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Abstract: Accurate forecasting of demand load is momentous for the efficient economic dispatch
of generating units with enormous economic and reliability implications. However, with the high
integration levels of grid-tie generations, the precariousness in demand load forecasts is unreliable.
This paper proposes a data-driven stochastic ensemble model framework for short-term and long-term
demand load forecasts. Our proposed framework reduces uncertainties in the load forecast by fusing
homogenous models that capture the dynamics in load state characteristics and exploit model
diversities for accurate prediction. The ensemble model caters for factors such as meteorological
and exogenous variables that affect load prediction accuracy with adaptable, scalable algorithms
that consider weather conditions, load features, and state characteristics of the load. We defined a
heuristic trained combiner model and an error correction model to estimate the contributions and
compensate for forecast errors of each prediction model, respectively. Acquired data from the Korean
Electric Power Company (KEPCO), and building data from the Korea Research Institute, together
with testbed datasets, were used to evaluate the developed framework. The results obtained prove
the efficacy of the proposed model for demand load forecasting.

Keywords: Bayesian; deep neural network; demand load forecast; distributed load; ensemble
algorithm stochastic; K-means

1. Introduction

Developments in the invasive use of grid-flexibility options, such as demand-side management
(DSM), require pliability in load prediction mechanisms to match temporal and spatial differences
between energy demand and supply [1]. Recent advancements in DSMs, such as vehicle-to-grid (V2G)
technologies and renewable energy policies, induce new perspectives for energy demand-supply
imbalance management [2]. A critical factor in this is the reliable prediction mechanism of demand
loads [3]. Thus, much attention has been given to demand load forecast mechanisms over the past
decade [4]. A significant drawback of these prediction mechanisms is the lack of reliable high-sampled
historical demand data, unscalable predictive models to match consumption patterns, and insufficient
information on load prediction state uncertainties [5,6]. Energy consumption differs among load types,
consumption behavior, and time of energy usage. For loads with routine energy consumption, such
as office building loads, the energy sequence is stationary with minimal energy variations within
the operation periods. However, for non-routine energy consumption or generation loads, such as
hotels and renewable power, respectively, the energy sequence is randomized, with many variabilities
in the energy profile patterns. Such a situation can pose a challenge to predict with generalized
prediction models.
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Demand load forecasting is an established yet still very active research area [7]. The literature
on prediction models on energy consumption is enormous, with recent studies harnessing the power
of machine learning (ML) to develop highly-generalized predictive models. Before this, classical
predictive methods dwelled mainly on statistical analysis [8–10]. Consumption patterns were stable
with fewer variations with these loads; hence, models such as support vector regression (SVR)
and auto-regressive integrated moving average (ARIMA) were used for short-term prediction of
loads [11–18]. The relevance of these methods is dependent on the extensive dataset with collinear
measuring variables, which, in most cases, are difficult to come by. Therefore, classical predictive
methods were, as a result, incapable of capturing random variations in the data patterns [19]. Efforts to
improve the forecasting methods incorporating such diversity and unevenness prompted attempts to
replace classical regression models with ML techniques [20]. Predominate among these techniques
is the artificial neural network (ANN). The ANN is already known for its dominant utilization in
energy forecasting methods [13,21,22]. However, because of its inherent complexity, it mostly leads to
overfitting. So, an ensemble model that harnesses the merit of ANN potential, together with other
ML algorithms, could be devised for high accuracy load prediction. Recently, Wang et al. proposed
an ensemble forecasting method for the aggregated load with subprofile [23]. In this work, the load
profile is clustered into subprofiles, and forecasting is conducted on each group profile. Apart from the
fact that this algorithm is based on a fine-grained subprofile, which may not be readily accessible from
every energy meter, cluster members with similar features but different load profiles are problematic to
cluster. Hence, a centroid representation of a cluster may lead to higher variance in load prediction.
In [24], Wang et al. proposed a combined probabilistic model for load forecast based on a constrained
quantile regression averaging method. This method is based on an interval forecast instead of a point
forecast. Apart from increasing computational time required for bootstrapping, much data is needed,
and interval resolution may not be optimal for other data. Given this, this paper focuses on a predictive
ensemble with limited available historical datasets to develop a scalable online predictive model for
demand load forecasting. In this study, date meta-data parameters and weather condition variables
serve as inputs to the proposed framework. As opposed to the models mentioned above, the proposed
prediction model is not based on any specific data sampling interval or strict prediction interval. The
model is adaptable to different distributed demand loads with a varying number of predictors at
various sampling intervals. The contributions of this study are to:

1. Define an online stochastic predictive framework with a computation time of less than a minute.
2. Define a prediction model capable of training a robust forecast model with a single or limited

historical dataset.
3. Define a prediction framework scalable and adaptable to different distributed demand load types.
4. Define an error correction model capable of compensating forecast error.

The remainder of the paper is organized as follows. Section 2 discusses some challenges in
demand load forecasting. Section 3 describes the probabilistic load forecasting model generation for
stochastic demand load forecasting and error compensation methods. In Section 4, the results of the
parametric models and the ensemble forecasting model on different case studies are presented.

2. Challenges in Load Forecasting

Load forecasting is a technique adopted by power utilities to predict the energy needed to meet
generation to maintain grid stability. Data-gathering methods used in such an exercise are often
unreliable, sometimes resulting in missing, nonsensical, out-of-range, and NaN(i.e., Not a Number)
values. The presence of irrelevant and redundant information or noisy and unreliable data can
affect knowledge discovery during the model training phase. The accuracy of forecasting is of great
significance for both the operational and managerial loading of a utility. Despite many existing load
forecasting methods, there are still significant challenges regarding demand load forecast accuracy.
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These challenges are data integrity verification, adaptive predictive model design, forecast error
compensation, and dynamic model selection issues.

2.1. Unreliable Data Acquisition

Demand load forecasting is based on expected weather condition information. Accurate weather
forecast is difficult to achieve because of changes in weather conditions from sudden natural occurrences.
Thus, the demand load forecast may thus differ due to the actual weather condition information. Apart
from the weather feature parameters, other forecasting features, such as data meta-data and consumed
load, are required for demand load forecasting. The acquisition of this dataset could be unreliable due
to the break-down or malfunctioning of energy meters. The dataset may thus contain non-sequential,
missing, or nonsensical data. The consequential effects of such an event render the dataset highly
unreliable and not suitable for accurate load forecasting.

2.2. Adaptive Predictive Modeling

Demand load forecasting complexities are influenced by the nature of the demand load, which
is a result of consumer behavior changes, energy policies, and load type. The behavioral changes
of energy consumers result in different energy usage patterns. For instance, building load type is
determined by the hosted activities: commercial, residential, or industrial. Energy consumption in
commercial and industrial buildings occurs in the light of routine activities that are derived from
either uniform equipment operations or the implied consistency of organized human activities [25].
Demand load is affected by both exogenous (i.e., weather conditions) and endogenous (i.e., type
of day) parameters [26,27]. With a stationary demand load, such as an office building load, energy
consumption follows a specific pattern; hence, variability in energy consumption is not volatile.

Conversely, non-stationary buildings such as hotels have a high-frequency fluctuation in their
energy demand sequence because of randomized operation conditions, such as varying occupancy
levels. The changing pattern leads to poor prediction accuracy with an unscalable predictive algorithm.
To mitigate such problems, conventionally, for grid load forecast, utility operators use manual methods
that rely on a thorough understanding of a wide range of contributing factors based on upcoming
events or a particular dataset. Relying on manual forecasting is unsustainable due to the increasing
number of complexities of the prediction. Hence, the predictive model for load should be adaptive to
the changing conditions.

2.3. Transient-State Forecast Error

The estimated load forecast may change as a result of a sudden natural occurrences, such as
tsunami, typhoons, or holidays. Such changes are temporary and may not occur often. Thus, the
day-ahead predictive parameters may not reflect these sudden changes. Hence, the predictive model
forecast may deviate from the expected forecast. The predictive model captures only steady-state
parameters when the load is modeled to fit historical data. The steady-state predictive model ignores
transient forecast errors. Such a phenomenon significantly reduces the accuracy of the load forecast.

2.4. Model Selection Criteria

All statistical forecasting methods could be used to fit a model on a dataset. However, it is difficult
to fit a model that captures all the variabilities in a demand load dataset, considering the numerous
complex factors that influence demand load forecasting. Additionally, obtaining accurate demand
load forecasts based only on parameters such as weather information and other factors that influence
consumption may not always be correct since, under certain circumstances, some predictive models
have higher prediction accuracy than others. Hence, the criteria for selecting the best fit model under
certain conditions is critical for accurate demand load forecasting. Given this, various methods are
proposed in this framework to address these challenges, as mentioned earlier.
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3. Probabilistic Load Forecasting Model Generation

In this study, we based our proposed framework on the ensemble forecasting method.
The proposed forecasting framework, as shown in Figure 1, involves the process of demand consumption
data and weather information acquisition, data integrity risk reduction, forecast error compensation,
point-forecast, and stochastic forecast estimation. The ensemble forecasting method is an integration
of a series of homogenous parametric models as a random forecast model [24]. The set of parallel
parametric models train and forecast load independently. In this study, the forecasting process is in two
stages: point-forecast model generation and ensemble processes. The point-forecast generation process
involves mechanisms in generating deterministic forecasts with point-forecast models. This process
comprises parametric model selection techniques and data integrity risk reduction methods. With the
ensemble process, the model scheme defines strategies for optimal forecast model selection, forecast
error compensation, and stochastic forecasts. Since parametric model selection is not the primary
consideration of this study, we introduce only three typical parametric models. In the last decade,
several parametric models have been selected for demand load predictive modeling. Notable among
them are the artificial neural network (ANN), K-means, and Bayesian [28–39] approaches. The choice
of these models for demand load prediction is because of their acute sensitivity to sequential data
prediction. Our proposed framework is adaptable to multiple parametric or meta-parametric models
for the efficient prediction of sequential demand load.
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3.1. Data Integrity Risk Reduction

As part of the study, preprocessing analysis was performed on the dataset to increase the integrity
of the dataset. We defined a risk reduction method as part of this study to detect outliers and also
compensate for irregular or missing data. The first stage of the risk reduction method deals with data
outlier detection. The acquired demand load data contains outliers because of measurement latencies,
changes in systems behavior, or fault in measuring devices. In this study, boxplot and generalized
extreme studentized deviate (ESD) algorithms were adopted to detect irregularities in the demand load
data. These methods are common statistical techniques used to identify hidden patterns and multiple
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outliers in data [40]. The technique depends on two parameters, α and r, being the probability of false
outliers and the upper limit of expected number of potential outliers, respectively. As mentioned by
Carey et al. [41], the maximum number of potential outliers in a dataset is defined by the inequality in
Equation (1).

r < 0.5(n− 1) (1)

where n is the number of observations in the data set. With the upper bound of r defined, the
generalized ESD test performs r separate tests: a test for one outlier, two outliers, and so forth up to
r outliers.

X : {x1, x2, x3, . . . , xn} (2)

For each r separate test, we compute the test statistic, Ri, that maximizes
∣∣∣xi − x

∣∣∣ for all observations
as specified in Equation (3), where x and s denote the sample mean and the standard deviation,
respectively. The observation xi that maximises Ri is then removed and Ri recomputed with (n− 1)
observations. This process is repeated for all r with the outcome test statistics of R1, R2, · · · , Rr.

Ri =
max

∣∣∣xi − x
∣∣∣

s
(3)

The critical value, λi, is therefore computed for each r test statistic in Equation (4) with tail area
probability, p, defined in Equation (5), where tp,n−i−1 is the 100p percentage point from the t-distribution
with (n − i − 1) degrees of freedom. The pair of test statistics and critical values are arranged in
descending order. The number of outliers is therefore determined by finding the largest i such that
Ri > λi.

λi =
(n− 1)tp,n−i−1√(

n− i− 1 + t2
p,n−i−1

)
(n− i + 1)

; ∀ i ∈ r (4)

p = 1−
[

α

2(n− i + 1)

]
(5)

Following the outlier detection is the data imputation method. Missing data as a result of outlier
removal or sampling error are compensated for with the data imputation method. Using demand load
profiles with missing data can introduce a substantial amount of bias, rendering the analysis of the data
more arduous and inefficient. The imputation model defined in this study preserves the integrity of the
load profiles by replacing missing data with an estimated value based on other available information.
The proposed reduction model in this study is in three stages of imputation: listwise deletion, hot-deck,
and Lagrange regression model.

For training analysis, from a dataset X with feature variables M and number of observations N,
the listwise deletion method deletes a set of records with missing data values of any of the feature
variables. The listwise deletion method produces a reduced dataset, X∗, as defined in Equation (6).

X∗ =
[
X∗1, X∗2, · · ·X∗j

]
; ∀ j ∈ N (6)

X∗j = X j : ∃ li, j ∩ ∃ li+1, j ∩ · · · ∩ ∃ li+m, j = 1 (7)

li, j =
{

1; ∃ xi, j∀ i ∈M
0; @ xi, j∀ j ∈ N

(8)

This process does not cause bias, but decreases the power of the analysis by reducing the sufficient
sample size. For continuous missing data values (i.e., >3, based on the sampling interval), the listwise
method could introduce bias. Thus, for a single missing value, the hot-deck technique is adapted—the
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hot-deck procedure imputes missing values with previously available data of the same feature variable
as defined in Equation (9). The hot-deck technique precedes the listwise deletion method.

X∗ =
[
X∗1, X∗2, · · ·X∗j

]
; ∀ j ∈ N (9)

X∗j =
[
X∗1, j, X∗2, j, · · ·X

∗

m, j

]
; ∀ m ∈M (10)

x∗i, j =
{

xi, j; ∃ xi, j∀ i ∈M
xi, j−1; @ xi, j∀ j ∈ N

(11)

For multiple data imputation, an ensemble method made up of regression and Lagrange imputation
was adapted. There are seasonal, cyclic, and trend patterns in a demand load dataset. With a week-ahead
daily load profile, as depicted in Figure 2, the similarity in the patterns of the two load profiles of
the same season and day type is evident. Thus, from the immediate prior week, daily load profile
information could be used to estimate missing data values in the week-ahead daily load profile.

Energies 2020, 13, x FOR PEER REVIEW 6 of 19 

For multiple data imputation, an ensemble method made up of regression and Lagrange 
imputation was adapted. There are seasonal, cyclic, and trend patterns in a demand load dataset. 
With a week-ahead daily load profile, as depicted in Figure 2, the similarity in the patterns of the two 
load profiles of the same season and day type is evident. Thus, from the immediate prior week, daily 
load profile information could be used to estimate missing data values in the week-ahead daily load 
profile. 

To achieve this, we estimated the missing data values with a regression imputation method 
based on the observed values. However, the perfect prediction regression equation is impractical in 
some situations (e.g., with a limited number of observations). Hence, the standard error associated 
with the forecast can be reduced with the demand profile of the previous week. Thus, we estimated 
the deviation and the rate of deviation, R, of the previous demand load profile. From this, we defined 
a Lagrange imputation model with the load deviation rate as defined in Equation (12). The initial 
predicted missing values are modified with the Lagrange model, as shown in Figure 3. 

 
Figure 2. Week-ahead daily load profile. 

 

Figure 3. Estimated missing data values. 

= ( − )( − ) ⋯ ( − )( − )( − ) ⋯ ( − ) + ( − )( − ) ⋯ ( − )( − )( − ) ⋯ ( − ) + ⋯ + ( − )( − ) ⋯ ( − )( − )( − ) ⋯ ( − )  
(12) 

Figure 2. Week-ahead daily load profile.

To achieve this, we estimated the missing data values with a regression imputation method based
on the observed values. However, the perfect prediction regression equation is impractical in some
situations (e.g., with a limited number of observations). Hence, the standard error associated with
the forecast can be reduced with the demand profile of the previous week. Thus, we estimated the
deviation and the rate of deviation, R, of the previous demand load profile. From this, we defined
a Lagrange imputation model with the load deviation rate as defined in Equation (12). The initial
predicted missing values are modified with the Lagrange model, as shown in Figure 3.

y =
(R−R2)(R−R3)···(R−Rn)

(R1−R2)(R1−R3)···(R1−Rn)
y1+

(R−R1)(R−R3)···(R−Rn)
(R2−R1)(R2−R3)···(R2−Rn)

y2 + · · ·+
(R−R1)(R−R2)···(R−Rn−1)

(Rn−R1)(Rn−R2)···(Rn−Rn−1)
yn

(12)
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The estimated error margin for each continuous range of imputation is (MAPE: 0.22, MAE: 7.14)
and (MAPE: 0.08, MAE: 8.24) for the first and second ranges, respectively. With the estimated margin
errors, it is evident that the reduction method could be used to compensate for data irregularities.

3.2. Feature Variable Selection

Many predicting features affect energy consumption. For instance, date meta-data features, such
as the time of day, type of day, season, and weather conditions, correlate with energy consumption.
The selection of such input parameters is critical to the performance of the predictive model.
Uncorrelated or associated parameters may not only lead to model overfitting but affect the performance
of the predicting model [42,43]. The set of variables for this study, described in Table 1, were chosen
due to their correlation with energy consumption.

Table 1. Features description.

Variable Type Variable Name Value

Predictors

Year 4-digit number year. E.g., 2017

Month 2-digit number month. E.g., 01

Day 2-digit number day. E.g., 06

Hour 2-digits number hour. E.g., 23

Quarter
index

One digit for minutes.
E.g., 1(15 min), 2(30 min)

P1 Day of the week:
1(Mon), 2(Tues), . . . 7(Sun)

P2 Day type: E.g., 1(Holidays),
2(weekdays), 3(Weekends)

P3 The highest temperature in ◦C

P4
Cloud cover: E.g.
1: sunny (cloud 0–5 mm)
2: cloudy (cloud 6–10 mm)

Respond Demand Energy consumption in kW

Figures 4 and 5 show the relationship between the temperature and cloud cover with the demand
load. There is a positive correlation between the selected predictors and the demand load. With different
load profiles for weekdays and weekends, it imperative to mention the effect that temperature and
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cloud cover have on the demand load. During temperate seasons, load demands are not as high as
during hot seasons because higher energy consuming devices, such as air-conditioning and ventilating,
will not be used as much compared with during hot seasons like summer.
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3.3. The Ensemble Strategy of Multiple Models

The predictive ensemble model (PEM) in this study is an adaptation of the random forest algorithm.
PEM integrates series of forecasting models to formulate a forecasting model. The integration process
is in two stages: optimal weight estimation and stochastic forecast result generation. The optimal
weight estimation method estimates the hyperparameters of the parametric predicting models using
particle swarm optimization (PSO) at each given time, as defined in Equation (13).

fe,t(Xn,t) =
N∑

n=1

ωn,t· fn,t(Xn,t) (13)

The weights ω are estimated by solving the optimization problem using the heuristic function
above and the algorithm in Equation (14), where ω̂T and ωn,t is the estimated optimal weight vector for
the period T and weight parameter of the n-th model at the time, t, respectively.

ω̂T =
argmin
ωT

∑
t∈T

Lt

 N∑
n=1

ωn,t· fn,t(Xn,t), yt

 (14)

s.t.
N∑

n=1

ωn,t = 1;ωn,t ≥ 0 ∀ n ∈ {1, . . . , N} (15)

The determination of the weights for each model per each forecast instance is initially chosen at
random following the set constraints. The weights are subsequently adjusted dynamically as a result of
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the bias of each point forecast. With the loss function defined to estimate the error associated with each
point forecast, the goal of the optimization process is to minimize the loss function, Lt, as described in
Equation (16), where Xn,t and yt are the input parameter vector of the n-th parametric model and the
actual load at time, t, respectively.

Lt =
N∑

n=1

(ωn,t· fn,t(Xn,t) − yt);∀ t ∈ {1, · · · , T} (16)

The weight vector with the minimum loss function becomes the optimal weight vector.
Subsequently, the optimal weight estimation is the error estimation distribution with the optimal
weight vector. The stochastic forecast results are, therefore, estimated based on the error distribution
and the optimal weight vector, as described in Algorithm 1.

Algorithm 1: Algorithm for Stochastic Demand Load Forecast.

Input:

Recent past actual load data
Forecast period feature parameters
Estimated ensemble hyperparameters
Trained prediction models

Output: Time-series stochastic load forecast
1: Select the input parameters, Xn,t from the set of n forecast features variables at time t.

2:
For each point-forecast model, fn estimate the load ŷt, at time t with ensemble hyperparameter ωn,t as shown:

ŷt =
N∑

n=1
ωn,t· fn,t(Xn,t); ∀ t ∈ {1, · · · , T},∀ n ∈ {1, · · · , N}

3:
For each measured load, yt from a set of recently measured load data, forecast the demand load, Lt and
estimate the error, εt as follows:

εt =
∣∣∣Lt − yt

∣∣∣; ∀ t ∈ {1, · · · , T}

4:
Shift the load forecast, ŷt with the error εt as follows:

ŷ′t = ŷt + εt; ∀ t ∈ {1, · · · , T}

5:
Fit a histogram to ŷ′t . From the histogram, we estimate the mean, minimum and maximum value at a 95%
confidence interval

3.4. Error Correction Model

The predictive framework proposed in this study is designed for short-term and long-term
stochastic load forecasts. The framework is based on feature characteristics of historical data. However,
the state characteristics of the model features may change because of uncertainties in feature variable
predictions or contingencies. Thus, for each parametric model, an error correction model is defined to
cater for irregularities with the forecast due to sudden changes in the feature parameters. The error
correction model (ECM) is dedicated to estimating the deviations from long-term estimates to influence
short-term forecasts. The ECM is defined to compensate for three error types: variance, permanent bias,
and temporary bias of the prediction models. Two of the ECMs (i.e., variance and permanent bias) deal
with K-means predictions, whereas the temporary bias ECM caters to ANN prediction irregularities.

3.4.1. Variance Error Correction

The traditional K-means algorithm is a vector quantization method that partitions observation
into distinctive clusters. Each cluster centroid represents all members in the cluster. However, the
centroid representation can lead to a high variance since each demand load profile of the cluster is
represented by the same centroid, as shown in Figures 6 and 7. To compensate for such anomalies in
the prediction, we defined a correction model, part of the ECM, as described in Algorithm 2, called the
variance correction model. With this, the forecasted load profile was adjusted with the mean error of
the recent seven-day actual demand load profile forecast. This process alters the forecasted cluster
centroid with the deviations with the latest forecast to compensate for maximum variations with each
cluster centroid.
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Algorithm 2: Variance Error Correction Model.

Input: Recent past 7-days(N) actual load data
Output: Deterministic load forecast values

1: Select the input parameters, Xi,t from the set of features variables at time t of load profile, Li···

2:
Estimate the load ŷt,i, at time t of each daily load profile, Li with K-means forecast model, ft

ŷt,i = ft(Xn,t); ∀ t ∈ {1, · · · , T}, ∀ n ∈ {1, · · · , N}
Repeat process; ∀ i ∈ {1, · · · , 7}.

3:
For each actual load, yt from a set of recent 7-days, measured load data, estimate the error, εt,i
as follows:

εt,i = yt − ŷt,i; ∀ t ∈ {1, · · · , T}, ∀ i ∈ {1, · · · , N}

4:
For the forecast period, t, estimate average error:

εt =
1
N

7∑
i=1

εt,ii ∈ N,∀ t ∈ {1, · · · , T},∀ i ∈ {1, · · · , N}

5:
Shift load forecast, ŷt with mean error εt to form shifted load ŷ′t as follows:

ŷ′t =ŷt + εt; ∀ t ∈ {1, · · · , T}
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3.4.2. Permanent Bias Error Correction

The demand load profile varies with time, even with a similar set of predictors, as shown in
Table 2. The prediction gap can be significant, as depicted in Figure 8. These changes are mainly due
to the addition of power equipment or changes in the number of users. As mentioned earlier, the
information on the feature state characteristics is not accounted for by the K-means model.

Table 2. A set of similar load predictors.

Date P1 P2 P3 P4

23 June 2017 5 4 34.8 1
19 July 2018 4 4 34.7 1
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A permanent bias error correction model is, therefore, devised to compensate for the variations in
the demand load profile. With an intermittent short-term (i.e., 15 min) forecast interval, the correction
model uses an estimated error rate of the actual data of the previous seven days to retard the forecast
deviation, as shown in Figure 9. The algorithm for this process is described in Algorithm 3. The variance
error correction precedes the permanent bias error correction.

Algorithm 3: Permanent Bias Error Correction Model.

Input: Recent past 7-days(N) actual load data
Output: Deterministic load forecast values

1: Select the input parameters, Xi,t from the set of features variables at time t of load profile, Li.

2:
Estimate the load ŷt,i, at time t of each daily load profile, Li with K-means forecast model, ft

ŷt,i = ft(Xn,t); ∀ t ∈ {1, · · · , T}, ∀ n ∈ {1, · · · , N}
Repeat process; ∀ i ∈ {1, · · · , 7}.

3:
For each actual load, yt from a set of recent 7-days, measured load data, estimate the error, εt,i
as follows:

εt,i = yt − ŷt,i; ∀ t ∈ {1, · · · , T}, ∀ i ∈ {1, · · · , N}

4:
For the forecast period, t, estimate average error:

εt =
1
N

7∑
i=1

εt,i

i ∈ N,∀ t ∈ {1, · · · , T}, ∀ i ∈ {1, · · · , N}

5:
For all t ∈ T, if εt ≮ 0 or εt ≯ 0, then estimate error rate, εr :

εr =
εt
yt

; t ∈ {1, · · · , T}, ∀ r ∈ {1, · · · , N}

6:
Shift load forecast, ŷt with error rate εr to form shifted load ŷ′t as follows:

ŷ′t =
ŷt

1−εr
; t ∈ {1, · · · , T}, ∀ r ∈ {1, · · · , N}Energies 2020, 13, x FOR PEER REVIEW 11 of 19 
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a sudden change in the amount of power over a quarter of the maximum load happening in a two-
or-more-hour period. The evidence of such occurrences is significant in most demand load data. A 
classic example is the Korean research institute (KEPRI) building demand load data used in our case 
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3.4.3. Temporary Bias Error Correction

Special event bias may occur with persistent multiple error events even after the application of
the error correction models mentioned above, as shown in Figure 10. Special event bias is defined
as a sudden change in the amount of power over a quarter of the maximum load happening in a
two-or-more-hour period. The evidence of such occurrences is significant in most demand load data.
A classic example is the Korean research institute (KEPRI) building demand load data used in our case
study analysis. In the dataset, the total number of such occurrences was 91 over a 553-day period.
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Although it is sudden, the occurrence of special event bias is significant in a given period. From
Figure 11, the duration of the sudden bias is logarithmic in time. The highest magnitude of the bias
lasts for the first few hours and monotonically decreases with time to the nominal value. In this study,
we compensated for these sudden changes in the demand load forecast with a temporal bias error
correction model. The procedure for the error compensation is similar to the permanent bias error
correction, except for the required input data and error correction formula. The occurrence distribution
and occurrence duration distribution are shown in Figures 12 and 13, respectively.
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Actual data for the previous 3 h (T) was utilized to estimate the error for compensation.
The formulation of the correction model, as defined in Equation (17), is to correct the average
quantum of the special event, learned for one hour until the power remains zero. An initial correction
value, α, is an average of the event values that occurred in the past. With the KEPRI demand dataset, α
was estimated as 312.6 KW. Considering that temporary bias error correction is a model for accident
events, the average elapsed period, T, was set to be 3.5 h, which is the average time required to identify
an event.

ŷt = α(1− e−
T−t
t5 ) (17)

4. Case Study and Scenario Analysis

In this section, we show the performance of the proposed framework. In the first part, we test the
algorithm on the Korean Electric Power Company (KEPCO) load consumption data from the Korean
research institute (KEPRI) building and substation. The load data and weather information used were
acquired from iSmart [44] and K-weather [45], respectively. We compare our forecast results with
parametric model forecasts. In the second part, we test the algorithm on a set of generalized testbed
data of different load sizes, shapes, and characteristics. Smart energy meters and IoT sensors were
used to gather load data and feature data for the prediction analysis. Prediction analysis for four
seasons—spring, summer, fall, and winter—was conducted in each case study. The optimal values
estimated were used to predict randomly selected days for each season. In this study, the average
model training computational time and predictive time are specified in Table 3. All the data processing
and modeling tasks were implemented using MATLAB software (2019a, MathsWorks, Natick, MA,
USA) on a 64-bit Intel i7 (4 CPUs and 16 GB RAM) with Windows operating system. The proposed
model is relatively computationally non-intensive for both online and offline load forecasts. However,
the training computation time could be reduced with parallel processing.

Table 3. The computation time of processes.

Process Model Training [s] Forecast [s]

K-means 50.86 1.44
ANN 61.70 20.58

Ensemble 592.75 0.002

4.1. Case I: Performance of the Proposed Model on Korea Power Company Buildings Dataset

Our predictive analysis, first and foremost, begins with the electrical load dataset from KEPRI
building and KEPCO dong-Daegu substation building for which historical data is available from 2015 to
date, as shown in Figures 14 and 15 respectively. Based on the available accumulated historical demand
load and weather information data, a prediction model was developed. We estimated the prediction
accuracy by predicting demand loads of 2019, considering both the MAPE and RMSE indices.
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Figure 15. Korean Electric Power Company (KEPCO) substation demand load profile.

The first stage of the analysis was to analyze the scenarios of two datasets (i.e., KEPRI and KEPCO)
of different feature characteristics. These datasets contain demand load and feature data at a 15-minute
sample resolution. The datasets cover the period of five years from September 2015. A four-year
dataset was used to train the predictive model, whereas a one-year dataset was used for testing and
cross-validation. The hyperparameters were tuned to compensate for error correction using the seven
days prior to the starting date. Specific days among the four seasons were selected for load prediction.
Figures 16 and 17 show the stochastic forecast results of the ensemble prediction for the selected days
in each season of the two datasets above.
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From the result, it is imperative to know that all seasons take the shape and form of the actual
measured load profile. In most cases, the actual measured values lie within the minimum and
maximum confidence interval. Before reporting the performance of the ensemble model obtained by
combining multiple individual models, we first analyzed the performance of the parametric models
mentioned in Section 3. With the same dataset for both training and validation, we estimated the
demand load forecast with ANN and K-means separately without the ensemble effect.

To yield credible results, we trained each model multiple times and averaged the losses. From the
prediction error results, as shown in Figure 18 and Table 4, it is observed in the figures that the ensemble
model can improve the performance of the model, with the error correction model implementation.
For simplicity, the ensemble model consisted of only two parametric models, but the framework is
scalable for multiple models.
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Table 4. Prediction accuracy of forecasting dataset.

Dataset Ensemble K-Means with Bayesian ANN

KEPCO dataset

MAPE

Spring 17.0928 17.06893 20.04814
Summer 16.45506 16.33028 17.51668

Fall 22.02287 34.34863 21.94459
Winter 17.57218 21.73072 19.42727

RMSE

Spring 11.19016 10.59841 12.52269
Summer 10.55273 10.79871 10.73513

Fall 22.00363 33.5403 22.5707
Winter 14.8416 17.97763 15.57768

KEPRI dataset

MAPE

Spring 7.3435 10.1011 6.013
Summer 7.52238 10.4581 9.22479

Fall 5.62856 5.27346 6.41714
Winter 10.2523 13.90402 10.38853

RMSE

Spring 23.41024 32.69604 18.52118
Summer 40.75116 60.16406 46.72084

Fall 18.07842 17.08345 19.13558
Winter 63.23432 82.75472 59.46993
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4.2. Case II: Performance of the Proposed Model on Testbed Dataset

The second scenario of the case studies was to examine the adaptability of the proposed model.
To this end, we use the hyper-parameters of the ensemble model tuned with the testbed dataset to
train load forecasting models for different load form forecasts. Here, the load profile of the dataset
does not follow any regular pattern, unlike in Case I. The testbed platform gathers information from
a living laboratory, which consists of research laboratories, teaching classrooms, and faculty offices.
The activities in these places are not routine; hence, the load profile does not follow a regular pattern,
as shown in Figure 19.
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reduces the losses of MAPE and RMSE, especially for different load profiles with no regular pattern. 
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Figure 19. Testbed demand load profile.

For the proposed ensemble model, the training period was from June 2015 to December 2018.
Similar to Case I, neural network and K-means parametric models, together with the proposed
ensemble model, were used to train demand data independently from 2015 to May 2019, while the
data from June 2019 to December 2019 was used for the forecast. Figures 20 and 21 show the results of
the stochastic forecast and prediction accuracy, respectively. It is seen in the figures that the proposed
ensemble model has the lowest overall MAPE and RMSE among the predictive models.
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Figure 21. Testbed dataset performance evaluation of prediction models. (a) Performance estimation
with MAPE, (b) Performance estimation with RMSE.

For all three prediction models, we repeated the trials for randomly selected days and estimated
the average MAPE and RMSE. As shown in Figure 21 and Table 5, the ensemble strategy dramatically
reduces the losses of MAPE and RMSE, especially for different load profiles with no regular pattern.
It is, therefore, reasonable to conclude that the proposed model is robust even for demand load with
many irregularities in load patterns. It is also observed that the ensemble strategy can reduce the
deviation of multiple trials. This also indicates the higher adaptive capability of the proposed model
with the ensemble strategy.

Table 5. Prediction accuracy of forecasting testbed dataset.

Performance Index Ensemble K-Means with Bayesian ANN

MAPE

Spring 19.27277 25.50984 22.78469
Summer 30.74737 44.09545 35.52047

Fall 21.35013 27.61316 22.40761
Winter 18.30707 18.67867 20.87263

RMSE

Spring 1.01556 1.34224 1.085257
Summer 2.455532 3.452222 3.130337

Fall 1.21539 1.541551 1.264588
Winter 0.892299 0.938574 0.999332

5. Conclusions

This paper proposes an ensemble prediction framework for stochastic demand load forecasting
to take advantage of the diversities in forecasting models. The ensemble problem is formulated as a
two-stage random forest problem with a series of homogenous prediction models. A heuristic trained
model combiner, together with an error correction model, enable the proposed model to have high
accuracy as well as satisfactory adaptive capabilities. KEPRI building, KEPCO substation building,
and testbed datasets were used to verify the effectiveness of the proposed model with different case
scenarios. The comparisons with existing parametric models show that the proposed model is superior
in both forecasting accuracy and robustness in load profile variation. The results from the case study
analysis show that the proposed ensemble method effectively improves the forecasting performance
when compared with individual models. For simplicity, two parametric models(i.e., K-means with
Bayesian and ANN models) were adapted in this analysis. However, in future work, other deep
learning models, such as a recurrent neural network (RNN) and long short-term memory (LSTM)
neural network, can be seamlessly incorporated into the model to enhance its performance.



Energies 2020, 13, 2658 18 of 20

Author Contributions: Conceptualization, S.H. and K.A.A.; Methodology, K.A.A.; Software, K.A.A.; Validation,
S.P., and G.K. Formal Analysis, K.A.A., G.K., S.P. and H.J.; Investigation, G.K., H.J. and S.P.; Resources, S.H.; Data
Curation, K.A.A. and G.K. and S.P.; Writing-Original Draft Preparation, K.A.A.; Writing-Review & Editing, K.A.A.;
Visualization, K.A.A. and G.K.; Supervision, S.H.; Project Administration, S.H.; Funding Acquisition, S.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Korea Institute of Energy Technology Evaluation and Planning(KETEP)
and the Ministry of Trade, Industry and Energy(MOTIE) grant number [20182010600390].

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses, or interpretation
of data; in the writing of the manuscript, and in the decision to publish the results.

References

1. Spiliotis, K.; Ramos Gutierrez, A.I.; Belmans, R. Demand flexibility versus physical network expansions in
distribution grids. Appl. Energy 2016, 182, 613–624. [CrossRef]

2. Fitariffs. Feed-in Tariffs. Available online: https://www.fitariffs.co.uk/fits/ (accessed on 14 January 2019).
3. Nosratabadi, S.M.; Hooshmand, R.-A.; Gholipour, E. A comprehensive review on microgrid and virtual

power plant concepts employed for distributed energy resources scheduling in power systems. Renew.
Sustain. Energy Rev. 2017, 67, 341–363. [CrossRef]

4. Fan, C.; Xiao, F.; Wang, S. Development of prediction models for next-day building energy consumption and
peak power demand using data mining techniques. Appl. Energy 2014, 127, 1–10. [CrossRef]

5. Xenos, D.P.; Mohd Noor, I.; Matloubi, M.; Cicciotti, M.; Haugen, T.; Thornhill, N.F. Demand-side management
and optimal operation of industrial electricity consumers: An example of an energy-intensive chemical plant.
Appl. Energy 2016, 182, 418–433. [CrossRef]

6. Sepehr, M.; Eghtedaei, R.; Toolabimoghadam, A.; Noorollahi, Y.; Mohammadi, M. Modeling the electrical
energy consumption profile for residential buildings in Iran. Sustain. Cities Soc. 2018, 41, 481–489. [CrossRef]

7. Tucci, M.; Crisostomi, E.; Giunta, G.; Raugi, M. A Multi-Objective Method for Short-Term Load Forecasting
in European Countries. IEEE Trans. Power Syst. 2016, 31, 3537–3547. [CrossRef]

8. Wang, C.-h.; Grozev, G.; Seo, S. Decomposition and statistical analysis for regional electricity demand
forecasting. Energy 2012, 41, 313–325. [CrossRef]

9. Calderón, C.; James, P.; Urquizo, J.; McLoughlin, A. A GIS domestic building framework to estimate energy
end-use demand in UK sub-city areas. Energy Build. 2015, 96, 236–250. [CrossRef]

10. Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for
smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [CrossRef]

11. Wang, Q.; Zhou, B.; Li, Z.; Ren, J. Forecasting of short-term load based on fuzzy clustering and improved
BP algorithm. In Proceedings of the 2011 International Conference on Electrical and Control Engineering,
Yichang, China, 16–18 September 2011; pp. 4519–4522.

12. Hernandez, L.; Baladron, C.; Aguiar, J.M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J.; Chinarro, D.;
Gomez-Sanz, J.J.; Cook, D. A multi-agent system architecture for smart grid management and forecasting of
energy demand in virtual power plants. IEEE Commun. Mag. 2013, 51, 106–113. [CrossRef]

13. Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and
evaluation. IEEE Trans. Power Syst. 2001, 16, 44–55. [CrossRef]

14. Kaytez, F.; Taplamacioglu, M.C.; Cam, E.; Hardalac, F. Forecasting electricity consumption: A comparison of
regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy
Syst. 2015, 67, 431–438. [CrossRef]

15. Jain, R.K.; Smith, K.M.; Culligan, P.J.; Taylor, J.E. Forecasting energy consumption of multi-family residential
buildings using support vector regression: Investigating the impact of temporal and spatial monitoring
granularity on performance accuracy. Appl. Energy 2014, 123, 168–178. [CrossRef]

16. Kuo, R.J.; Li, P.S. Taiwanese export trade forecasting using firefly algorithm based K-means algorithm and
SVR with wavelet transform. Comput. Ind. Eng. 2016, 99, 153–161. [CrossRef]

17. Zhang, F.; Deb, C.; Lee, S.E.; Yang, J.; Shah, K.W. Time series forecasting for building energy consumption
using weighted Support Vector Regression with differential evolution optimization technique. Energy Build.
2016, 126, 94–103. [CrossRef]

18. Massana, J.; Pous, C.; Burgas, L.; Melendez, J.; Colomer, J. Short-term load forecasting for non-residential
buildings contrasting artificial occupancy attributes. Energy Build. 2016, 130, 519–531. [CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2016.08.145
https://www.fitariffs.co.uk/fits/
http://dx.doi.org/10.1016/j.rser.2016.09.025
http://dx.doi.org/10.1016/j.apenergy.2014.04.016
http://dx.doi.org/10.1016/j.apenergy.2016.08.084
http://dx.doi.org/10.1016/j.scs.2018.05.041
http://dx.doi.org/10.1109/TPWRS.2015.2509478
http://dx.doi.org/10.1016/j.energy.2012.03.011
http://dx.doi.org/10.1016/j.enbuild.2015.03.029
http://dx.doi.org/10.1016/j.rser.2015.04.065
http://dx.doi.org/10.1109/MCOM.2013.6400446
http://dx.doi.org/10.1109/59.910780
http://dx.doi.org/10.1016/j.ijepes.2014.12.036
http://dx.doi.org/10.1016/j.apenergy.2014.02.057
http://dx.doi.org/10.1016/j.cie.2016.07.012
http://dx.doi.org/10.1016/j.enbuild.2016.05.028
http://dx.doi.org/10.1016/j.enbuild.2016.08.081


Energies 2020, 13, 2658 19 of 20

19. Sandels, C.; Widén, J.; Nordström, L.; Andersson, E. Day-ahead predictions of electricity consumption in
a Swedish office building from weather, occupancy, and temporal data. Energy Build. 2015, 108, 279–290.
[CrossRef]

20. Wang, X.; Lee, W.; Huang, H.; Szabados, R.L.; Wang, D.Y.; Olinda, P.V. Factors that Impact the Accuracy of
Clustering-Based Load Forecasting. IEEE Trans. Ind. Appl. 2016, 52, 3625–3630. [CrossRef]

21. Deihimi, A.; Orang, O.; Showkati, H. Short-term electric load and temperature forecasting using wavelet
echo state networks with neural reconstruction. Energy 2013, 57, 382–401. [CrossRef]

22. Mena, R.; Rodrguez, F.; Castilla, M.; Arahal, M. A prediction model based onneural networks for the energy
consumption of a bioclimatic building. Energy Build. 2014, 82, 142–155. [CrossRef]

23. Wang, Y.; Chen, Q.; Sun, M.; Kang, C.; Xia, Q. An Ensemble Forecasting Method for the Aggregated Load
With Subprofiles. IEEE Trans. Smart Grid 2018, 9, 3906–3908. [CrossRef]

24. Wang, Y.; Zhang, N.; Tan, Y.; Hong, T.; Kirschen, D.S.; Kang, C. Combining Probabilistic Load Forecasts.
IEEE Trans. Smart Grid 2019, 10, 3664–3674. [CrossRef]

25. Chen, Y.; Tan, H.; Berardi, U. Day-ahead prediction of hourly electric demand in non-stationary operated
commercial buildings: A clustering-based hybrid approach. Energy Build. 2017, 148, 228–237. [CrossRef]

26. Fumo, N.; Mago, P.; Luck, R. Methodology to estimate building energy consumption using EnergyPlus
Benchmark Models. Energy Build. 2010, 42, 2331–2337. [CrossRef]

27. Ji, Y.; Xu, P.; Ye, Y. HVAC terminal hourly end-use disaggregation in commercial buildings with Fourier
series model. Energy Build. 2015, 97, 33–46. [CrossRef]

28. Bracale, A.; Caramia, P.; Carpinelli, G.; Fazio, A.R.D.; Varilone, P. A Bayesian-Based Approach for a Short-Term
Steady-State Forecast of a Smart Grid. IEEE Trans. Smart Grid 2013, 4, 1760–1771. [CrossRef]

29. Collotta, M.; Pau, G. An Innovative Approach for Forecasting of Energy Requirements to Improve a Smart
Home Management System Based on BLE. IEEE Trans. Green Commun. Netw. 2017, 1, 112–120. [CrossRef]

30. Deng, Z.; Wang, B.; Xu, Y.; Xu, T.; Liu, C.; Zhu, Z. Multi-Scale Convolutional Neural Network With
Time-Cognition for Multi-Step Short-Term Load Forecasting. IEEE Access 2019, 7, 88058–88071. [CrossRef]

31. Ding, N.; Benoit, C.; Foggia, G.; Bésanger, Y.; Wurtz, F. Neural Network-Based Model Design for Short-Term
Load Forecast in Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 72–81. [CrossRef]

32. Han, L.; Peng, Y.; Li, Y.; Yong, B.; Zhou, Q.; Shu, L. Enhanced Deep Networks for Short-Term and
Medium-Term Load Forecasting. IEEE Access 2019, 7, 4045–4055. [CrossRef]

33. Li, R.; Li, F.; Smith, N.D. Multi-Resolution Load Profile Clustering for Smart Metering Data. IEEE Trans.
Power Syst. 2016, 31, 4473–4482. [CrossRef]

34. Motepe, S.; Hasan, A.N.; Stopforth, R. Improving Load Forecasting Process for a Power Distribution Network
Using Hybrid AI and Deep Learning Algorithms. IEEE Access 2019, 7, 82584–82598. [CrossRef]

35. Ouyang, T.; He, Y.; Li, H.; Sun, Z.; Baek, S. Modeling and Forecasting Short-Term Power Load With Copula
Model and Deep Belief Network. IEEE Trans. Emerg. Top. Comput. Intell. 2019, 3, 127–136. [CrossRef]

36. Tang, X.; Dai, Y.; Wang, T.; Chen, Y. Short-term power load forecasting based on multi-layer bidirectional
recurrent neural network. IET Gener. Transm. Distrib. 2019, 13, 3847–3854. [CrossRef]

37. Teixeira, J.; Macedo, S.; Gonçalves, S.; Soares, A.; Inoue, M.; Cañete, P. Hybrid model approach for forecasting
electricity demand. CIRED Open Access Proc. J. 2017, 2017, 2316–2319. [CrossRef]

38. Xu, T.; Chiang, H.; Liu, G.; Tan, C. Hierarchical K-means Method for Clustering Large-Scale Advanced
Metering Infrastructure Data. IEEE Trans. Power Deliv. 2017, 32, 609–616. [CrossRef]

39. Zhang, W.; Quan, H.; Srinivasan, D. An Improved Quantile Regression Neural Network for Probabilistic
Load Forecasting. IEEE Trans. Smart Grid 2019, 10, 4425–4434. [CrossRef]

40. Khan, I.; Capozzoli, A.; Corgnati, S.P.; Cerquitelli, T. Fault Detection Analysis of Building Energy Consumption
Using Data Mining Techniques. Energy Procedia 2013, 42, 557–566. [CrossRef]

41. Carsey, V.J.; Wagner, C.G.; Walters, E.E.; Rosner, B.A. Resistant and test based outlier rejection: Effects on
Gaussian one- and two-sample inference. Technometrics 1997, 39, 320–330. [CrossRef]

42. Jovanovic, R.Z.; Sretenovic, A.A.; Zivkovic, B.D. Ensemble of various neural networks for prediction of
heating energy consumption. Energy Build. 2015, 94, 189–199. [CrossRef]

43. Zhang, Y.N.; O’Neill, Z.; Dong, B.; Augenbroe, G. Comparisons of inverse modeling approaches for predicting
building energy performance. Build. Environ. 2015, 86, 177–190. [CrossRef]

http://dx.doi.org/10.1016/j.enbuild.2015.08.052
http://dx.doi.org/10.1109/TIA.2016.2558563
http://dx.doi.org/10.1016/j.energy.2013.06.007
http://dx.doi.org/10.1016/j.enbuild.2014.06.052
http://dx.doi.org/10.1109/TSG.2018.2807985
http://dx.doi.org/10.1109/TSG.2018.2833869
http://dx.doi.org/10.1016/j.enbuild.2017.05.003
http://dx.doi.org/10.1016/j.enbuild.2010.07.027
http://dx.doi.org/10.1016/j.enbuild.2015.03.048
http://dx.doi.org/10.1109/TSG.2012.2231441
http://dx.doi.org/10.1109/TGCN.2017.2671407
http://dx.doi.org/10.1109/ACCESS.2019.2926137
http://dx.doi.org/10.1109/TPWRS.2015.2390132
http://dx.doi.org/10.1109/ACCESS.2018.2888978
http://dx.doi.org/10.1109/TPWRS.2016.2536781
http://dx.doi.org/10.1109/ACCESS.2019.2923796
http://dx.doi.org/10.1109/TETCI.2018.2880511
http://dx.doi.org/10.1049/iet-gtd.2018.6687
http://dx.doi.org/10.1049/oap-cired.2017.1247
http://dx.doi.org/10.1109/TPWRD.2015.2479941
http://dx.doi.org/10.1109/TSG.2018.2859749
http://dx.doi.org/10.1016/j.egypro.2013.11.057
http://dx.doi.org/10.1080/00401706.1997.10485123
http://dx.doi.org/10.1016/j.enbuild.2015.02.052
http://dx.doi.org/10.1016/j.buildenv.2014.12.023


Energies 2020, 13, 2658 20 of 20

44. KEPCO. iSmart-Smart Power Management. Available online: https://pccs.kepco.co.kr/iSmart/ (accessed on 4
August 2017).

45. Kweather. Kweather-Total Weather Service Provider. Available online: http://www.kweather.co.kr/main/

main.html (accessed on 6 March 2016).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://pccs.kepco.co.kr/iSmart/
http://www.kweather.co.kr/main/main.html
http://www.kweather.co.kr/main/main.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Challenges in Load Forecasting 
	Unreliable Data Acquisition 
	Adaptive Predictive Modeling 
	Transient-State Forecast Error 
	Model Selection Criteria 

	Probabilistic Load Forecasting Model Generation 
	Data Integrity Risk Reduction 
	Feature Variable Selection 
	The Ensemble Strategy of Multiple Models 
	Error Correction Model 
	Variance Error Correction 
	Permanent Bias Error Correction 
	Temporary Bias Error Correction 


	Case Study and Scenario Analysis 
	Case I: Performance of the Proposed Model on Korea Power Company Buildings Dataset 
	Case II: Performance of the Proposed Model on Testbed Dataset 

	Conclusions 
	References

