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Abstract: Heavy oil reservoirs with edge-bottom water represent a huge portion of the world’s reserves,
and the effective development of such reservoirs with cyclic steam stimulation (CSS) is significant
for the petroleum supply. However, the water cut of some CSS wells increases, and production
decreases, with the increase of circulation turns. Discerning the source of the produced water is the
basis of targeted treatment measures. In this paper, a new model is established for discriminating
the source of produced water from CSS wells in edge-bottom water reservoirs. The model combines
traditional hydrochemical characteristics analysis and factor analysis, and considers the quality
change in injected water. The coefficient of formation water and injected water in produced water
can thus be obtained. In addition, the normal distribution method is used to further divide interlayer
water and edge-bottom water. The model was applied to a field case, and the results showed that one
well was severely invaded by edge-bottom water. The results are consistent with field production
performance, which further verifies the accuracy of the model. This model is of great significance for
not only discriminating the source of produced water in an edge-bottom water reservoir, but also
providing a basis for further the provision of further treatment measures.

Keywords: heavy oil; cyclic steam stimulation; edge-bottom water reservoirs; source discrimination
of produced water; factor analysis; hydrochemical characteristics; weight coefficients

1. Introduction

Heavy oil and bitumen account for approximately two thirds of the global crude oil resources [1–3].
It is predicted that the production of heavy oil will increase rapidly in the future to meet the increasing
energy demand [4–8]. Some heavy oil reservoirs are often surrounded by edge-bottom water, which
increases the difficulty of developing such reservoirs [9]. Cyclic steam stimulation (CSS) is the most
effective technique to recovery of heavy oil reservoirs with edge-bottom water, and most reserves in
such reservoirs have been exploited by this method [10–12]. In CSS, steam is injected into a production
well for a period. Then the well is shut in and allowed to soak for several days before it returns to
production [13]. CSS has the advantages of a rapid economic return, low capital investment, short
economic recovery period, and good economic benefits [14].

For most heavy oil reservoirs, CSS production is in the middle or last stages, which manifests
as low daily production per well, high water cut, low cyclic oil-steam ratio, and low utilization of
heat [15]. For instance, up until 1998, when the average steam stimulation cycles in the Shan-2 block
of Shanjiasi Heavy Oil Field reached ten cycles, the comprehensive water cut was 93.1%, the annual
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oil–steam ratio was only 0.36 t/t, the natural decline rate was 30.9%, and the recovery degree was only
11.2% [16]. In addition, in block M, studied in this paper, the oil-steam ratio of a typical vertical well
was about 0.91–1.23 t/t in the first to forth cycles, and decreased to 0.42 t/t in the fifth cycle. The water
cut increased rapidly, and even reached 100% in the sixth cycle. The large volume of produced water
increased the loss of thermal energy injected into the formation. More importantly, it increased the cost
of water treatment, resulting in economic losses [17]. Therefore, for CSS wells in block M, it is urgent
to discriminate source of produced water and take corresponding treatment measures to improve the
production performance.

In edge-bottom water reservoirs, there are two possible reasons accounting for high water cut
in CSS wells. On the one hand, due to the difference in permeability, high permeable layer absorbs
more steam, and the low permeable layer absorbs less or no steam, which results in the ineffective
circulation of injected steam in the high-permeability layer. The produced water is mainly injected
steam condensate. In response to this situation, high-temperature resistant chemical profile control
agents are usually used to block the high permeability layer and adjust the steam adsorption profile [18].
On the other hand, after the opening to production, the rapid drop of bottom hole pressure will cause
the actual production pressure difference to increase rapidly which will lead to water channeling,
severely affecting the development effect of CSS wells [19–21]. In this case, the produced water is
mainly formation water. The main methods to reduce water intrusion in such reservoirs include
mechanical and chemical water plugging [22,23]. For example, the method of injecting nitrogen or
nitrogen foam to suppress the invasion of edge-bottom water is one option [24–26]. In short, the first
step to propose effective treatment measures for CSS wells with high water cut is to identify the source
of the produced water.

At present, the methods for discriminating the source of the produced water in oilfields and mines
can be divided into three categories: hydrochemical characteristic analysis, tracer monitoring, and
multivariate statistics.

The hydrochemical characteristic analysis method is the earliest comprehensive method used
to determine the source of produced water in oilfield, which combines production performance,
hydrochemical and electrical characteristics [27]. Subsequently, Li C.Q. supplemented this method,
and proposed a multi-ion analysis and identification method based on quartz dissolution, which
was effectively applied to the identification of produced water in steam stimulation wells [28]. The
hydrochemical characteristic analysis mainly uses the difference in ion content to make empirical
judgments on the source of produced water. However, due to various types of ions, the large range of
content, and complicated laws, the researcher’s subjective knowledge and analysis level will affect
the conclusion.

The tracer monitoring method is a commonly used method in oilfields. It plays an important part
in judging whether the wells produce formation water and determining the direction of the edge and
bottom water as well as the propulsion speed [29,30]. Chai et al. used the tracer method combined
with the chemical composition of the produced water, well test analysis, and material balance methods
to determine the connectivity between wells [31]. However, it is difficult to apply the tracer monitoring
method to the source identification of oilfield produced water on a large scale, due to the high cost.
In addition, for oil wells with multi-layer and multi-directional effects, the reasonable and accurate
interpretation of the tracer has become a problem. Chai et al.’s analysis of the chemical composition of
produced water is only at a qualitative comparison with strong subjectivity.

The multivariate statistics methods include the neural network method [32–35], cluster
analysis [36–38], the gray correlation method [39–41], factor analysis [42], and the Bayes multi-class
linear discrimination method [43]. Wu et al. employed an improved neural network method to
discriminate mine water inrush and obtained a better discrimination result [44]. However, the neural
network method requires a large amount of data for training. In addition, the number of samples of
water sources may be limited in an actual oilfield. Shi et al. conducted hierarchical clustering analysis
to classify water samples into six categories and identified mine water sources [45]. However, cluster
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analysis lacks a probability test, which precludes assigning significance to the obtained results, and it
does not provide information about the distribution of the chemical constituents forming each group.
Gray correlation is a novel algorithm to calculate the degree of correlation through the development
trend of time series and find the correlation between data [46]. However, the results obtained are all
“gray” relationships, which is not enough for CCS wells to accurately judge the degree of water resource
and implement water plugging measures. In addition to the above issues, the above multivariate
statistics methods are all used to identify the water inrush in mine and has not been used to determine
the source of produced water in the oil field.

In this study, we researched the experience of mine water source identification and pioneered
the application of multivariate statistics method to discriminate the source of the produced water
in an oil field. This method avoids the subjectivity and blindness of the traditional hydrochemical
characteristic analysis method, and reduces the costs compared with the tracer monitoring method.
The various methods for discriminating produced water in the past can only judge the produced water
sample as a single source, which doesn’t meet the speculation of the mixed type of formation water and
injection water of steam stimulation wells. In this paper, a new model is established for discriminating
the source of produced water in CSS wells. This model combines the traditional hydrochemical
characteristic analysis and factor analysis methods and considers the change of injected water quality.
The coefficient of formation water and injected water can be obtained by using this model, and normal
distribution method is used here to further divide the interlayer water and the edge-bottom water.
Finally, a field case is used to show its application. Compared with the traditional empirical method of
water source discrimination, the model developed can be effectively applied to new oil fields while
avoiding subjective misunderstandings from the researchers. This is a fast and effective model which
is of great significance for source identification of the produced water in CSS wells and the provision
of treatment measures for the CSS wells with bad performance.

2. Principle of Factor Analysis

Factor analysis is a commonly used method of dimensionality reduction in statistics. The main
purposes are to represent the relationship between many indicators with a few factors and evaluate
each sample comprehensively.

X1, X2, · · · , Xn are the original variable indices. First, the original data is standardized, and the
correlation coefficient matrix of the variables is calculated. The eigenvalues, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,
of the correlation coefficient matrix and the corresponding standard orthogonal vectors, η1, η2, · · · , ηn,

are then calculated based on the factor analysis method, where η j =
[
η1 j, η2 j, · · · , ηnj

]T
. The n principal

factors are composed of eigenvectors, as follows [47] (pp. 606–612):
Z1 = η11X̃1 + η21X̃2 + . . .+ ηn1X̃n

Z2 = η12X̃1 + η22X̃2 + . . .+ ηn2X̃n

. . .

Zn = η1nX̃1 + η2nX̃2 + . . .+ ηnnX̃n

(1)

The information contribution rate, bi(i= 1, 2, · · · , n) and cumulative contribution rate,
∂i(i= 1, 2, · · · , n) of each principal factor are calculated as follows:

bi =
λi∑n

k=1 λk
, i = 1, 2, · · · , n (2)

∂i =

∑i
k=1 λk∑n
k=1 λk

(3)

When ∂p ≥ 0.95, the first p principal factors Z1, Z2, · · · , Zp (p < n) are selected, other unimportant
principal factors are omitted. The factor analysis model is established.
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After the factor analysis model is established, each sample can be comprehensively evaluated by
applying the factor analysis model. The calculation formula of the comprehensive evaluation value of
each sample is as follows:

X =

p∑
j=1

b jZ j (4)

As it is used in this study, the factor analysis method can reduce the dimensionality of the
indicators that are used for source discrimination of produced water. Moreover, when we are not
certaiin about the hydrochemical characteristic system of water source samples in this oil field, the factor
analysis method can find out the indicators that are important to the evaluation results, filter out
others, and summarize the principal factors through the logical structures of the data. When the
cumulative variance contribution rate of the principal factors is greater than 95%, the principal factors
can completely describe the research system and realize information integrity. Finally, a comprehensive
evaluation function and comprehensive score value of each sample can be obtained through factor
analysis. Therefore, in this paper, the factor analysis is the most suitable method to establish a new
model for discriminating source of produced water.

3. Model Establishment

3.1. Analysis Process of Produced Water

As shown in Figure 1, the process to establish a model for discriminating the source of the
produced water is as follows: (i) data preparation—determine the typical water source sample and
select the appropriate discriminant indicators according to the traditional hydrochemical characteristics
analysis process; (ii) factor analysis model and comprehensive evaluation function—process the
obtained sample data by using factor analysis method, the factor analysis model is established and
the water sample comprehensive evaluation function is further obtained; and (iii) solution of weight
coefficients—bring hydrochemical characteristics data of water source samples and produced water
into the comprehensive evaluation function and set up the equations. Solve the equations to find the
coefficient of formation water and injected water in the produced water of a typical well and draw the
diagram of source proportions.

Figure 1. Flow chart of analysis method of produced water.
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3.1.1. Data Preparation

The main task in the data preparation process is to determine the typical water source and select
the appropriate discriminant indicators according to the traditional hydrochemical characteristics
analysis process. On 28 May 2015, the oilfield detected a quality change in the injected water in the CSS
wells. However, the nature of formation water remained basically unchanged, so it could be regarded
as one category. Considering the quality change of the injected water, the water sources in the block M
could be roughly divided into three categories: injected water 1 (type of injected water before 28 May
2015), injected water 2 (type of injected water after 28 May 2015), and formation water.

According to the traditional hydrochemical characteristics analysis process [27], nine typical
indicators were selected: Na+ + K+, Ca2+, Mg2+, CI−, HCO3

−, SO4
2-, density (20 ◦C), total salinity,

and pH. The hydrochemical characteristics of these water sources are shown in Table 1.

Table 1. Hydrochemical characteristics of different water sources in block M.

Category Na+/K+

(mg/L)
Ca2+

(mg/L)
Mg2+

(mg/L)
Cl−

(mg/L)
HCO3−

(mg/L)
SO42−

(mg/L)
Density (20 ◦C)

(g/cm3)
Total Salinity

(mg/L) pH

Injected water 1 916.6 57.5 32.0 1169.4 277.6 361.8 1.0005 2823.9 6.0
Injected water 2 743.1 2.5 1.0 694.7 297.3 371.95 1.0000 2119.9 7.0
Formation water 2430.0 84.0 47.9 3680.3 408.7 144.7 1.00435 6795.6 7.1

3.1.2. Factor Analysis Model and Comprehensive Evaluation Function

After data preparation, the factor analysis model began to be established by SPSS software. The
first step was to import the water source data into the SPSS software. The data management window
was activated. The indicator names were defined: Na+ + K+, Ca2+, Mg2+, CI−, HCO3

−, SO4
2-, density

(20 ◦C), total salinity, and pH. Their corresponding values were imported into the software, the database
was established, and the total variance of the interpretation was obtained and is shown in Table 2.

Table 2. Total variance of interpretation.

Component
Initial Eigenvalue Extract Square Sum and Load Rotate Square Sum and Load

Sum %
Variance

Cumulative
% Sum %

Variance
Cumulative

% Sum %
Variance

Cumulative
%

1 6.732 74.803 74.803 6.732 74.803 74.803 6.395 71.051 71.051
2 1.836 20.401 95.205 1.836 20.401 95.205 2.174 24.153 95.205
3 0.432 4.795 100.00
4 7.254 × 10−16 8.080 × 10−15 100.00
5 3.577 × 10−16 3.974 × 10−15 100.00
6 −1.295 × 10−17

−1.439 × 10−16 100.00
7 −5.958 × 10−17

−6.620 × 10−16 100.00
8 −3.568 × 10−16

−3.964 × 10−15 100.00
9 5.045 × 10−16 5.606 × 10−15 100.00

The principal factors were extracted using the factor analysis method. The eigenvalues,
contribution rate, cumulative contribution rate, component matrix, and component score matrix
of the correlation coefficient matrix were calculated. Since the extraction standard of the principal
factors was that the cumulative contribution rate should be more than 95%, two principal factors were
selected, and their cumulative contribution rate to the sample variance was 95.205%.

According to the component matrix table, as shown in Table 3, the first principal factor had a
large load (greater than 0.9) on Na+ + K+, Mg2+, CI−, HCO3

−, total salinity, and pH, and the second
principal factor had a large load on Ca2+ and SO4

2−. It showed that Na+ + K+, Mg2+, CI−, HCO3
−,

total salinity, and pH are the main indicators, while Ca2+ and SO4
2− are secondary indicators. The

load of the two principal factors on the density was small and similar, which indicates the density had
little effect on the results. Therefore, the density can be removed in this factor analysis model.
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Table 3. Component matrix.

Components

First Principal Factor Second Principal Factor

Na+/K+ 0.989 0.075
Ca2+ 0.802 0.933
Mg2+ 0.933 0.107
Cl− 0.995 0.031

HCO3
− 0.946 0.300

SO4
2− −0.001 0.989

Density (20 ◦C) 0.708 0.693
Total salinity 0.992 0.083

pH 0.932 0.324

As shown in Table 4, according to the component score coefficient matrix, the expressions of the
first and second principal factors were obtained. The comprehensive evaluation function was obtained
based on the respective contribution rate of the first and second principal factors. The comprehensive
evaluation value of each water sample was calculated. The discriminant indicators Na+ + K+, Ca2+,
Mg2+, CI−, HCO3

−, SO4
2−, total salinity, and pH were denoted as X1, X2, X3, X4, X5, X6, X7, and X8.

The first and second principal factor were denoted as Z1 and Z2. The calculation matrices of the first
and second principal factors are shown as Equations (6) and (7).

Z1 = (0.152 0.149 0.138 0.178 0.154 0.180)



X1

X3

X4

X5

X7

X8


(5)

Z2 = (0.241− 0.520)
(

X2

X6

)
(6)

Table 4. Component score coefficient matrix.

Components

First Principal Factor Second Principal Factor

Na+/K+ 0.152 −0.001
Ca2+ 0.058 0.241
Mg2+ 0.149 −0.020
Cl− 0.138 0.055

HCO3
− 0.178 −0.121

SO4
2− 0.141 −0.520

Total Salinity 0.154 −0.005
pH 0.180 0.134

The expressions of the first and second principal factors are shown as follows:

Z1 = 0.152X1 + 0.149X3 + 0.138X4 + 0.178X5 + 0.154X7 + 0.180X8 (7)

Z2 = 0.241X2 − 0.520X6 (8)
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Based on the contribution rate of the first and second principal factors mentioned above,
the comprehensive evaluation function could be obtained, as follows:

Z = 0.1137X1 + 0.0492X2 + 0.1115X3 + 0.1032X4 + 0.1331X5 − 0.1061X6 + 0.1152X7 + 0.1346X8 (9)

3.1.3. Solution of Weight Coefficients

The comprehensive score values of water source and produced water were obtained by entering
the hydrochemical characteristics data in Table 1 into the comprehensive evaluation function,
i.e., Equation (10). The results are shown in Tables 5 and 6.

Table 5. Comprehensive score of water source.

Water Source Date Score Symbol Score

Injected water 1 Before 28 May 2015 Z′′ 555.979
Injected water 2 After 28 May 2015 Z′′′ 401.679
Formation water / Z′ 1488.426

Table 6. Comprehensive score of produced water from typical wells.

Well Date Score

1 4 March 2015 1040.124
2 16 March 2015 1390.474
3 15 July 2014 1214.433
4 4 March 2015 947.657
5 4 March 2015 1070.265
6 16 March 2015 1293.015
1 5 August 2015 776.543
2 5 August 2015 736.346
3 23 June 2015 1298.610
4 23 April 2016 966.435
7 5 August 2015 1067.901
8 5 August 2015 815.222

In the calculated results, the score of the formation water was denoted Z′, and the scores of
injected water 1 and 2 were denoted Z′′ and Z′′′, respectively, as shown in Table 5. The score of the
produced water from the thermal recovery well under cyclic steam stimulation was Z, as shown in
Table 6.

We assumed that the produced water of each CSS well was totally composed of formation water
and injected water in different proportions. The following equations were obtained: (a1b1)

(
Z′
Z′′

)
= Z

a1 + b1 = 1
(10)

 (a2b2)

(
Z′

Z′′′

)
= Z

a2 + b2 = 1
(11)

In the above equations, a1 and a2 are the weight coefficients of the formation water in the produced
water before and after 28 May 2015, respectively, and b1 and b2 are the weight coefficients of the
injected water in the produced water before and after 28 May 2015, respectively.

The comprehensive scores of produced water (Z), formation water (Z′), injected water 1 (Z′′), and
injected water 2 (Z′′′) were substituted into Equations (11) and (12).The proportions of the injected and
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formation water in the produced water of each well before and after 28 May 2015 could be calculated.
The results are shown in Tables 7 and 8.

Table 7. Weight coefficient of formation and injected water in the produced water before 28 May 2015.

Well Date Weight Coefficient of
Injected Water 1

Weight Coefficient of
Formation Water

1 4 March 2015 0.48 0.52
2 16 March 2015 0.69 0.31
3 15 July 2014 0.29 0.71
4 4 March 2015 0.58 0.42
5 4 March 2015 0.45 0.55
6 16 March 2015 0.21 0.79

Table 8. Weight coefficient of formation and injected water in the produced water after 28 May 2015.

Well Date Weight Coefficient of
Injected Water 2

Weight Coefficient of
Formation Water

1 5 August 2015 0.66 0.34
2 5 August 2015 0.11 0.89
3 23 June 2015 0.17 0.83
4 23 April 2016 0.48 0.52
7 5 August 2015 0.39 0.61
8 5 August 2015 0.62 0.38

Based on the weight coefficients of the formation and injected water in the produced water of each
well in Tables 7 and 8, the corresponding source proportions of the produced water of each typical
well could be drawn, as shown in Figure 2. The criterion of the formation water intrusion is that
the formation water weight coefficient in produced water is greater than 0.7. Before 5 August 2015,
the weight coefficients of formation water in well 3 and well 6 were high, which indicates that there
was water intrusion in well 3 and well 6. After 5 August 2015, the weight coefficients of formation
water in well 2 and well 3 increased. This indicated that the formation water intrusion in block M
became more severe with the production of the CSS wells.

Figure 2. Source proportions of produced water in block M.

3.2. Further Analysis Model of Formation Water

In the above, the source of the produced water was analyzed by using the factor analysis method,
and the weight coefficients of the formation water and injected water were obtained. However, in some
heavy oil reservoirs, there are both interlayer water and edge-bottom water. Therefore, a further
analysis model was proposed for determining the composition of the formation water produced by
CSS wells. In this model, based on the water recovery rate, the normal distribution method is used to
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divide the formation water into three categories: only interlayer water, both the interlayer water and
edge-bottom water, and only edge-bottom water.

This model was used to determine the water recovery rate of 34 CSS wells with high weight
coefficient of formation water. First, normal distribution processing was carried out on the water
recovery rate of each well. The maximum, minimum, and central values, as well as the standard
deviation of the data, were calculated, and the water recovery rates were divided into 20 groups at
equal intervals. The distance between the upper and lower limits and the central value was set to
3.2. The group distance and the upper and lower limits of the group coordinates were calculated,
as shown in Table 9. The group coordinates, frequency, and normal distribution data of 20 groups were
calculated, and the normal distribution diagram was created in Figure 3.

Table 9. Calculation of normal distribution.

Parameter Value Parameter Value

Maximum value 5.78 Group distance 0.3378
Minimum value 0.63 Distance between upper and lower limits and central value 3.2

Central value 2.70 Lower limit of group coordinates −0.5106
Standard deviation 1.3371 Upper limit of group coordinates 5.9076
Number of groups 20

Figure 3. Normal distribution of water recovery rate.

By analyzing the normal distribution diagram of the water recovery rate, the water production
status of CSS wells was divided into three groups: water recovery rate less than 2, water recovery
rate located in the 2–4 range, and water recovery rate greater than 4. When the water recovery rate
was less than 2, the main source of formation water was considered to be interlayer water. When
the water recovery rate was greater than 2 and less than 4, the main source of the formation water
was considered to be interlayer water and edge-bottom water. When the water recovery rate was
greater than 4, the main source of formation water was considered to be edge-bottom water. Further
determination of the formation water sources of typical wells is shown in Table 10. It can be obtained
that the formation water produced from typical wells in block M was mainly a mixture of interlayer
water and edge-bottom water. Among these wells, well 2 is the most affected by edge-bottom water
intrusion. Moreover, the water recovery rate of typical wells is relatively high, indicating that the
edge-bottom water in this block was active.
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Table 10. Source category of formation water.

Category Well Number Date Water Recovery Rate Classification Basis

Interlayer water
and edge-bottom

water

3 15 July 2014 2.98
2 < Water recovery rate < 43 23 June 2015 2.98

6 16 March 2015 3.40

Edge-bottom water 2 5 August 2015 4.84 Water recovery rate > 4

4. Results and Discussion

4.1. Model Validation

The reservoir in this study is a sandstone single-layer heavy oil reservoir with edge-bottom water.
The reservoirs are shallow and possess good physical properties, high reserve abundances, high crude
oil densities, high crude oil viscosities, small volumes of dissolved gas, and active edge and bottom
water. Block M is a conventional heavy oil reservoir. CSS has been adopted in this block, and good
development effectiveness was achieved in the early stage of CSS. However, with the increase in the
circulation turns, the effectiveness of the CSS wells decreased significantly, which was manifested as a
decrease in the daily oil production and increase in the water cut. Due to the particularity of the CSS
technology, the produced water from the CSS wells should be the mixture of the condensation of the
injected steam and the formation water that was composed of the edge-bottom water and the interlayer
water. According to the different main causes of water output, different treatment measures are needed
to improve the development effect of the CSS wells in the later stage. In this study, to identify the
main source of the produced water, the developed source discriminant model of produced water
was applied to the block M. The main source of the produced water for typical wells was obtained,
as shown in Figure 2 and Table 10. Among the abovementioned typical CSS wells, the edge-bottom
water invasion of well 2 is the most serious. In the following, we will verify the accuracy of the model
based on the development history of well 2.

As shown in Figures 4 and 5, in the first cycle of the CSS, well 2 had good development effects
with high daily oil production and low water cut. However, with the increase of circulation cycles, the
daily oil production of well 2 decreased significantly. By the end of the third cycle, the water cut of
well 2 reached 100%. The production performance of well 2 indicates that this well has severe water
production and needs corresponding treatment urgently. Since the oil field development is in the early
stage, researchers are not familiar with the block, and the corresponding tracer interpretation data is
lacking. Therefore, it is difficult to propose corresponding effective treatment measures according to
the source of the produced water in well 2. On 5 August 2015, block M applied the model established to
well 2 for discriminating the source of produced water and found that the edge-bottom water intrusion
in well 2 was severe. Consequently, well 2 was set as a test well, and water plugging measures were
taken for this well in July 2016. After water plugging, the daily oil production of well 2 increased
significantly, and the water cut declined. The measures for plugging the edge-bottom water in well 2
have shown good results.

In the absence of laboratory experiments and field tracer interpretation data, block M successfully
solved the problem of edge-bottom water intrusion based on the results of the developed model, which
further proved the accuracy of the model established.
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Figure 4. Daily oil production of well 2.

Figure 5. Daily water cut of well 2.

4.2. Model Application

Edge-bottom water energy is one of the factors that influences the productivity of single wells.
Under the premise of ensuring reasonable productivity, edge-bottom water can supplement the
formation energy and increase the productivity of single wells. More importantly, for a reservoir with
active edges-bottom water, the edge-bottom water easily enters nearby oil wells during production.
The water cut of the oil wells increases rapidly and the production declines or remins at a low level,
which affects the productivity of single wells [48,49]. As mentioned above, block M is a reservoir with
active edge-bottom water. With the development of the reservoir using CSS, the water cut of the CSS
wells generally increased, and the production declined. Therefore, we applied the model established in
this paper to block M to obtain information about the produced water source of typical wells, as shown
in Table 10 and Figure 2. The next treatment measures will be proposed for the CSS wells based on the
combination of model results and dynamic production data.

As shown in Figures 6 and 7, most of the typical CSS wells in block M have undergone 4–5 cycles.
As mentioned above, the water cut in well 2 increased and production decreased rapidly in the early
stage because of the serious edge-bottom water intrusion. After water plugging, the periodical average
water cut decreased and the periodical average daily oil production was restored. With the increase of
circulation cycles, the water cut of all the wells, except for well 2, rose in a fluctuating manner. Even
the water cut of well 4 and well 6 rose to 100% in the fourth cycle. Correspondingly, as shown in
Figure 7, with the increase in circulation turns, the periodical daily oil production of the CSS wells,
except for well 2, showed a clear downward trend. Among them, well 3, well 4, well 6, and well 7
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were in a serious condition, even the fourth periodical average daily oil production of well 4 and well 6
was reduced to 0. Therefore, corresponding treatment measures are needed for these wells urgently.
According to the analysis results of the model developed, the weight coefficients of formation water in
well 3 and well 6 are large, which indicates formation water intrusion is serious in these wells, and the
water plugging measures should be implemented correspondingly. For well 4 and well 7, the weight
coefficients of the formation water are relatively small. Consequently, in these wells, the main problem
is the ineffective circulation of the injected steam in the high permeability layer. In this situation, profile
control measures should be taken to reduce the permeability of the highly permeable layer.

Figure 6. Periodical average water cut of typical wells in block M.

Figure 7. Periodical average daily oil production of typical wells in block M.

The source discriminant model can quickly and effectively identify the source of the produced
water from CSS wells in an edge-bottom water reservoir. This model can be applied not only to
source analysis of produced water but also to rapid evaluation of the production performance of oil
wells, which provides effective basis and guidance for proposing treatment measures for CSS wells
with a high water cut. In addition, this model can also be used in conventional reservoirs developed
by water injection. It can not only quantitatively evaluate the connectivity between the production
wells and surrounding injection wells, but also identify dominant channels. In short, this model has
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important application value and prospects, and provides new ideas for the source discrimination of
produced water.

5. Conclusions

1. In this study, a new source discriminant model for produced water is established that combines
the traditional hydrochemical characteristics and factor analysis methods and accounts for the
quality change in injected water. The weight coefficients of the formation water and injected water
were obtained. Furthermore, the composition of the produced formation water was determined
by the normal distribution method.

2. According to the results of the model, well 2 was selected as a test well, and water plugging
measures were taken for well 2 in the oil field. After water plugging, the water cut of well 2
decreased and the periodical average daily oil production increased significantly, which further
verified the accuracy of the model.

3. The model developed was applied to block M. It was obtained that the weight coefficient of the
formation water in well 2, well 3, and well 6 was high. Therefore, water plugging measures need
to be implemented in these wells. For well 4 and well 7, profile control measures are required to
reduce the ineffective circulation of injected steam in the high permeability layer.

4. This model can be used not only for source analysis of the produced water from CSS wells in
edge-bottom water, but also for identification of the dominant channels in a convention reservoir
developed by water injection. It provides new ideas for source discrimination of produced water.
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