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Abstract: The main efficiency loss is caused by an intensive recombination process at the interface
of fluorine-doped tin oxide (FTO) and electrolyte in dye-sensitized solar cells. Electrons from the
photoanode can be injected back to the redox electrolyte and, thus, can reduce the short circuit current.
To avoid this, the effect of the electron blocking layer (EBL) was studied. An additional thin film
of magnetron sputtered TiO2 was deposited directly onto the FTO glass. The obtained EBL was
characterized by atomic force microscopy, scanning electron microscopy, optical profilometry, energy
dispersive spectroscopy, Raman spectroscopy and UV-VIS-NIR spectrophotometry. The results of
the current–voltage characteristics showed that both the short circuit current (Isc) and fill factor
(FF) increased. Compared to traditional dye-sensitized solar cell (DSSC) architecture, the power
conversion efficiency (η) increased from 4.67% to 6.07% for samples with a 7 × 7 mm2 active area and
from 2.62% to 3.06% for those with an area of 7 × 80 mm2.

Keywords: photovoltaics; solar cells; dye-sensitized solar cells; electron blocking layer; magnetron
sputtering

1. Introduction

After approximately 30 years of research, dye-sensitized solar cells (DSSCs) have maintained
their strong importance among scientific and engineering groups across the world. Many approaches
have tried to refine the Grätzel [1] architecture of a dye-sensitized mesoporous titanium oxide layer
with an iodine-based electrolyte and platinum counter electrode. A significant increase in efficiency
would not have been possible without new dyes, whose absorption spectra better match the spectral
distribution of both synthetic [2,3] and natural [4] sunlight. Much work has been devoted to improving
electrode performance. New wide bandgap semiconductors with different morphologies (e.g., in
nanowires, nanotubes, and nanospheres) have been tested [5]. Various electrolyte formulations have
been developed and tested in order to improve DSSC performance, increase their lifetime, and reduce
their toxicity [6,7].

Besides chemical stability and technical durability (e.g., a time-dependent decrease in power
conversion efficiency (PCE) [8,9] or the leakage of liquid electrolytes due to the unsealing of the
cells [10]), some typical physical challenges [11,12] are yet to be solved. A frequently reported
mechanism that leads to a decrease in DSSC efficiency is the electron–electrolyte recombination process.
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In an ideal model, the photoexcited electrons in dyes are injected into a wide bandgap n-type
semiconductor layer, typically TiO2, ZnO or SnO2, and are then transferred to a fluorine-doped tin
oxide (SnO2:F, FTO) working electrode, while the holes created in the dye are filled by electrons
from the triiodide present in the redox electrolyte (2e− + I−3 → 3I− ). Unfortunately, there are several
possible paths through which electrons recombine. The most significant of these are recombinations at
the TiO2/electrolyte and FTO/electrolyte interfaces. To challenge these pathways, the concept of the
electron blocking layer (EBL) was developed. The role of this layer is to block electrons from being
injected back into the electrolyte by providing more preferable transport to the FTO via an appropriate
band structure.

The EBL can be set directly on a mesoporous n-type semiconductor [13] or on the FTO surface [14].
There are two main conditions that need to be fulfilled. Firstly, the layer must be continuous to prevent
FTO contact with the electrolyte, and secondly, the layer has to be thin enough to avoid high ohmic
resistance. The latter factor could lower the open circuit voltage (Uoc) and short circuit current (Isc)
due to a greater probability of recombination from structural defects. The blocking layers deposited on
mesoporous TiO2 are generally represented by wide bandgap isolators, such as Al2O3 or HfO2 [15],
Zn2SnO4 [16], MgO [17] or doped ZnO [18]. Indeed, it is difficult to produce a continuous layer on a
mesoporous structure. CVD methods are the most promising because the reaction gas is able to overlay
the whole surface exposed to the gas. However, toxic or hazardous precursors and by-products are
often a great complication of this technique. Additionally, the required high temperature (in the range
of several hundred degrees Celsius) for the CVD growth process could significantly influence the other
layers. Thus, it is much simpler to prepare an electron blocking layer directly onto the planar FTO
glass, as shown in Figure 1. As reported by Zhu [19], the dominant recombination process occurs at
the substrate/electrolyte interface rather than across the TiO2 matrix. Numerous methods have been
commonly used for EBL compact layer preparation, such as sol-gel [20], chemical vapor deposition [21],
spray-coating [22], and electrodeposition [23]. Low-cost depositions are typically considered to be the
most promising, but they do not provide a process that is highly repeatable, while the parameters, such
as thickness, stoichiometry and purity of the layer, are crucial. Among the many potential techniques,
the magnetron sputtering method [24,25] seems to be the best choice because of its simplicity of use
and repeatability. It is necessary to choose an appropriate material as an EBL. For instance, SnO2 [26],
ZnO [27] or Nb2O5 [28] were recently reported. However, TiO2 is suggested to be the best EBL due to
its low cost, chemical inertness to electrolytes, easy availability, good n-type conductivity and matching
electronic band structure to the photoanode.
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Figure 1. Schematic representation of the fabricated dye-sensitized solar cell (DSSC) devices with
an additional electron blocking layer (EBL). As presented in diagram A, the EBL prevents electrons
from being injected back from the photoanode to the redox electrolyte, according to the reaction
2e− + I−3 → 3I− . The generation of photocurrent is presented in diagram B.
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Herein, a TiO2 RF magnetron sputtered layer was investigated as an electron blocking layer
in screen-printed dye-sensitized solar cells. The results, presented in the following sections, were
obtained by the current–voltage characteristics (U–I), scanning electron microscopy (SEM), atomic
force microscopy (AFM), optical profilometry (OP), energy dispersion spectroscopy (EDS), Raman
spectroscopy (RS) and UV-VIS-NIR spectrophotometry. In this paper, two sizes of the active layer were
studied—small- and large-scale solar cells with dimensions 7 × 7 mm2 and 7 × 80 mm2. The power
conversion efficiency, as a result of the additional electron blocking layer, was increased by 30% and
17%, respectively.

2. Materials and Methods

2.1. RF Magnetron Sputtered Electron Blocking Layer Preparation

The TiO2 compact layer was prepared on the FTO glass (TEC A7, 6–8 Ω/�). The substrates
were ultrasonicated in acetone and isopropanol for 5 min and 15 min, respectively. Then, they
were transferred to a glove box immediately. The electron blocking layer was sputtered by a Mini
SPECTROS™ magnetron system from the TiO2 target (99.99% pure, Kurt J. Lesker Company®,
Jefferson Hills, USA). The chamber was pumped down to about 10−5 Torr. A time of 5 min of
pre-sputtering was applied to remove any possible contaminants from the target surface. The RF
sputtering was carried out at 300 ◦C to enhance adhesion and, thus, electric contact between the two
layers. The parameters of the process were set as a 3 m Torr argon working gas pressure under a
power of 100 W. The deposition time was tuned to receive a layer of approximately 30 nm, which was
reported as the most efficient thickness for the EBL [29].

2.2. Dye-Sensitized Solar Cell Fabrication

The FTO glass (cleaned as described above) was used to fabricate the working and counter
electrodes. Mesoporous TiO2 film was deposited using the screen printing method [30] from titania
paste (18NR-T, Greatcell Solar, Elanora, Australia) and sintered up to 565 ◦C. The obtained thickness of
11 µm was determined by a stylus profilometer (Bruker DektakXT, Billerica, USA). According to the
manufacturer’s datasheet, anatase nanoparticles dispersed in the paste have an average size of 20 nm.
Samples were immersed for 24 h in a 10−4 M ethanolic solution of ruthenium dye (N719, Greatcell
Solar, Elanora, Australia) at room temperature. The layers were then rinsed with ethanol to remove
the un-adhered molecules. A counter electrode was prepared by the same printing method using a
platinum paste (PT1, Greatcell Solar, Elanora, Australia). A 60 µm lamination foil (DuPont Surlyn®,
Wilmington, USA) was used to seal both electrodes. The DSSCs were filled with a commercially
available iodine-based redox electrolyte (EL-HPE, DyeSol, Elanora, Australia).

3. Results and Discussion

3.1. Measurement of TiO2 Electron Blocking Layer Thickness

The thickness of the magnetron sputtered nanometric TiO2 thin film was determined by an
optical profilometer (Profilm3D, Filmetrics, San Diego, USA) in the white light interferometry (WLI)
mode. Before deposition, the edge of the FTO glass was covered by polyimide tape and then removed.
Additionally, the taped area was slightly cleaned by isopropyl alcohol to remove any glue residue.
Then, the step height was imaged on a profilometer. The received data were used to prepare the height
histogram presented in Figure 2. The cyan color represents the bare FTO surface and the olive indicates
the FTO covered by TiO2. The grey area was not included in the calculations because of the irregular
layer surface corrupted by detaching the tape. Two Gauss functions were fitted to the obtained peaks.
The difference between the peak positions, calculated to be 32.7 nm, was considered as the thickness of
the TiO2 layer.
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Figure 2. Height histograms received from the TiO2 step, imaged by an optical profilometer. Bare FTO
surface is represent by the cyan color and the thin film of TiO2 is indicated by the olive color. The
difference between the Gauss peak centers determines the layer thickness.

3.2. Energy Dispersive Spectroscopy (EDS) Spectrum

The energy dispersive spectroscopy (SwiftEDS 300, Oxford Instruments, High Wycombe, UK,
beam energy 15 kV) outcome, shown in Figure 3, was obtained from a sample with a TiO2/FTO/glass
stack. The signal from the carbon (C) element is a result of the atmospheric adsorption of carbon
dioxide because the sample was not heated before its transition to the EDS chamber. The small peak
from silicon (Si) came from the glass substrate, which, in fact, is a silica. The observed oxygen (O)
signal came simultaneously from the CO2 adsorbate and the TiO2, SnO2:F and SiOx layers.

Table 1. Characteristic lines received from the EDS spectrum of the TiO2/FTO/glass stack with energies
in keV.

Element C O Si Sn Ti

Line Kα1,2 Kα1,2 Kα1,2 Ll Lα1 Lβ1 Lβ2 Lγ1 Lα1,2 Kα1,2 Kβ1,3
Energy 0.27 0.52 1.74 3.05 3.44 3.67 3.91 4.13 0.39 4.51 4.93
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The broad multipeak signal from tin (Sn) was caused by the FTO’s presence in the analyzed
sample. The manufacturer’s datasheet suggests that the FTO film is approximately 250 nm. This
significant thickness, compared to the electron penetration depth, explains why the Sn signal has the
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greatest importance in the obtained spectrum. The most important piece of information from the
received spectrum is that the TiO2 thin film is present in the sample. This is observable in the three
peaks that are tabulated in Table 1. Lines with double numeration are a superposition of two signals
with similar energy. For instance, the peaks for O are a superposition of Kα1 and Kα2 transitions.

3.3. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) Images

The electron blocking layer’s morphology was studied with a scanning electron microscope
(Quanta™ 3D FEG, ThermoFisher Scientific, Hillsboro, USA) before the deposition of the mesoporous
TiO2. The topography, shown in Figure 4c, is similar to that of the bare FTO, which was also observed
by Choi et al. [31]. The reason for this result is the FTO’s high roughness. Because of this roughness,
covering the FTO with a thin film of material would not significantly influence the RMS parameter. The
roughness of the titanium oxide EBL was measured by an atomic force microscope in tapping mode
(Agilent 5500, Agilent Technologies, Santa Clara, USA). The RMS decreased slightly from 26.9 nm for
the bare FTO to 23.7 nm for a stack of the 30 nm TiO2 compact layers on the FTO. The intersection,
seen in Figure 4a, contains all of the photoanode layers (from the bottom: glass, FTO, TiO2 compact
and TiO2 mesoporous layers). In reference to the profilometer measurement, the thickness of the
mesoporous film was also confirmed to be approximately 11 µm. The morphology of the sintered TiO2

nanoparticles with an average diameter of 20 nm can be observed in Figure 4b.
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Figure 4. SEM images of (a) the intersection of the photoanode: glass, FTO, TiO2 compact and 11 µm
TiO2 mesoporous layers, (b) the morphology of the mesoporous TiO2 film and (c) the TiO2 compact
layer on the FTO. AFM images of (d) the bare FTO and (e) the TiO2 electron blocking layer on the FTO.

3.4. Raman Spectrum of Electron Blocking Layer

The polymorphism of the titanium oxide electron blocking layer was investigated by Raman
spectroscopy. The measurements were made using an integrated Raman spectroscope (LabRAM,
HORIBA, Kyoto, Japan). The source used for the measurements was a He–Ne laser with a wavelength
of 632.8 nm at 17 mW power. The whole system was complemented by a confocal microscope coupled
with an 800 nm focused lens and a two-dimensional multichannel CCD detector. Additionally, the
system was equipped with an automatic Czerny–Turner spectrograph with a slot width of 30 mm for a
wide–flat field of view. The measurements were taken at room temperature.

According to other studies [32], the obtained spectrum of TiO2, shown in Figure 5, was characteristic
for anatase. The active vibrations were located at 143 cm−1 (Eg), 196 cm−1 (Eg), 398 cm−1 (B1g), 516 cm−1

(A1g) and 639 cm−1 (Eg). The provided measurements allowed us to confirm that the TiO2 mesoporous
and TiO2 electron blocking layer had the same polymorph. The selfsame polymorph should lead to
good electric contact after the sintering process under a high temperature because of matching in the
conduction bands’ levels and the crystal structures of both materials.



Energies 2020, 13, 2690 6 of 10

Energies 2020, 13, x FOR PEER REVIEW 6 of 10 

 

 
Figure 5. Raman spectrum of the magnetron sputtered TiO2 electron blocking layer. The observed 
active vibrations are characteristic of anatase. 

3.5. Transmittance and Absorbance Spectra of the Photoanode 

Because the light pathway to the dye leads through the whole photoanode, UV-VIS-NIR 
spectrophotometry (Jasco V-670 with deuterium and halogen lamps) was used to measure the 
transmittance for each layer. The signal was averaged from a spot size of a 3  3 mm2 area. Figure 6 
presents the transmittance versus the wavelength spectrum of compositions from bare FTO up to 
FTO covered by a dye-sensitized TiO2 layer. Just a slight decrease in transmitted light was observed 
for the additional 30 nm TiO2 film in the dye absorption wavelength range, which indicates that the 
EBL layer has no significant influence on the amount of light transmitted to the N719 molecules. 
Measured absorption peaks near the 390 nm and 530 nm are consistent with those reported by other 
studies [33,34]. The dye absorbance was measured for a 10−4 M ethanolic solution (99.8% ethanol, 
Honeywell, Charlotte, USA) in a quartz cuvette with 1 cm of optical thickness. 

 
Figure 6. Optical properties of the individual components of the fabricated DSSC photoanode: 
transmittance spectra of the bare FTO (light blue), TiO2 30 nm EBL (navy blue), mesoporous TiO2 
(gray) and mesoporous dye-sensitized TiO2 (red), compared to the absorbance spectrum of the N719 
dye (orange). 

3.6. Performance of the DSSC Devices 

The performance of the DSSC devices was investigated by a solar simulator (CLASS-01, PV Test 
Solutions) under AM1.5 illumination with a light intensity of 100 mW/cm2. The received current–

Figure 5. Raman spectrum of the magnetron sputtered TiO2 electron blocking layer. The observed
active vibrations are characteristic of anatase.

3.5. Transmittance and Absorbance Spectra of the Photoanode

Because the light pathway to the dye leads through the whole photoanode, UV-VIS-NIR
spectrophotometry (Jasco V-670 with deuterium and halogen lamps) was used to measure the
transmittance for each layer. The signal was averaged from a spot size of a 3 × 3 mm2 area. Figure 6
presents the transmittance versus the wavelength spectrum of compositions from bare FTO up to
FTO covered by a dye-sensitized TiO2 layer. Just a slight decrease in transmitted light was observed
for the additional 30 nm TiO2 film in the dye absorption wavelength range, which indicates that
the EBL layer has no significant influence on the amount of light transmitted to the N719 molecules.
Measured absorption peaks near the 390 nm and 530 nm are consistent with those reported by other
studies [33,34]. The dye absorbance was measured for a 10−4 M ethanolic solution (99.8% ethanol,
Honeywell, Charlotte, USA) in a quartz cuvette with 1 cm of optical thickness.
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transmittance spectra of the bare FTO (light blue), TiO2 30 nm EBL (navy blue), mesoporous TiO2

(gray) and mesoporous dye-sensitized TiO2 (red), compared to the absorbance spectrum of the N719
dye (orange).

3.6. Performance of the DSSC Devices

The performance of the DSSC devices was investigated by a solar simulator (CLASS-01, PV Test
Solutions) under AM1.5 illumination with a light intensity of 100 mW/cm2. The received current–voltage
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(U–I) characteristics are shown in Figure 7. In both cases, the open circuit voltage did not significantly
change because the mesoporous and compact TiO2 layers have similar conduction and valence band
levels. Likewise, no difference in Uoc was reported by other groups for ZnO and TiO2 EBLs [35].
Because the main factor for this parameter is the difference between the mesoporous TiO2 and redox
electrolyte energy band levels [36], the n-type metal oxide thin film on the FTO should not have a
strong effect on the Uoc.
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Figure 7. Current–voltage characteristics for 7 × 7 mm2 and 7 × 80 mm2 DSSC devices with and
without a TiO2 electron blocking layer.

As recently shown, a thin layer of TiO2 on the FTO electrode significantly increases the onset of
cathodic dark current, pointing to the increase in a potential barrier to the electron transfer from the FTO
to the electrolyte [37]. In our studies the presence of the electron blocking layer significantly increased
the short circuit current (Isc) and, as a consequence, also increased the fill factor (FF). For small samples,
an increase from 5.33 mA to 6.44 mA and from 0.64 to 0.70 was observed, respectively. For larger
samples, the same parameters increased from 41.67 mA to 44.80 mA and from 0.55 to 0.58, respectively.
In both cases, the improvement of those parameters indicates that the recombination process was
considerably mitigated. As mentioned above, the power conversion efficiency (η) increased by 30%
and 17%, depending on the sample size. Because of the larger surface, there is a higher probability
of the electrons being scattered or recombined, especially due to the crystal structure’s defects. The
longer path to the electrodes may also cause a relaxation, with incidentally met holes in the FTO. We
attempted to mitigate this problem via the preparation of a silver electrode along the active area’s
edge. The role of this electrode was to collect the photogenerated electrons, possibly close to the place
where they were excited. The measurement errors, presented in Table 2, were calculated by standard
deviation. The parameters were obtained from eight samples for every type of DSSC device.

Table 2. DSSC parameters for 7 × 7 mm2 and 7 × 80 mm2 devices with and without a TiO2 electron
blocking layer.

Sample Size [mm2] Uoc [V] Isc [mA] Pmax [mW] FF η [%]

7 × 7 0.67 5.33 2.29 0.64 4.67
±0.03 ±0.06 ±0.05 ±0.02 ±0.12

7 × 7 with EBL 0.66 6.44 2.97 0.70 6.07
±0.04 ±0.09 ±0.05 ±0.02 ±0.16

7 × 80 0.63 41.67 14.75 0.55 2.62
±0.04 ±2.18 ±0.93 ±0.05 ±0.34

7 × 80 with EBL 0.66 44.80 17.30 0.58 3.06
±0.04 ±2.28 ±0.69 ±0.04 ±0.26
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4. Conclusions

A thin film of TiO2 was studied as an efficient electron blocking layer. Due to its simplicity of
use and high repeatability, RF magnetron sputtering was chosen as the deposition method. A 30
nm thick layer was sputtered on bare FTO and then dye-sensitized solar cells were fabricated by a
screen printing technique. The UV-VIS-NIR spectrophotometry transmittance spectra showed no
significant influence on the amount of light provided through the photoanode to the dye molecules
in its absorbance wavelength range. In both cases of the active area (7 × 7 mm2 and 7 × 80 mm2),
an increase in power conversion efficiency due to decreased recombination (and thus an increased
short circuit current) was reported. Because of the larger area, the cross section of recombination for
mechanisms other than the FTO/electrolyte interface has greater importance. Thus, the percentage
growth of efficiency was higher for small samples (30%) than for larger ones (17%).

DSSCs, as third generation solar cells, provide a great opportunity to serve as low-cost and
common photovoltaics and could displace silicon-based devices. Present and future works will
certainly improve both the efficiency and stability of DSSCs. However, there are still many physical,
chemical and technical problems that need to be resolved to deploy these devices into line production
and distribute them to private consumers.
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