ(γ+ 1)
expµ−ν+

τ2γ

Γ(2γ+ 1)
expµ−ν+ · · · = expµ−ν

(
1 +

τγ

Γ(γ+ 1)
+

τ2γ

Γ(2γ+ 1)
+ · · ·

)
(34)

particularly, putting γ = 1, we get the exact solution of Equation (27)

ξ(ν,µ, τ) = expν+µ−τ

ζ(ν,µ, τ) = expν−µ+τ

η(ν,µ, τ) = expµ−ν+τ
(35)

Using the Laplace homotopy perturbation method, the same results are derived for Example 2,
because Laplace transformation is the special case for u = 1 of Shehu transformation.

In Figures 3, 4 and 5 the sub-graphs a and b are respectively the graphs of the exact and HPSTM
solutions at γ = 1 of example 2 for variables ξ, ζ and η. The graphical representation has confirmed
the closed contact of the exact solution with HPSTM solution. In Figure 6, the sub-graphs a and b have
shown the plot of HPSTM solutions at various fractional-order of the derivatives in two dimensions
of Example 2 for variables ξ and ζ respectively. In Figure 7, the sub-graphs a and b have shown the
plot of HPSTM solutions at various fractional-order of the derivatives in two and one dimensions of
Example 2 for variable η respectively. The convergence phenomena of the fractional-order solutions
towards integer-order solution is observed by using sub-graphs a and b.
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Figure 3. (a) Exact (b) HPSTM solution graph of ξ Example 2, at γ = 1.

Figure 4. (a) Exact (b) HPSTM solution graph of ζ Example 2, at γ = 1.

Figure 5. (a) Exact (b) HPSTM solution graph of η Example 2, γ = 1.
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Figure 6. The HPSTM solutions plot are represented by (a) and (b) for variables ξ and ζ respectively at
γ = 1, 0.8, 0.6 and 0.5 of ξ (ν,µ, τ) and ζ (ν,µ, τ).

Figure 7. The (a) represents HPSTM solution of example 2 at different fractional orders of γ and
(b) τ = 0.5 of η (ν,µ, τ).

5. Conclusions

In this paper, some systems of FPDEs are solved by the homotopy perturbation method along
with Laplace and Shehu transformations. The derivatives with fractional-order are expressed in term of
the Caputo operator. The suggested technique is implemented to find the solution of certain numerical
examples. The solutions of these illustrative examples are determined for derivatives at different
fractional-orders. The significant extent between the actual and approximate solutions is observed.
Furthermore, fractional solutions are found to be convergent to integer-order solution for every targeted
problem. It is observed that the proposed methods are simple, straightforward, have low computational
cost, and can be modified for the solutions of FPDEs in science and engineering. In future, the proposed
method can be extended to find the analytical solutions of nonlinear higher dimension fractional partial
differential equations and systems of fractional partial differential equations.
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