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Abstract: Battery energy storage systems (BESS) are spreading in several applications among
transmission and distribution networks. Nevertheless, it is not straightforward to estimate their
performances in real life working conditions. This work is aimed at identifying test power profiles for
stationary residential storage applications capable of estimating BESS performance. The proposed
approach is based on a clustering procedure devoted to group daily power profiles according to their
battery efficiency. By performing a k-means clustering on a large dataset of load and generation
profiles, four standard charge/discharge profiles have been identified to test BESS’ performances.
Different clustering approaches have been considered, each of them splitting the dataset according to
different properties of the profiles. A well-performing clustering approach resulted, based on the
adoption of reference parameters for the clustering process of the maximum power exchanged by
the BESS and the variation of battery energy content. Firstly, the results have been proven through
a numerical procedure based on a BESS electrical model and on the definition of a key performance
index. Then, an experimental validation has been carried out on a pre-commercial sodium-nickel
chloride BESS: this device is available in the IoT lab of Politecnico di Milano within the H2020
InteGRIDy project.

Keywords: battery energy storage systems; PV production profiles; cluster analysis; k-means algorithm;
battery test profiles; sodium-nickel chloride battery; lab tests

1. Introduction

Electricity grids are being subject to an important transition process due to the increasing
penetration of non-programmable renewable energy sources (RESs) power plants [1]. This is
an important revolution in the direction of achieving the decarbonisation targets set by governments
and also considering the rising awareness of environmental aspects. However, the integration of these
new sources in power systems also presents some issues that need to be properly managed, such as
their limited dispatchability, making the participation to the Ancillary Service Market (ASM), the lack
of inertia (most of the new plants are connected to the grid by electronic power converters) problematic,
and the bidirectional behaviour of the power flows on distribution networks.

Actually, the most promising solution to face these drawbacks, in a short-medium term scenario,
seems to be the installation of battery energy storage systems (BESSs). These systems have assumed,
in recent years, an increasing interest from both the technological and the economic point of view,
also thanks to their development in other industrial sectors, such as automotive and telecommunication
sectors [2].
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Regarding power networks, BESSs are used in two different types of applications [3]. The first one
is related to “front of the meter” applications, where the goal of the BESS is to support the network
operation by providing services on ASM: frequency regulation, spinning reserve, and peak shaving are
some examples. Another class of applications concerns “behind the meter” services, where the storage
system is used by a final user to maximize his revenues (e.g., by increasing his self-consumption).

Even if BESSs can be useful in many different contexts, in the literature there is a lack
of test procedures that could be used to quantify the performance of these devices in
small-scale implementation.

Actually, the literature is full of contributions devoted to quantifying the performances of
electrochemical cells and losses in the power conversion system; vice versa, small-scale BESS units’
overall electrochemical performance evaluations are still an open issue. In particular, there is a lack
of standardized testing procedures to compare different cells for a specific service: in [4] the authors
assessed the performance of three different lithium batteries, adopting as a term of reference the
automotive-oriented IEC 62660-1 standard [5]. This standard defines ad-hoc test conditions for
lithium-ion cells in electric vehicle (EV) applications. Focusing on stationary applications, in [6] the
authors developed specific testing procedures. Similarly in [7,8] different performance testing protocols
for lithium-ion cells were proposed. One classical approach is related to the investigation of the battery
efficiency and aging under different test conditions, such as c-rate, temperature, actual operation
profile, etc. Several works are proposed in this direction [9–11], but they are limited to the evaluation
of the electrochemical cells.

In this paper the focus is on small-scale BESSs, suited for domestic implementation, and the goal
is to evaluate the overall electrochemical performances of the equipment. In particular, in small-scale
implementations, the main goal is in a reliable estimation of the BESS performances over medium/long
time windows (one week, one month, one year). This is because in such devices technical data on
equipment and control logics are typically limited and major uncertainties exist in the services and
plant configuration that each device is asked to manage.

Taking into account that many parameters are going to impact such performance, a data-driven
approach is proposed, i.e., an equivalent (empirical) model is obtained by investigating the correlation
between the numerical inputs and numerical output. In particular, a procedure to define the test
profiles in terms of exchanged power is proposed with the final goal to reproduce realistic in-field
working conditions.

In the literature, some studies [12,13] propose test profiles for frequency regulation, spinning
reserve, and peak shaving. Additionally, the same authors have investigated frequency profiles
to evaluate the standard performance of BESSs providing primary frequency control service [14].
However, the literature is still very poor about the self-consumption service. This lack is a real
limitation for BESS development because manufacturers are not used to sharing adequate information
about the real-life performance of the systems they are proposing in the market, whilst users do not
have guarantees about BESS performances in performing the service required. At the present time,
this uncertainty is a factor strongly impacting the market potential of these systems. For manufacturers,
this issue prevents the reliable assessment of the economic value of the product sold, its actual limits,
and competitiveness in the market. For users, it is very complex to evaluate the profitability of the
investment, being difficult, for example, to estimate the BESS expected life or efficiency.

The present study focuses on the problem just described and aims to provide new test profiles
for BESSs used for self-consumption in domestic applications. Starting from load profiles of several
households, the corresponding daily battery profiles have been derived and then studied with a cluster
analysis approach. In this way four clusters have been identified: profiles that belong to the same
cluster have a similar impact on the battery performances. The result has been validated through
numerical simulations, then it has been compared with the results of proper experimental activities
conducted in the IoT lab of Politecnico di Milano—Dept. of Energy on a BESS deployed in the
framework of the InteGRIDy project [15,16]. InteGRIDy is a H2020 project financed by the research
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and innovation programme aiming at implementing integrated smart grid cross-functional solutions
for optimized synergetic energy distribution, utilization storage technologies. One of the goals of the
initiative is to deploy batteries in domestic users’ premises and to control them remotely to perform
both front-of-the-meter and behind-the-meter services. The equipment under study is an all-in-one
solution: PV MPPT, inverter, transformer, PLC, and the battery are integrated in a single cabinet [17].
In particular, a sodium-nickel chloride battery (FZSoNick 48TL200, 48 V, 200 Ah [18]) is adopted.
The BESS has been made available to the IoT lab of Politecnico di Milano in order to properly design
the storage control laws and to enable the remote control of the apparatus, an application of particular
interest for future aggregators.

1.1. Sodium-Nickel Chloride Battery Technology

The literature is rich in studies related to lithium-ion technologies; it is commonly accepted that
such technologies provide today the best performances. Nevertheless they are also complex (and costly)
to be recycled once the end of life is reached. Therefore, in this paper the focus has been put on a different
BESS technology, willing to evaluate environmentally sustainable (i.e., fully recyclable) batteries.

The electrochemical technology adopted for this study is the sodium-nickel chloride one. Operating
principles of this battery technology, also known in the literature as a “ZEBRA battery”, are carefully
described in [19], where the authors point out an important difference with respect to conventional cells:
this is a high-temperature technology, since it needs to work at about 270 ◦C. Semi-reactions which
take place at the anode and cathode during a discharging process for a cell are shown in Equations (1)
and (2):

2N→ 2Na+ + 2e− (1)

NiCl2 + 2Na+ + 2e− → 2NaCl + Ni (2)

From a structural point of view, a cell shows a prismatic shape: in the centre there is the positive
pole, consisting in a nickel current collector surrounded by other nickel metal and nickel-chloride
(NiCl2), the latter formed during charge. To complete the cathodic compartment, a secondary electrolyte
(NaAlCl4) is added in order to improve Na+ ions’ movement from the primary electrolyte towards the
cathode inner region. Additionally, metal additives (FeCl2) are put here because they can take part to
the reactions and improve cell operation. All components and materials just described are enclosed
by β”-alumina, a ceramic electrolyte with a crystalline structure, that wraps the cathodic sector with
a characteristic four-lobe shape on the cross-section, designed to improve the electrode-electrolyte
contact area. After an interspace formed with a steel layer to exploit capillary effects, there is the anodic
sector formed by sodium metal which is liquid at the typical cell operating temperature [20–22].

The main advantages of this technology concerns the intrinsic safety both during operation and
in extreme conditions, recyclability of all the components, maintenance-free during life, and peak
power pulse during discharge for each state of charge (SoC) value. On the other hand, there could be
important internal losses due to the need of maintaining the operating temperature, and these can
overcome the advantages listed before [23]. Such a technology is nowadays considered one of the
most promising for stationary applications in electrical networks [24], and so it is a valid alternative to
the already well investigated lithium-ion technology. In this paper, in particular, the performance of
a pre-commercial unit designed for domestic applications has been investigated. It is worthwhile to
point out that the unit under test is one of the first small-size (domestic-oriented) ZEBRA BESSs so far
proposed on the market.

1.2. Battery Modeling

Very often manufacturers’ datasheets are insufficient for a proper evaluation of battery performance,
so a mathematical modelling of the BESS is required. Among different types of models presented
in [2], an electrical one is considered for this study since it represents the best compromise between
precision and computational effort. According to the different battery technologies, the literature
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offers different solutions. For example, regarding lithium-ion, [2] describes the development of an
electrical model. Regarding the ZEBRA battery [19,24] present two electrical models for the single
cell, while [25] proposes an approach to electrically represent the whole battery device. Considering
data availability and the detailed experimental procedure, the latter has been adopted in this study.
Its equivalent electrical circuit is described in Figure 1 and consists of a voltage source connected in
series with a resistor and two RC branches. The voltage source represents the open circuit voltage,
the single resistor describes ohmic resistance of circuits and electrodes, while the RC branches model
the transient response, respectively, due to fast and slow dynamics.
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2. Proposed Methodology

The goal of this work is to identify a proper number of charge/discharge profiles, useful for the
efficiency characterization of a BESS. To this purpose, in a first step, a set of load and generation
profiles needed to be identified. In a second step, according to the power produced/absorbed locally
at a given time at the user’s premises, the charge/discharge profile that the BESS has to perform in
order to improve the user’s self-consumption is evaluated and properly clustered. In the following,
the procedure adopted is described in detail.

2.1. Load Profiles Clustering

To the purpose of this work, a number of residential customers power profiles has been developed
to test the effectiveness of a BESS in increasing the user’s self-consumption. With this aim, a software
called Load Profile Generator [26] has been used to produce daily load profiles of typical households
with a time sample of one minute. Combining each profile with a standard PV production profile,
as described in the following sections, the corresponding battery exchange power profiles is obtained.
Considering that 126 different households have been developed and for each of them 365 daily profiles
have been generated, the resulting dataset contains 44,115 profiles (actually, possible combinations
are 45,990, but some of them have been discarded because they were considered not relevant for the
analysis, e.g., having an absence of load). It is important to underline that this software provides
highly diversified profiles, considering energy saving and energy intensive households, and up to
six individuals.

Remembering that one of the tasks of the work is the experimental validation of the results
obtained, it has been necessary to define a procedure able to identify, among this dataset, the most
characteristic profiles: these must best represent the information contained in the whole dataset.
This identification process has been based on clustering algorithms.

Cluster analysis has the purpose of dividing a dataset into a certain number of groups, called
clusters, so that elements of the same cluster must have similar features and, at the same time, they must
also show a dissimilarity from those of another cluster. The level of similarity has been determined by
algorithms that work with proper logics. One of these is k-means, which belongs to the “partitioning
method” category, in which algorithms create a given number of partitions inside the initial dataset
so that each element must belong to just one of these: this is the simplest and the most intuitive
idea to achieve a clustering. Most of these algorithms work with an objective function based on
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Euclidean distance, which has to be properly optimzed in order to achieve similarity inside the same
cluster. The objective function E for k-means algorithm is reported in Equation (3), where k is the
number of clusters, Ci is the i-th cluster with the respective centroid ci, and p is the generic element
of the dataset [27]. Cluster analysis works in several fields, and in the literature several studies are
available [28,29] in which it is applied to electric power systems, in particular for load profile analysis.

E =
k∑

i=1

∑
p∈Ci

dist(p, ci)
2 (3)

2.2. PV Production Profiles Clustering

As already introduced, in order to define a suitable set of BESS test profiles, daily load profiles
of different households have been created using the Load Profile Generator software tool. However,
PV production profiles are also needed to derive battery exchange profiles. In spite this work aims at
building a database of profiles representative of all possible domestic scenarios, in the direction of
limiting the computational effort required, the number of production profiles to be analysed should be
also limited. Therefore, the PV production side is treated with a simpler approach: cluster analysis
technique is used to identify, within a set of real data, some average profiles representative of different
weather and seasonal conditions. Both seasonality and weather are so dealt with a single clustering
procedure. Among the average profiles identified, just the one with the highest energy content is
considered, since it is the only one actually causing the BESS to charge and discharge. As a matter of
fact, when PV production is insufficient, a BESS usually works only in discharging mode until the
stored energy runs out. More explanations about this choice will be provided in the Section 2.3.

Several works in the literature deal with PV production profiles, such as [30–32], trying to cluster
them with different approaches. In this part of the study, only partitioning methods have been taken
into account in order to gain a significative result for the main concern of the work, but at the same time
keeping a simple approach. In this direction, k-means and k-medoids algorithms have been initially
considered. K-means has been firstly evaluated, even if its centroids do not belong to the initial dataset.
The use of real profiles to test the BESS has been considered pivotal in this work, therefore it has been
necessary to look for the dataset elements that minimise the Euclidean distance from centroids.

Before executing the algorithm, it is important to set up a proper dataset of PV daily profiles
which, once clustered, can produce an output that can be coherent with the purposes of this study.
Remembering that the PV production side is treated with a simpler approach considering jointly
seasonal and weather variability, the results of a previous study [31] are adequate to identify some
standard PV profiles analysing input all together. In fact, the authors point out that the major issues
in the comparison of solar irradiance profiles are the different daylight duration and the different
maximum amplitude during the year. Following the suggestion of this study, profiles have been
subject to a double normalization, in power values and in the time domain, in order to cluster them
considering only their shapes regardless the absolute value or daylight duration. Regarding power
values, considering information availability, PV profiles have been normalized for the rated power
of the respective plant. Regarding the time domain, despite the routine based on data interpolation
as proposed in [31], for preserving the information content, MATLAB function resampling has been
exploited to obtain profiles of 12 hours by manipulating their sampling rate.

Once the PV daily profiles dataset is set up, the clustering algorithm can be executed, but before
it is important to define the number of clusters, which must be the input information of k-means.
The leading idea is to limit the number of profiles and so the number of clusters for the reasons explained
at the beginning of this paragraph. Considering the within-cluster sum of squares (WSS), already used
in [28] for similar purposes, three clusters are adopted since WSS reduction with an additional cluster
would be lower than 10%. The flowchart in Figure 2 summarizes the procedure adopted.
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Additionally, k-medoids have been performed using the partitioning around medoids (PAM)
execution algorithm in order to preserve the consistency of its multiple-run results: this is a key aspect
in the clustering technique selection and execution, as underlined in [33]. Even if this method has also
been tested by the authors with the aim of exploring alternative possible approaches, the outcome
confirmed the result found with k-means, so proving the solution proposed with the procedure above.

Figure 3 shows the three normalized PV production profiles as result of this procedure, while Table 1
indicates how seasonal profiles have been distributed in the different clusters. As can be expected,
it is possible to observe that the PV profile characterized by the highest energy content represents
a cluster mainly composed by spring and summer elements. On the other hand, a cluster with the
lowest energy content is dominated by autumn and winter profiles. It is important to underline
that this PV profile clustering is controlled not only by seasonality but also by weather conditions.
Considering cluster 1, profiles with a higher energy content take place in sunny days which of course
are more frequent during spring and summer. However, there are also autumn and winter profiles in
this cluster, and their percentage contribution is comparable with the other two seasons. Additinoally,
this percentage contribution is even more comparable in cluster 2, excluding the possibility of
a seasonality-driven clustering.
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Figure 3. PV production profiles expressed in terms of normalized power and derived with the
clustering procedure.

Table 1. Seasonal composition of the clusters.

Cluster Cluster 1 Cluster 2 Cluster 3

Spring 26% 16% 4%
Summer 37% 33% 4%
Autumn 18% 28% 42%
Winter 19% 23% 50%

100% 100% 100%
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2.3. Battery Profile

The last step for the battery profile construction concerns the evaluation of the daily exchange
power profile of the BESS. This is carried out by identifying the power of the BESS that, minute by
minute, allows matching the load and PV production profiles (i.e., that allows zeroing the user’s
power exchanges with the grid). From this point of view, the power obtained by this approach can
be considered an ideal power profile, which the BESS should follow during a day to maximize the
self-consumption. To this purpose, the BESS exchange power profile has been determined as the
algebraic sum of user load profile and PV production profile. The flowchart in Figure 4 summarizes
the matching procedure adopted.
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It is important to point out that the proposed procedure has been subject to such a strong
hypothesis in order to have a deterministic and reproducible impact of PV production on the BESS
power profile. Specifically, the standard PV profile of the days with the highest energy content has
been adopted as per unit reference, and the size of the PV plant for each household has been defined in
order to achieve a PV production that is equivalent to the daily energy demand.

2.4. Cluster Analysis Preliminary Considerations

After checking that practical parameters as the number of people living in a household or the
type of day (weekday, Saturday or holiday) are not good indicators to classify all the profiles, a cluster
analysis was implemented by the authors to achieve the goals of the study. The flowchart in Figure 5
gives an overview of the entire procedure adopted to this purpose.
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A first step concerned the choice of an appropriate clustering algorithm. Clustering algorithms
can be divided in two main families: partitioning methods and density-based ones. According to [27],
partitioning methods (e.g., k-means and k-medoids) evaluate Euclidean distance and look for
spherically-shaped clusters, while density-based (e.g., DBSCAN and OPTICS) are suitable for evaluating
clusters of various shapes.
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Given the extended field of application, the number of clustering algorithms and variants is
vast. Nevertheless, for studies related to clustering profiles, the usage of k-means is widespread and
consolidated [28,34–38]. In [28] it is used for clustering users’ load profiles and authors define it as
the best known and one of the most effective clustering methods. The same happens for another
study [35] in which this algorithm is presented as one of the most consolidated. In another case [38],
the use of k-means is justified by the ascertainment that it is the most reliable and used for load data
clustering. Given these experiences and considering that the focus of the work is not the definition of
an advanced algorithm, but the effective adoption of a consolidated one, k-means has been chosen
for the present analysis. This algorithm is characterized by centroids as representative elements of
each cluster. It is important to point out that even if a grat deal of literature studies use this algorithm,
they focus on load profile clustering, and not on the battery power profile.

As asecond choice, it has been necessary to define a set of features to assume as reference to
cluster the dataset. In this work, the clustering features choice has been implemented by two different
approaches. Firstly, the profile description in terms of the synthetic indices reported in Figure 6 has
been adopted, so performing cluster analyses on 1D, 2D, and 3D data which have been previously
normalized for the maximum value of each index.
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In Figure 6:

• |Pmax| is the maximum power in absolute value of each daily battery profile.
• ∆Energy is the battery energy content variation, defined as the difference between maximum and

minimum of the battery cumulative energy curve corresponding to each profile.
• tcharge/tdischarge is the time ratio between all the charge and discharge periods calculated on each

daily profile.
• Number of current sign changes counts how many times the battery changes its operating condition

from charge to discharge phases, and vice versa.

Secondly, other cluster analyses have been performed in order to evaluate the evolution of the
profiles in time or frequency domain. In this latter case, fast Fourier transform (FFT) has been used to
produce, as clustering inputs, the real and imaginary parts of the complex number representing the
harmonics. In both cases, profiles have been considered as proposed in the dataset and normalized for
the respective daily maximum power (in absolute value). In fact, according to [28], the use of normalized
data allows focusing on the shape of each profile, regardless of physical values. On the other hand,
non-normalized profiles request the analysis of both shape and physical power values, and in this way
this latter aspect is favored.

The output of the clustering algorithm is the partition of the dataset in subsets, for which the
overall distance between each element and the respective centroid is minimized. To obtain more robust
results, the k-means clustering is repeated a given number of times using different initial centroid
positions. As for Section 2.2, the only aspect that must be underlined again is that centroids identified
by the algorithm do not belong to the initial dataset. In this way, remembering that one of the tasks
of this work is to identify in each cluster a real profile that represents the whole group, it has been
necessary to look for the dataset element that minimises the Euclidean distance from the centroid.
In the following steps, these are considered as the real cluster centroids.
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2.5. Numerical Validation

Once obtained the clustered profiles, they needed to be numerically validated, checking if
there is a real relationship between them and the BESS efficiency. In general, this assessment is not
straightforward, for it is impossible to say in advance if a cluster corresponds to a specific type of user
whose profiles has similar effects on the battery performance. In fact, k-means works with Euclidean
distances, which may not be related to the battery efficiency corresponding to each profile.

2.5.1. Experimental Validation

The validation process implemented is based on a numerical procedure and an experimental
assessment. The first step involves the use of the model mentioned in Section 1.2 developed in
the MATLAB environment, in order to simulate each daily profile and compute the corresponding
efficiency on a real BESS (the specific one used to develop the model). Then, the obtained efficiencies
are compared with the clustering output. The main limit of this approach is that this comparison
should be repeated for each clustering indicator in Figure 6, with the aim of understanding which of
them can produce the best result. In order to compare different indicators and simultaneously evaluate
the optimal number of clusters, a key performance index (KPI) has been defined.

Regarding the model simulations, three preliminary considerations are necessary. Firstly, for the
electrochemical efficiency calculation, defined by Equation (4) has been adopted comparing absorbed
and supplied energy over a cycle with the same initial and final SoC. Despite the assumption of
changing the size of the PV plant in order to achieve equality between daily production and daily
energy demand (as declared at the end of 2.3), battery energy content at the end of the day is different
from that one at the beginning of the day. This is due to losses that are considered in the model.
Therefore, the following procedure for SoC restoration has been defined: at the end of the profile,
battery must be charged up to the initial SoC with a given power value. This value is the maximum
between the power that is maintained for half of the battery charge time and 0.05C, assuming that a so
low C-rate cannot affect the performances.

ηelectr. =

∣∣∣Energysupplied
∣∣∣∣∣∣Energyabsorbed
∣∣∣ with ∆SoC = 0 (4)

Secondly, considering that profiles show a characteristic timestep of one minute, an assumption
has been made to approximate capacitors of the RC branches with open circuits. In this way the
model has been simplified in a voltage source connected in series with three resistors. While for
other BESS applications (such as electric vehicles or primary frequency control) considering the high
dynamic responses of the BESS is essential, in domestic applications, since the much slower dynamics
(following the daily variations of load and PV production), this aspect can be neglected in favor of
a faster simulation time. The estimated error in the efficiency evaluation due to this approach is lower
than 0.3%, value calculated comparing the efficiency obtained simulating the BESS behavior with the
complete model and the simplified one for a random extraction of 1000 profiles from the complete
dataset. Considering the usual span of efficiencies for commercial BESS (in the case under analysis,
for example, ranging between 90% and 100%, the approximation has been considered acceptable.

Thirdly, knowing that SoC initial value has an effect on the overall efficiency, a value of 60% has
been chosen as the starting point for all the simulations. Profiles that do not respect limits of battery
maximum and minimum capacity have been removed.

The following step of the esperimental validation procedure is the choice of a KPI suitable for
evaluating how much a clustering indicator can group profiles coherently with the battery efficiency
assessed. Its definition is given in Equation (5): it evaluates the distance of profiles from the respective
centroid in terms of the corresponding battery efficiency, reflecting the objective function (Equation (3))
of the k-means algorithm. Here, the Euclidean distance is replaced by a new “distance” expressed in
terms of efficiencies difference. The minimum of this KPI suggests which choice, in terms of clustering
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features and number of clusters, can satisfy the final tasks, that is to define few clusters of profiles that
can be easily identified with simple features, and, at the same time, can also be representative in terms
of different type of usage of the battery (i.e., in term of different efficiencies).

KPI =
n cluster∑

K=1

n pro f iles∈K∑
i=1

(
ηi,K − ηcentroid,K

)2
(5)

2.5.2. Comparison with Experimental Data

The last step of the proposed procedure provides to perform experimental tests to confirm its
effectiveness in clustering the BESS power exchange profiles having similar efficiency. To this purpose,
it is important to verify if the profiles identified as centroids by the method described in Section 2.5.1
show differences in terms of performance when they are tested on the pre-commercial BESS adopted
in the IoT lab of Politecnico di Milano.

The experimental activity also requires some preliminary considerations. Since commercial BESSs
integrate auxiliary equipment, it has been necessary to quantify their consumption through appropriate
tests, for the mathematical approach proposed aims at evaluating the efficiency of the battery, not of
the whole BESS. To this purpose, a definition of experimental efficiency (Equation (6)) needed to be
formulated to evaluate the behaviour of the electrochemical battery unit regardless of BESS auxiliaries’
consumption Eaux:

ηexper =
Eload + Eaux + Egrid,injection

EPV + Egrid,withdrawal
with ∆SoC = 0 (6)

In Equation (6), EPV is the energy measured at the PV plant’s terminals. When the PV production and
BESS injections are not enough, energy is absorbed from the external grid Egrid,withdrawal. This definition,
for the reasons given above, considers the energy supplied to the load Eload, the one injected into
the grid Egrid,injection, and that absorbed by the auxiliaries Eaux as useful effects. As for Equation (4),
in order to obtain reliable results, efficiency must be computed on a cycle with an overall SoC variation
equal to zero. Therefore, the SoC must be restored at the end of each profile, and to do this the same
procedure described in Section 2.5.1 has been adopted.

3. Numerical and Experimental Results

3.1. Numerical Validation

Clustering has been developed according to the procedure outlined above, using the k-means
algorithm to split all of the profiles in different clusters. Then, according to Section 2.5.1, a numerical
validation has been performed to identify which clustering feature is the optimal one and to evaluate at
the same time the number of clusters to adopt. Figure 7 presents the result of this validation, showing
the KPI trend for all the features as a function of the number of clusters.

Looking at the results shown in Figure 7 and considering that the best solution is the one minimizing
the value of the KPI, it can be concluded that the optimal solution is represented by the 2D clustering,
based on four clusters, of profiles expressed in terms of simple indices, such as maximum power in
absolute value and ∆Energy (yellow line). Contrarily to what might be expected, it emerges from the
analyses that the use of simple indices always leads to a better result than more structured indicators,
considering the whole profile evolution in time or frequency domain. In retrospect, it is possible to
explain this considering that the maximum power managed by a battery and the maximum variation
of its energy content are the quantities with the highest influence on its in-field operation, so that
they are considered during the sizing phase. An interesting consideration concerns why clustering
which considers the whole profile has failed (i.e., profiles classified as “similar” by this procedure
actually do not present similar efficiency). A possible reason is that, considering the profile evolution,
and therefore having to deal with a problem in a 1440-dimensional space, puts up several variables
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that do not influence appreciably the performance but hide the most relevant ones. The problem of
clustering high-dimensional data is well known in [19], in which the authors point out that in such
a case conventional distance measures can be dominated by noise. The consequence is that different
approaches are required with respect to those ones used in this analysis: new algorithms must run in
order to find subspaces within the data definition space, or to create a lower-dimensionality space
from the original one, where clusters can be looked for properly.
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Figure 8 presents the results of the numerical validation process for the optimal clustering
feature, showing the electrochemical efficiency of the different profiles grouped according to the
clustering output.
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Moreover, in Figure 9 the two-dimensional space defined by Pmax and ∆Energy is divided and
coloured according to the different clusters identified. This graph can be used to classify a new battery
power profile starting from these two simple indices.
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Figure 10 proposes the results in time domain, showing for each cluster the centroid and the
relative frequency (in terms of a chromatic scale) wherewith profiles show the different power values.
In particular, the chromatic scale has been derived normalizing all the frequencies of each power value
for the maximum one among them.
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In Table 2 the main characteristics of the load profile corresponding to the centroids are described.

Table 2. Characteristics of the load profiles corresponding to the centroids.

Centroid Pmax (W) Pavg (W) Edaily (kWh)

I 2760 220 5.08
II 4260 470 11.29
III 5250 700 16.78
IV 7200 1040 25.04

3.2. Experimental Validation

Then, an experimental validation has been performed. This step has required an important
preliminary activity to set up a proper test bench inside the IoT lab of Politecnico di Milano. A better
explanation of the whole laboratory architecture can be found in [6], while in the present work only
the test bench description is reported. Figure 11 depicts the test bench showing power flows and
connections for measurement and communication purposes, while Figure 12 displays the main devices.
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Figure 12. Devices of the test bench: (a) BESS, (b) CompactRio controller, (c) resistive load, (d) portable
measurement device, (e) DC power supply.

The experimental setup is based on a CompactRio controller 9035 (National Instrument—Austin,
TX, USA), a system controlled through LabView (National Instrument—Austin, TX, USA) on
a workstation HP i7 (Hewlett-Packard—Palo Alto, CA, USA), which manages all the components and
acquires data on them. It fulfils specific functions:

• It can modulate the power supplied by a DC power supply, produced by Elektro-Automatik
(Elektro-Automatik—Viersen, Germany), model EA-PS 8360-30 2U, which emulates the production
of a PV plant.

• It can modulate the power absorbed by a resistive load, realized by Ingegneria Ricerca Sistemi
(IRS—Padova, Italy), which emulates the domestic load up to 5 kW. Actually, the load is based on
a resistor bank controlled by static switches; a proper code managed by LabView pilots it.
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• It measures all the electric variables exchanged by the BESS with the distribution grid and with the
load, interfacing itself for this latter purpose with a portable measurement device of IRS realization.
This device measures power exchanged on a single-phase line through a LEM IT 200-S Ultrastab
current transducer and a LEM CV 3-1500 voltage transducer (LEM—Geneva, Switzerland).

Table 3 shows the main features resulting from the battery profiles tested on the commercial
BESS, while in Table 4 the electrochemical efficiencies of the four centroids are compared with those
obtained experimentally. An overall view shows that the trend defined by the cluster analysis is
globally respected, therefore, the experimental tests have confirmed the theoretical outcome. However,
it must be admitted that the difference between the experimental efficiencies is not so high to give
a considerable margin to this comparison. On the other hand, neither electrochemical efficiencies
show important differences between themselves, so, on an experimental level, with all the factors of
uncertainty that may affect the test, it is reasonable that the theoretical difference has been reduced.

Table 3. Characteristics of the battery profiles tested on the commercial BESS.

Profile Pmax,charge (W) Pmax,dicharge (W) Edelivered (kWh) Eabsorbed (kWh)

I 627 1386 3.93 2.80
II 802 2000 4.84 3.55
III 1145 2350 6.21 4.82
IV 1525 3255 7.89 5.80

Table 4. Comparison between numerical and experimental electrochemical efficiency of the centroid profiles.

Profile Numerical Efficiency Experimental Efficiency

I 98.5% 95.4%
II 97.9% 94.9%
III 96.7% 94.5%
IV 95.4% 93.7%

Finally, experimental results have been also exploited to evaluate the real efficiency of the BESS,
defined by Equation (7). With respect to Equation (6), which aims to identify the electrochemical
efficiency of the battery, the new definition wants to evaluate the efficiency of the whole device.
According to the user’s point of view, it is obvious that BESS auxiliaries consumption cannot be
considered as a useful effect since it actually reduces the performance of the BESS in performing
the required services. Thus, the new definition differs from the previous one for the absence of the
auxiliaries consumption term (now considered an internal loss of energy).

As already mentioned in Section 1.2, BESS auxiliary consumption can represent an important
drawback for a given battery technology, and the extent of this drawback depends on the size
of the storage and its way of use: given the storage capacity, the lower the weight of the BESS
auxiliary consumption on the load daily requirement, the higher will be the efficiency of the system.
Results have shown a strong efficiency reduction for those samples based on limited daily energy
need. Such results are directly linked to the specific technology adopted by the electrochemical battery
reporting not marginal gaps between the theoretical electrochemical efficiency and the BESS’s overall
one; e.g., in the scenario reported in profile IV, with a daily requirement of about 8 kWh, the auxiliary’s
energy need (in charge to the control of the equipment and to the regulation of the internal temperature,
approx. 270 ◦C) asks for an additional 4.5 kWh; consequently the overall efficiency results limited to 60%.

ηsystem =
Eload + Egrid,injection

EPV + Egrid,withdrawal
with ∆SoC = 0 (7)
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3.3. Economic Analysis

The economic viability of BESS investment is a factor strongly affecting the real spread of
battery-related technologies in the market. Table 5 shows the data considered in input to the analysis
and Table 6 presents, for the four analyzed profiles, the information regarding the number of
equivalent cycles performed daily and the corresponding BESS expected life. Most of these parameters,
such as the cost and price of energy and discount rate, are commonly accepted as realistic values,
while the expected life has been found in technical datasheets [18]. Auxiliary’s consumption has
been experimentally estimated through a self-discharge test, in which equivalent cycles have been
computed from experimental data according to Equation (8), considering SoC variation due to the
energy absorbed and delivered during the 24 hour profile.

Eqcycles =
1
2

(Eabsorbed
Cnom

+
Edelivered

Cnom

)
(8)

Table 5. Input data for the economic analysis.

Expected life (cycles) 3000
Auxiliary consumption (W) 200

Cost of purchased energy (€/kWh) 0.16
Price of injected energy (€/kWh) 0.06

Discount rate (%) 4

Table 6. BESS equivalent cycles and corresponding expected life.

Profile Equivalent Cycles Expected Life (Years)

I 0.41 20
II 0.51 16
III 0.66 13
IV 0.84 10

Based on these input data and on the outcome of the experimental activity, neglecting maintenance
costs and battery calendar aging, operating expenses are determined by the amount of energy
purchased from the grid for SoC restoration at the end of the day, while revenues deriving from PV
self-consumption are measured as differential with respect to a user without BESS. Considering all this
information, it is possible to quantify the discounted cash flows, whose value over the expected life is
shown in Figure 13.
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For example, assuming a profile with a daily energy of 15 kWh and a maximum power request
equal to 5 kW, we can find from Figure 9 that the corresponding cluster is the fourth, for which we can
expect a NPV around 2000 Euro and an expected life of 10 years.

This analysis clearly shows that, although the difference between the price of the energy purchased
from the network and the price of the energy sold is high, energy quantities involved in residential
applications are not enough to create significant profits.

4. Conclusions and Future Developments

The context in which this work has been developed is the key role that BESSs can cover [2],
in a short-medium term scenario, to manage some issues related to the transition of electricity grids due
to the increasing penetration of non-programmable RESs [1]. Despite these potentialities, the literature
is still very poor in terms of profiles suitable for BESS performance evaluations in the self-consumption
service. In this study, a cluster analysis on daily battery profiles has been carried out in order to identify
four profiles, having a different impact on the battery performance, representative of the way of use of
BESSs to perform the behind-the-meter service of self-consumption increase in a household: the greater
is the requirements of the profile in terms of maximum power in absolute value and ∆Energy, the lower
will be the electrochemical performance of the battery.

In this paper, an experimental validation of the approach above has been proposed. In particular,
a promising technology has been investigated: a sodium-nickel chloride battery. Such a battery requires
a non-marginal energy consumption for regulating the working temperature. On the other hand it is
intrinsically safe, fully recyclable, and maintenance-free during life; these characteristics motivated the
study regarding its applicability in a household environment.

The selected BESS technology was a perfect testbed for the proposed procedure: given the need to
operate the battery at 270 ◦C, its energetic behaviour is strongly dependent on the requested power
profile. Moreover, the electrochemical efficiency does not significantly affect the overall efficiency,
since the latter is strongly determined by the weight of the auxiliary device’s absorption with respect
to the daily requirement of the load. Actually, the sampled efficiency resulted strongly lower than
the theoretical one, motivating a data-driven approach in the model (based on experimental data)
rather than a detailed modelling approach; such a behavior is directly correlated with the limited
power and energy capability of the domestic equipment investigated. The provided numerical results
pointed out that, regardless of electrochemistry, the higher the requirement of the load the better the
real performances of the device.

The tests performed demonstrated the effectiveness of the proposed procedure in classifying
performances over four different clusters, identified by proper KPI. Tests are related to a control of
the battery devoted to maximizing users’ self-consumption (each user is provided with a suitable PV
generator): given the power profile of a generic user, thanks to the proposed procedure it is possible to
classify it and to estimate the BESS efficiency in providing the service.

The key aspect of this work is that three research fields (clustering and classification of PV
production profiles, load profiles clustering, BESS efficiency evaluation) have been coupled to develop
a new methodology aimed at obtaining a priori BESS efficiency estimation, carried out starting from the
battery usage profile. Therefore, the focus of the work is more on the composition of methods resulting
from the coupling and its experimental validation, rather than on the research of new approaches to
perform the clustering of PV production and load profiles, or the BESS efficiency evaluation.

Load profile clustering is the research field where the authors put most effort into this work,
since a very high diversification of the load profile has been achieved, as underlined in Section 2.1.
The result is a double advantage with respect to other works [28,35,38], which have been, in any case,
very important in terms of pointing out strengths of the k-means clustering algorithm. The first
advantage is that this is one of the first works in the literature that applies a cluster analysis directly
to the BESS power profiles. The second advantage is that none of these previous studies identified
profiles and clusters in terms of synthetic indices, so, according to the approaches in the literature,
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a new profile allocation would require a new running of the clustering algorithm. Through this work,
instead, it is possible to assign a new profile to a cluster (thanks to results in Figure 9) knowing its
|Pmax| and ∆Energy.
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