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Abstract: Piezoelectric energy harvesters can scavenge energy from their ambient environment in 

order to power low-consumption electronic devices. The last two decades have seen a growing 

interest towards vortex-induced vibration harvesters; most harvesters consist in rigid splitter plates 

oscillating at higher frequencies. The concept presented here is a low-frequency undulating flexible 

plate placed in the wake of a square cylinder. Piezoelectric patches can be placed at the plate surface 

to harvest the strain energy arising when the plate bends. The flapping pattern mimics an 

anguilliform swimming motion. There is a great need to establish correlation between wake 

generating bluff body size, plate dimensions and power output. Geometric parameters were 

investigated using water tunnel experiments, particle image velocimetry and fluid–structure 

interaction modeling. Results showed that for a given plate length and within a given freestream 

velocity range, there is a square cylinder diameter and a thickness that optimize the plate–wake 

interaction. Longer plates yield greater power output but have lower flapping frequencies. 

Additionally, the more frequent curvature changes occurring can result in charge cancellation 

among the piezoelectric cells. Consequently, the estimated conversion efficiency from mechanical 

strain to electricity is higher for shorter plates. 

Keywords: fluid–structure interaction (FSI); flow-induced vibrations; vortex-induced vibrations; 

cantilever flexible plate; piezoelectric energy harvester; particle image velocimetry (PIV); renewable 

energy 

 

1. Introduction 

Square cylinders placed in fluid flow generate an oscillatory wake behind them; the impinging 

flow detaches at the front edges and rolls up into vortices that are shed alternatively in the wake. This 

phenomenon is known as the Karman vortex street and is characterized by a travelling pressure 

wave. Flexible plates placed in such an oscillatory wake would undergo periodic oscillations that 

could generate electricity through piezoelectricity. Piezoelectric energy harvesters have a growing 

potential for powering remote sensors and low-consumption electronic devices, especially where 

battery replacement is not a convenient task. Besides, batteries put great stress on the environment 

at the end of their life cycle and therefore it is important to find sustainable alternatives. Various 

vortex-induced vibrations piezoelectric harvester designs have been presented in the last two 

decades owing to the rise in the popularity of piezoelectric materials. While An et al. [1] make use of 

a pivoting rigid plate in the wake of a cylinder to squeeze adjacent piezoelectric patches near the 

hinged end, most harvesters consist in fluttering rigid splitter plates with piezoelectric patches mostly 

near the clamped end. Tang et al. [2] developed an aero-electromechanical model validated by wind 
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tunnel experiments for energy harvesting fluttering cantilever plates. Their harvester is a rigid plate 

placed in the wake of a square cylinder that hosts piezoelectric cells on its surface. According to the 

power output measurements, most of the power came from the cells placed from the clamped end to 

within 40% of the total length while the cells near the free end of the cantilever plate recorded 

negligible power output because of the low curvature. In the prototype developed by Akaydin et al. 

[3], the cylinder is attached to the free end of the aluminum plate while the fluid flow goes from the 

free end side towards the clamped end side. PZT (lead zirconate titanate) patches are located near 

the clamped end. They performed wind tunnel tests and measured the strain at the patches’ location 

and successfully modeled the effect of load resistance on the natural frequency and damping ratio. 

They recorded an overall aero-electromechanical efficiency of 0.72% and an electromechanical 

efficiency of 26%. The plate was mostly oscillating in the two first bending modes; the dynamic 

coupling was strong and electromechanical coupling weak. To illustrate the electromechanical 

coupling, Erturk and Inman [4] showed in their experiments with a PZT-5H (highest piezoelectric 

constant lead zirconate titanate) bimorph cantilever without a tip mass a delay of around 4% in the 

first mode natural frequency between short circuit 𝑅𝑙 = 0  and open circuit 𝑅𝑙 = 1000 (𝑘Ω) . 

Vibration amplitude also increased with the resistive load. According to Shafer and Garcia [5], at 

most 44% of the strain energy can be converted to electrical energy. Tang et al. [2] found maximum 

conversion efficiencies nearing 60%. The conversion efficiency depends on the load resistance and 

the frequency; this is why different studies achieved different values. According to Shu and Lien [6], 

considering rectification of the current, the conversion efficiency can range from 20% to close to 90%. 

When converting stress into electric charges, piezoceramics have higher piezoelectric constants than 

piezoelectric elastomers. On the other hand, their rigidity makes them unfit for acute bending 

applications. Following the growing interest towards piezoelectricity, composite piezoelectric 

materials combining both flexibility and high piezoelectric constants are being developed. Some of 

those piezocomposite energy harvesters (PCEHs) consist in hard piezoelectric particles within an 

elastomer. The main challenge encountered is the inefficient stress-transfer within the soft matrix. 

Zhang et al. [7] proposed a piezoceramic skeleton inspired by a sea porifera filled by a soft polymer 

matrix. Such a structure significantly enhances the energy harvesting performance of the 

piezocomposite by effectively distributing the stress while maintaining elasticity. They measured a 

power output about 16 times higher than for conventional PCEH devices. Han et al. [8] developed a 

flexible piezoelectric membrane using a thin film of PZT adhering on a polymer membrane for use 

in self-powered acoustic sensors. These state-of-the-art piezoelectric materials could be implemented 

in energy harvester concepts in order to further increase the conversion efficiency. 

Most concepts that have been investigated rely mostly on small to moderately large deflections. 

Less literature is available on piezoelectric harvesters relying on large-amplitude flexural vibrations. 

As a reason, we turned our interest towards flexible undulating ribbons with piezoelectric patches 

along the plate’s surface [9–15]. The subject of the present research is based on the “energy harvesting 

eel”. This concept was first introduced by Taylor et al. [9], which recalls the anguilliform swimming 

motion. This mode of fish locomotion is mainly two-dimensional, allowing the fish to spend less 

energy and cover longer distances [16]. The prototype of Taylor et al. [9] consists in a bluff body 

hosting in its wake a polymeric flexible neutral layer with on each side: piezoelectric cells composed 

of PVDF segments sandwiched between electrodes and a sealing layer. Aiming to maximize the strain 

within the cells, several water tunnel studies have described the influence of the bluff body size as 

well as the width and length of the plate. Allen et al. [10] tested a prototype with a gap between the 

bluff body and the clamped end, they carried out water tunnel experiments with two different bluff 

body widths and two different length-to-width ratios of the plates and gave a thorough description 

of the plate dynamics. Shi et al. [11,12] tested two different plate lengths and found that longer plates 

yield more strain energy due to an earlier transition to a travelling wave flapping pattern. Taylor et 

al. [9] used the mode shapes of a free-vibrating cantilever beam to describe the dynamics of their 

“eel”. This approach which was used by Binyet et al. [13–15] to investigate the plate length influence 

on the strain energy. Those studies did not provide optimum geometric parameters of the bluff body 

and plate for maximum strain energy generation. Moreover, no design information is available on 
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plate thickness, which is a tremendously important parameter regarding plate response. The dynamic 

pressure impinging on the plate triggers its response and the response will in turn influence the 

dynamic pressure distribution [17] as the flow around the plate is now modified by the plate motion. 

For this reason, the bluff body size, the plate length and its stiffness are the main parameters dictating 

the response. Binyet et al. [13] attempted to fill the gap in a preliminary study, but the data was not 

exhaustive and the superimposed layers approach to increase the thickness does not represent the 

increase in stiffness accurately. While rigid-splitter-plate-oscillation-based harvesters can be 

modelled mathematically with great accuracy, undulating-plate-forced motion within a turbulent 

wake is dominated by large-amplitude undulations resulting in a complex fluid–structure interaction 

mechanism [9–15]. For this reason, the response can be investigated either by carrying out water 

(wind) tunnel experiments or through fluid–structure interaction modelling coupling both 

computational fluid dynamics and computational structure dynamics. 

Simulations are a great tool to carry out parametric studies as they spare costly experiments. 

However, fluid–structure interaction (FSI) modelling of unstable structures at practical Reynolds 

numbers remains a difficult task. The FSI model has to be validated through comparison with 

experimental data or existing benchmarks. Turek et al. [18] developed a 2D benchmark in the case of 

flow around a cantilever plate clamped to a cylinder under incoming laminar flow. The benchmark 

results give the lift and drag on the cylinder as well as the displacement and oscillating frequency of 

the cantilever plate. The accuracy of the different FSI modelling approaches can be tested against 

their benchmark results. Giannelis and Vio [19] carried out the Turek et al. FSI2 benchmark (large 

deformation, periodical oscillations) coupling ANSYS Mechanical and ANSYS Fluent, using a 

structured O-grid of hexahedral elements, a laminar-pressure-based solver, second-order pressure 

and a second-order upwind momentum specification. Under-relaxation of the pressure data transfer 

from the fluid as well as mesh diffusion were specified to avoid mesh distortion. Their results showed 

excellent agreement with the benchmark with error in the quantities of interest below 6%. The FSI3 

(large deformations and complex oscillations) benchmark of Turek et al. is available in the COMSOL 

application gallery [20]. Results show good agreement, with 2% error in the mean drag, 25% error in 

the mean displacement, y, and 7% error in the amplitude. COMSOL Multiphysics is a commercial 

software that can solve fluid–structure interaction problems. It uses a finite element approach to 

discretize the governing equations. The fluid and solid domains are resolved using one single solver. 

A large coefficient matrix accounting for all the degrees of freedom makes it possible to solve the 

system in a fully coupled manner. The fluid–structure interface and mesh motion is described using 

the Arbitrary Lagrangian–Eulerian (ALE) method. A Lagrangian frame is used to describe the solid 

domain while an Eulerian frame is used for the fluid domain. The Arbitrary Lagrangian–Eulerian 

method allows for the inner grid points to be moved independently of the fluid motion. This can 

prevent mesh distortion. However, at the interface, the kinematic condition (continuity of velocities) 

is enforced so that the fluid and structural domain do not overlap or detach. At the interface, the 

structural nodes and fluid nodes are superimposed [21]. Curatolo et al. [22] used COMSOL’s fluid–

structure interaction, electrostatics and electric circuit packages all together in order to estimate the 

electrical energy output of a deformable piezoelectric solid in water flow. The concept under 

investigation is similar to that of Akaydin et al. [3]. Fluid flow is impinging on a concave half-tube 

connected to the free end as the clamped end is connected to a fixed cylinder. The piezoelectric layer 

is connected to the clamped end. Their model has about 3 ∙ 105 degrees of freedom. The amplitude 

of the free end was around 50 mm, but the piezoelectric layer oscillates with small amplitude. They 

computed an average power of 0.5 mW/m in the PZT 5-A (lower piezoelectric constant lead zirconate 

titanate) layer under an incoming velocity of 1 m/s. Load resistance influence as well as 

electromechanical coupling were not investigated. Because most of the studies in the literature are 

only concerned with incoming laminar flow, to fill the gap, De Nayer et al. [23] realized an FSI 

benchmark for a 2 mm thick flexible rubber plate clamped to a cylinder in turbulent flow (Reynolds 

number of 30,470). They carried out water channel experiments in order to measure the plate 

displacement, flapping frequency and Strouhal number in order to validate their FSI simulations. 

They also used particle image velocimetry to capture the flow field, but no detailed analysis of the 
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wake flow pattern was made. Their FSI model is based on a partitioned coupling scheme: the fluid 

flow is predicted by the large-eddy simulation technique and the structure response is computed by 

solving the momentum equation in a Lagrangian frame of reference. The solution is obtained through 

implicit coupling between the computation of the pressure and the structural displacements. The 

flapping frequency was very well predicted (relative error of around 2%). However, the 

overprediction of the amplitude mostly exceeded 10%. The velocity magnitude was overpredicted in 

the acceleration zone around the cylinder (under 20%), but the flow structures were all in agreement 

with the PIV recordings. The commercial software ANSYS Fluent is based on the finite volume 

method, which is the most common approach as it is closer to the physics of fluid flow. The discrete 

algebraic equations are expressed following exactly the conservation law. Moreover, after decades of 

software development, techniques have been embedded for solution stabilization. Molina-Aiz et al. 

[24] agreed with several previous comparative studies and concluded that the finite element method 

was computationally less efficient than the finite volume method for solving fluid flow. 

The present study aims to provide information on the bluff body size and plate thickness that 

maximize the power output by carrying out fluid–structure interaction modelling of the undulating 

plate coupling the commercial solvers ANSYS Fluent and ANSYS Mechanical from Ansys Inc. 

(Canonsburg, PA, USA) version 14.5. To our knowledge, in most FSI-modeling-related studies, the 

plate-deflected shapes are limited to the first two cantilever beam bending modes. Whereas, in the 

present study, large-amplitude deflected shapes up to the first four bending modes are modelled. 

Water tunnel experiments were performed in order to assess the accuracy of the model, describe the 

flow and flapping pattern and finally evaluate the power generated by bending. In conclusion, 

optimum thickness and square cylinder diameter vary with plate length and incoming flow velocity. 

Design information was provided for several free-stream incoming velocities. In general, longer 

plates yield greater power output but have lower piezoelectric conversion efficiencies. 

2. Experimental and Computational Methods 

2.1. Water Tunnel Experiments: Particle Image Velocimetry and Plate Deflection Analysis 

Experiments were carried out in a recirculating water tunnel (schematic shown in Figure 1a); the 

freestream velocity in the test section was adjusted using a variable frequency drive (VFD) controlling 

a pump. The velocity was varied from around 0.6 m/s to around 1 m/s, giving a Reynolds number 

based on the square cylinder of around 9200 to 14,300 and vortex shedding frequencies of around 6 

to 9 Hz. The square cylinder vortex shedding frequencies 𝑓𝑣 are calculated from 

𝑓𝑣 =
𝑆𝑡∙𝑢𝑓

𝐷
, (1) 

where St = 0.14 represents the Strouhal number for a square cylinder (Okajima) [25]. The Reynolds 

number is expressed as 

𝑅𝐸 =
𝜌𝑓∙𝑢𝑓∙𝐷

𝜇𝑓
, (2) 

where 𝐷 represents the square cylinder diameter, 𝜌𝑓 the density, 𝑢𝑓 the incoming fluid velocity, 

and 𝜇𝑓 the dynamic viscosity of the fluid. The kinematic viscosity is 𝜈𝑓 =
𝜇𝑓

𝜌𝑓
⁄ ; values are given in 

Table 1. 

Table 1. Fluid properties at atmospheric pressure. 

Fluid at 20 °C 𝝂𝒇 (𝒎
𝟐/𝒔) 𝝆𝒇 (

𝒌𝒈
𝒎𝟑⁄ ) 

Air 1.5 ∙ 10−5 1.2 

Water 10−6 998 

The diameter of the square cylinder was of D = 15 mm; its height was H = 105 mm (schematic 

shown in Figure 1b). Compared to the cross-sectional area of the test section, the blockage was under 
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5%. Although turbulence is always a tridimensional phenomenon, for slender cylinders, the wake 

can be assumed to be quasi-two-dimensional far from its top and bottom surfaces. The present study 

relies on the core assumption that the plate motion is quasi-two-dimensional, as it is more efficient 

for converting the impinging flow into harvestable strain energy. For this reason, the plate width was 

kept under a value of W = 10 mm so that torsion was not significant. Piezoelectric materials were not 

used during this investigation, but, instead, the plate was made of polyethylene terephthalate (PET), 

which shows similar density and stiffness to piezoelectric PVDF. Consequently, it can presumably 

mimic the piezoelectric material behavior. The properties of the PET-based plates used are listed in 

Table 2. A prior measurement campaign that focused only on the plate deflection was run using a 

500 frame-per-second high-speed camera. It was then followed up with a second measurement 

campaign focusing on plate deflection and the related flow field, which was run with a 5000 frame-

per-second high-speed camera. The thickness of the plates used among the measurement campaigns 

was of 80, 100 and 120 microns. The square cylinder was made of one aluminum block connected to 

a fixation rod and of two aluminum blocks screwed together while clamping the plate in between 

them. Tape was wrapped around the square cylinder to seal the gap where the two blocks unite. A 

532 nm 3 watts green laser pointing into a cylindrical lens generated a bright laser sheet illuminating 

the plate and the flow field. PVC spheres of a diameter of 3 µm acting as seeding particles were 

poured in the test section to scatter the light from the laser sheet. The particles have a density which 

is close to water to ensure that the fluid motion is well represented by their displacement. Particles 

appear bigger than their actual size on the images captured because they scatter the light in all 

directions. The flow field around the plate as well as the plate deflection were captured by the high-

speed camera. The frames were stored on a computer for further image processing. From the frames, 

the flow field was computed using the particle image velocimetry (PIV) method and the plate 

deflection was deduced by measuring the plate position. PIV consists in measuring the displacement 

of the identical seeding particles between each pair of frames; the velocity vectors can be deduced 

from the displacement vectors and the elapsed time between the pair of frames. The foundation of 

PIV is discrete cross-correlation: the successive images pairs are divided into interrogation areas Ai 

and Bi; the discrete cross-correlation function measures the agreement for a given displacement 

vector for each area pair ABi. The discrete cross-correlation function [26] is expressed as 

𝐶(𝑚, 𝑛) = ∑∑𝐴(𝑖, 𝑗)𝐵(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑗𝑖

 (3) 

where 𝑚 and 𝑛 account for the pixel offset between interrogation areas 𝐴 and 𝐵. 
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Figure 1. (a) Water tunnel experiments apparatus. (b) Flexible plate clamped to the square cylinder. 

Table 2. Plate properties for the water tunnel experiments. 

𝑬 (𝑮𝑷𝒂) 𝝆𝒑 (
𝒌𝒈

𝒎𝟑⁄ ) 𝒕𝒑 (𝝁𝒎) 𝑾 (𝒎𝒎) 

2 1794 80 5 

2 1701 100 10 

2 1475 120 10 

The function yields an intensity peak for identical particles in the first and second exposure 

which are the 𝑖 = 𝑗 terms; on the opposite, a noise floor results from the 𝑖 ≠ 𝑗 terms which are 

random particles. The coordinates of the peak in the correlation matrix plane give the most probable 

displacement vector of the seeding particles from Ai to Bi. The u and v components of the velocity 

vector can then be retrieved knowing the time lapse between both exposures. The software PIVlab 

developed by Thielicke [26] was used for computing the velocity vectors of the characteristic 

deflected shapes. The PIV routine consists in first selecting the region of interest and masking the 

plate, then applying contrast-limited adaptive histogram equalization (CLAHE), high-pass filtering 

and a Wiener 2 denoise filter to optimize the image before executing the frequency domain cross-

correlation algorithm. Three passes were carried out with window sizes of 64, 48 and 32 pixels. It was 

not possible to reach 16 pixels because of the camera resolution, and mostly because the full plate is 

required to be present in the frame. Because the displacement of the particles between frames has to 

be kept below 16 pixels, a frame rate of 5000 fps was necessary. An in-house Matlab code was 

developed for shape capture; the frames are first cropped at the clamped edge, converted to grayscale 

and finally to negative. The frames are then filtered, so that the plate is emphasized and the particles 

diminished. The negative image is converted to a binary image according to a suitable threshold level; 

this makes the plate and the particles appear in white (pixels with a 1 value) while the background is 

in black (pixels with a 0 value). The particles are then removed by running a loop that turns isolated 

1-valued pixels to 0-valued pixels in the matrix columns. Isolated pixels are mostly surrounded with 

0-valued pixels or are out of plate reach. Finally, the plate deflection is determined by locating in each 

column the next group of 1-valued pixels either above or below the neutral line. The distance from 

the neutral line to each group of pixels at each horizontal position gives the vertical coordinate of the 
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plate w. From the w coordinate of the plate, each corresponding x coordinate is determined applying 

the Pythagorean theorem, as for each vertical position increment there is a corresponding horizontal 

shift because the neutral line is inextensible. The measured positions are converted from pixels to 

millimeters through a calibration image. The raw deflection data are finally fitted with a n-degree 

polynomial that is the best fit in the least-squares sense. 

2.2. Plate Response 

From the plate deflection data for each frame, the strain energy and modal contribution are 

computed. All the following computations rest on several fundamental hypotheses. The plate motion 

can be regarded as two-dimensional with no torsion, no shear deformation, no warping, nor any 

deformation along the plate width. Moreover, the neutral line is assumed inextensible as stated by 

Lighthill [16]; in other words, there is no tension at the centerline. It is also assumed that the swelling 

or contracting of the plate under compression or traction is negligible (no deformation along the 

thickness). Therefore, the plain sections remain plain and perpendicular to the neutral line and the 

cross-sections remain the same. These assumptions make complete sense when the flexible plate is 

related to the anguilliform swimming motion. 

2.2.1. Strain Energy 

Resulting from the above hypotheses, Hooke’s law linking longitudinal strain to longitudinal 

stress is written as 휀𝑥 =
𝜎𝑥

𝐸
. The longitudinal strain in pure bending is expressed as 휀 =

−𝑦

𝜌𝑖
 where 𝜌𝑖 

is the radius of curvature. Obviously, the smaller the radius of curvature, the greater the strain, from 

trigonometry and by means of Hooke’s law. The tensile stress within the beam is given by 

𝜎𝑖 = −𝑦𝑖𝐸
𝑤′′

(1+(𝑤′)2)
3

2⁄
. (4) 

Equation (4) is used by Frisch-Fay [27] for analyzing large deflection of flexible rods. It is 

considered valid even in the case of large deformations under the aforementioned assumptions. The 

derivative terms are approximated with finite differences: 

𝑤′
(𝑡𝑖)

=
𝜕𝑤

𝜕𝑥
≈

𝑤(𝑡𝑖,𝑖)
−𝑤(𝑡𝑖,𝑖−1)

𝑥(𝑡𝑖,𝑖)
−𝑥(𝑡𝑖,𝑖−1)

; 𝑤′′
(𝑡𝑖)

=
𝜕2𝑤

𝜕𝑥2 ≈
𝑤(𝑡𝑖,𝑖+1)−2𝑤(𝑡𝑖,𝑖)

+𝑤(𝑡𝑖,𝑖−1)

(𝑥(𝑡𝑖,𝑖)
−𝑥(𝑡𝑖,𝑖−1))

2 . (5) 

The strain energy is the work done by the stress extending the plate of width W, expressed as 

𝑈 =
1

2
𝑊

𝐸𝑡𝑝
3

12
∫ (

𝑤′′

(1+(𝑤′)2)
3

2⁄
)
2

𝐿0

0
𝑑𝑥, (6) 

The integral is computed numerically using the composite trapezoidal rule for each frame at 

time 𝑡𝑖 . The most important index to compare the different plates’ harvesting capabilities is the 

bending power; it is defined as the rate of change of strain energy. The instantaneous bending power 

is defined as 

𝑃𝑡𝑖
=

𝑑𝑈

𝑑𝑡
≈

𝑈𝑡𝑖+1−𝑈𝑡𝑖−1

2∆𝑡
. (7) 

Then, the time-averaged bending power is defined as 𝑃𝑠 =
1

𝑇
∫ 𝑃𝑡𝑖

𝑑𝑡
𝑇

0
, where 𝑇 is the average 

time interval, which is mainly the sample size. For comparison with the two-dimensional FSI model, 

the results are expressed in terms of average bending power per width: 𝑃𝑠𝑊 =
𝑃𝑠

𝑊
. 

2.2.2. Modal Analysis 

From observation of the plate’s deflected shapes, it appears that the mode shapes of a clamped-

free cantilever beam under free vibration (shown in Figure 2b) can be used to describe the complex 

bending pattern of the plate. Indeed, each bent shape can be represented as a combination of those 

basic mode shapes. Although the mode shape expressions are derived from the small-deformation 

theory, they can still be used as a marker of the level of the bending occurring when describing the 
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bending pattern. The deflected shapes of the clamped-free cantilever beam vibrating in the mode m 

(eigenfunction) are expressed according to Sonalla [28] as 

 

(a) 

(b) 

Figure 2. Experimental procedure: (a) particle image velocimetry principle; (b) shape capture, curve 

fitting and modal analysis. 

𝑋𝑚(𝑥) = (𝑐𝑜𝑠ℎ 𝛼𝑚 𝑥 − 𝑐𝑜𝑠 𝛼𝑚 𝑥) − 𝛾𝑚(𝑠𝑖𝑛ℎ 𝛼𝑚𝑥 − 𝑠𝑖𝑛 𝛼𝑚𝑥), (8) 

Consequently, the natural frequency of each mode is defined as 

𝑓𝑚 =
1

2𝜋
𝛼𝑚

2√
𝐸𝐼

𝜌𝑝𝐴
, (9) 

where 𝛼𝑚  represents the eigenvalues: 𝛼𝑚 ∙ 𝐿 ≅ 1.88; 4.69; 7.85; 11 . 𝛾𝑚 ≅ 0.73;  1.02;  1;  1  are the 

corresponding eigenvectors. 𝐴 = 𝑊 ∙ 𝑡𝑝  represents the cross-sectional area of the plate. 𝐼 =
𝑊𝑝𝑡𝑝

3

12
 

accounts for the second moment of inertia. Thinner, slender, longer plates have lower natural 

frequencies and thus are more likely to have deflected shapes resembling the higher-order mode 

shapes. Calculating the contributions from each mode shape within the measured deflected shapes 

indicates the complexity of the bending pattern for each shape. From the deflection data 𝑤𝑖  and 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1, the modal contributions for each mode m are estimated according to 

𝐵𝑚 =
∑ 𝑤𝑖

𝑛
𝑖=1 ∙𝑋𝑚𝑖∙∆𝑥

∑ 𝑋𝑚𝑖
2∙∆𝑥𝑛

𝑖=1
. (10) 

2.2.3. Piezoelectric Energy Harvesting 

Piezoelectric PVDF generates a voltage when a force is applied to it because of the resulting 

charge concentration on each side of the layer generated by the strain (traction or compression) within 

the material. Considering a cantilever beam with one neutral layer and one piezoelectric layer on 

each side as shown in Figure 3a, the electric displacement 𝐷3 is related to the stress and the electric 

field according to [4,29]: 

𝐷3 = 𝑑31 ∙ σ𝑥(𝑦) + 휀𝑝
𝜎 ∙ 𝐸3, (11) 

where 𝑑31 is the piezoelectric stain constant in 31 mode (Table 3), 휀𝑝
𝜎 the electric permittivity of the 

piezoelectric layers under constant strain and plain stress and 𝐸3 the electric field. 
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Figure 3. (a) Undulating plate in wake flow; (b) pure bending of the plate; (c) concept of the 

undulating piezoelectric energy harvester. 

Table 3. Properties of piezoelectric PVDF. 

𝒅𝟑𝟏 (𝒑𝑪/𝑵) 𝜺𝒑
𝝈 (𝑭 𝒎⁄ ) 𝜺𝟎 (

𝑭
𝒎⁄ ) 

23.9 [29] 13휀0 8.85 ∙ 10−12 

The voltage across the electrodes of each layer is 𝑉𝑙(𝑡). Considering a parallel connection of the 

electrodes, the instantaneous electric fields for the active layers B and A are 

𝐸3(𝑡) =
𝑉𝑙(𝑡)

𝑡𝑙
 and 𝐸3(𝑡) = −

𝑉𝑙(𝑡)

𝑡𝑙
. (12) 

The electric current through the electrodes is given by the Gauss law integrating over the 

piezoelectric layer area, where 𝐿𝑙 is the length of the piezoelectric layer and 𝑊𝑙 its width [4]: 

d

dt
(∫ �⃗⃗� ∙

𝐴
�⃗� 𝑑𝐴) =

𝑉𝑙(𝑡)

𝑅𝑙
, (13) 

where �⃗⃗�  is the vector of electric displacement, �⃗�  is the unit outward normal. In this case, the only 

component of �⃗⃗�  which matters is 𝐷3  since �⃗�  is along the thickness (3-axis). 𝑅𝑙  is the load 

resistance. Substituting Equations (4), (11) and (12) into Equation (13) yields 

d

dt
(∫ ∫ 𝐷3

𝑊𝑙

0

𝐿𝑙

0
𝑑𝑥𝑑𝑧) =

𝑉𝑙(𝑡)

𝑅𝑙
. (14) 

Hence, for layer A: 

d

dt
(−E𝑙𝑑31𝑊𝑙 ∫ 𝑦(𝑥,𝑡)

𝑤′′

(1+(𝑤′)2)
3

2⁄

𝐿𝑙

0
𝑑𝑥 − 휀𝑝

𝜎 ∙
𝑉𝑙(𝑡)

𝑡𝑙
𝐿𝑙𝑊𝑙) =

𝑉𝑙(𝑡)

𝑅𝑙
, (15) 

𝑦(𝑥,𝑡) can be taken as the distance between the neutral axis and the center of the piezoelectric 

layer, assuming that the neutral layer at the center has a thickness 𝑡𝑝 : 𝑦𝑙 = (𝑡𝑙 + 𝑡𝑝)/2 . Now 

assuming that 𝑡𝑝 = 𝑡𝑙, a differential equation for the voltage 𝑉𝑙(𝑡) is obtained for layer A: 

𝐸𝑙𝑑31𝑊𝑙𝑡𝑙
𝑑

𝑑𝑡
(∫

𝑤′′

(1+(𝑤′)2)
3

2⁄

𝐿𝑙

0
𝑑𝑥) + 휀𝑝

𝜎 𝐿𝑙𝑊𝑙

𝑡𝑙
∙

𝑑

𝑑𝑡
(𝑉𝑙(𝑡)) +

𝑉𝑙(𝑡)

𝑅𝑙
= 0. (16) 

After integrating in time assuming that ∆𝑡 is small and rearranging, the expression for the 

voltage at time 𝑡 + ∆𝑡 can be determined for a given load resistance value 𝑅𝑙 by setting an initial 

value 𝑉𝑙𝑡
: 
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𝑉𝑙𝑡+∆𝑡
=

𝑅𝑙

(1+𝜀𝑝
𝜎𝐿𝑙𝑊𝑙

𝑡𝑙

𝑅𝑙
∆𝑡

)∆𝑡
(−𝐸𝑙𝑑31𝑊𝑙𝑡𝑙 (∫

𝑤′′

(1+(𝑤′)2)
3

2⁄

𝐿𝑙

0
𝑑𝑥)|

𝑡

𝑡+∆𝑡

+ 휀𝑝
𝜎 𝐿𝑙𝑊𝑙

𝑡𝑙
∙ (𝑉𝑙𝑡

)), (17) 

and the resulting power output is P𝑙 =
𝑉𝑙(𝑡)

2

𝑅𝑙
. 

The integral of the curvature in Equation (17) is computed numerically using the composite 

trapezoidal rule together with finite difference approximation from the deflection data. There is an 

optimum resistive load value which gives the maximum power output for a given frequency. On the 

other hand, it is fundamental to keep in mind that the plate response 𝑤(𝑥,𝑡) also depends on the load 

resistance 𝑅𝑙  due to mechanical damping. When 𝑅𝑙  is close to zero, the damping is null and 

increases with the resistive load. However, for the present study, it can be assumed that 

electromechanical-coupling-induced stiffness increase brought by the load resistance is negligible (in 

the order of several percent for the cantilever piezoelectric bimorph of Azizi et al. [30]). This 

assumption makes sense considering the strong dynamic coupling in place as the plate motion mostly 

follows the vortex shedding frequency. Under weak electromechanical coupling, the electrical energy 

being harvested has no influence on the response and therefore, stiffening can be neglected. 

2.3. Fluid–Structure Interaction Modelling 

2.3.1. Computational Fluid Dynamics 

Governing Equations 

The flow has to be modelled with a compressible fluid because constant density fluids yield an 

infinite wave speed 𝑐 = √(
𝜕𝑃

𝜕𝜌
). An incompressible fluid yields larger pressure gradients than a 

compressible fluid for a similar displacement of the solid interface. For this reason, when using water 

as a fluid medium, unphysical pressure spikes occur during the solution process leading to great 

stress applied to the solid interface, resulting in even greater displacements of the structure. In this 

case, the mesh cells become so distorted that the vertices are distributed, such that the bounding faces 

intersect each other and the vertices penetrate opposite faces. Those are referred as “negative cell 

volumes”. When they occur, divergence of the calculation is the only outcome. For simplicity, the 

fluid medium was changed to compressible air, and, consequently, the velocity at the inlet was 

changed according to the Reynolds law of similitude. Switching the fluid medium to air yields 

increased flow velocities and, therefore, increased vortex shedding frequencies followed by greater 

flapping frequencies. Air has a kinematic viscosity around 15 times that of water, meaning it is 15 

times more diffusive. The fluid kinematic viscosity also describes how vorticity diffuses through a 

fluid and, therefore, using air instead of water would yield different vorticity fields in the far wake. 

Because the fluid is compressible, density weighted time averaging [31] is required to model the 

turbulent flow. The continuity equation is expressed as 

∂ρ̅

∂t
+

𝜕

𝜕𝑥𝑖
(�̅�𝑢�̃�) = 0, (18) 

The momentum equation, also called the Favre-averaged Navier–Stokes equation, is expressed 

as 

𝜕

𝜕𝑡
(�̅��̃�𝑖) +

𝜕

𝜕𝑥𝑗
(�̅��̃�𝑖�̃�𝑗) = �̅�𝑔𝑖 −

𝜕�̅�

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
𝜇 [(

𝜕�̅�𝑖

𝜕𝑥𝑗
+

𝜕�̅�𝑗

𝜕𝑥𝑖
) −

2

3

𝜕�̅�𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗] +

𝜕

𝜕𝑥𝑗
(−𝜌𝑢′′𝑖𝑢′′𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), (19) 

where 𝜌 stands for the density of the fluid, the 𝑢�̃� terms represent the time-averaged velocities, �̅� 

the time-averaged pressure and 𝛿𝑖𝑗 the kronecker delta. The terms on the left-hand side are the local 

rate of change of momentum and its advection. The terms on the right-hand side are the gravity 

action, the pressure gradient, the viscous stresses, viscous dissipation and expansion or compression, 

and finally the term 𝜌𝑢′′𝑖𝑢′′𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅  called Reynolds stress. This term cannot be resolved and needs to be 

modelled in order to close the momentum equation. The Renoylds stresses are related to the mean 

velocity gradients according to the Boussinesq hypothesis [32]: 
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−𝜌𝑢′′𝑖𝑢′′𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕�̅�𝑖

𝜕𝑥𝑗
+

𝜕�̅�𝑗

𝜕𝑥𝑖
) − 2

3
(�̅�𝑘+𝜇𝑡

𝜕�̅�𝑘
𝜕𝑥𝑘

)𝛿𝑖𝑗, (20) 

where 𝜇𝑡 represents the turbulent viscosity, which is assumed to be an isotropic scalar quantity. 

Hence, the turbulence is assumed to be isotropic meaning that the normal stresses are equal: (𝑢′′)2̅̅ ̅̅ ̅̅ ̅ =

(𝑣′′)2̅̅ ̅̅ ̅̅ ̅. Considering the plate motion to be mostly two-dimensional where out-of-plane bending and 

torsion are neglected, the assumption is valid. The turbulence model chosen is the realizable 𝑘 − 휀 

model. It is still accurate for flows involving vortices and rotation, separation and recirculation while 

being less computationally intensive than the Reynolds stress model. 𝑘 is the turbulence kinetic 

energy defined as half the trace of the Reynolds stress tensor: 𝑘 =
1

2
(𝑢𝑖′′𝑢𝑖′′̃ ) and 휀 ≡ 2𝜈𝑆𝑖𝑗′′𝑆𝑖𝑗′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  its 

dissipation rate. In the realizable 𝑘 − 휀 model, the modeled transport equations for 𝑘 and 휀 are 

∂

∂t
(�̅�𝑘) +

𝜕

𝜕𝑥𝑗
(�̅�𝑘�̃�𝑗) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 − 𝜌휀, (21) 

∂

∂t
(�̅�휀) +

𝜕

𝜕𝑥𝑗
(�̅�휀�̃�𝑗) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] + 𝜌𝐶1𝑆휀 − 𝜌𝐶2

𝜀2

𝑘+√𝜈𝜀
, (22) 

where 𝐶1 = 𝑚𝑎𝑥 [0.43,
𝜂

𝜂+5
] , 𝜂 = 𝑆

𝑘

𝜀
, where 𝑆  is the modulus of the mean rate of strain tensor 

defined as 𝑆 ≡ √2S̃𝑖𝑗S̃𝑖𝑗, where, for variable density flows, the rate of strain tensor is defined as S̃𝑖𝑗 =

(
𝜕�̃�𝑗

𝜕𝑥𝑖
+

𝜕�̃�𝑖

𝜕𝑥𝑗
−

1

3

𝜕�̃�𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗) . 𝐺𝑘 = −𝜌𝑢′′𝑖𝑢′′𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜕�̃�𝑗

𝜕𝑥𝑖
 represents the production of turbulence kinetic energy 

which is approximated according to the Boussinesq hypothesis: 𝐺𝑘 = 𝜇𝑡𝑆
2 . The production of 

turbulent kinetic energy is the result of the Reynolds shear stress and the velocity gradients. The 

vorticity and the rate of strain also result from those velocity gradients. The kinetic energy lost due 

to the shearing of the mean flow is gained by the turbulent fluctuations and then dissipated. The 

turbulent viscosity or eddy viscosity is computed from 𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
, where 𝐶𝜇 is computed from the 

model constants, the strain rate, the rotation rate, 𝑘 and 휀. 

The energy equation has to be solved together with the equation of state linking the 

thermodynamic quantities together. This is for further use in the momentum and continuity 

equations as the density varies due to pressure and temperature changes. Assuming a perfect gas, 

the equation of state linking the thermodynamic pressure 𝑝  to the temperature 𝑇  is 𝑝 = 𝜌𝑅𝑇 , 

where 𝑅 = stands for the perfect gas constant. The conservation of energy of the particle is written 

as 

∂

∂t
(𝜌𝐸) + ∇ ∙ (�⃗� (𝜌𝐸 + 𝑝)) = 𝛻 ∙ (𝑘𝑒𝑓𝑓𝛻𝑇 + 𝜏̿𝑒𝑓𝑓 ∙ �⃗� ). (23) 

The two terms on the right-hand side of Equation (23) represent the heat conducted through the faces 

of the control volume and dissipated by viscosity. 𝑘𝑒𝑓𝑓 represents the effective conductivity. 𝜏̿𝑒𝑓𝑓 is the 

viscous stress tensor. The total energy of the particle which varies with the action of the gravitational forces, 

the velocity, the pressure, the viscosity and the heat transfer is 𝐸 = ℎ −
𝑝

𝜌
+

|�⃗⃗� |
2

2
. The enthalpy per mass is 

calculated as ℎ = ∫ 𝑐𝑝(𝑇)
𝑇

𝑇𝑟𝑒𝑓
𝑑𝑇, where 𝑐𝑝(𝑇) is the specific heat and 𝑇𝑟𝑒𝑓 the reference temperature. 

All the above governing equations can be rewritten in the general transport equation form [33,34]: 

𝜕𝜌𝜙

𝜕𝑡
+ �⃗� ∙ 𝜌�⃗⃗� 𝜙 = �⃗� ∙ (Γ∅�⃗� 𝜙) + 𝑆𝜙. (24) 

After rearranging the governing equations and setting appropriate diffusion coefficients Γ∅ and 

related source terms 𝑆𝜙, the general variable 𝜙 can be set as 1 to obtain the continuity equation, as 

�̃�𝑖 to obtain the momentum equation and so forth for all the governing equations. 

Solution method 

The finite volume method consists in integrating the transport equations while applying the Gauss 

divergence theorem on each control volume. This results in discrete algebraic equations that express the 
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conservation law for each control volume: the amount of the variable 𝜙 in the entire computational 

domain changes due to the boundary fluxes and internal sources (global conservation property). The 

pressure, temperature and velocity vectors are computed for each control volume by solving the overall 

system of the discretized transport equations using a point implicit (Gauss–Seidel) solver together with 

an algebraic multigrid (AMG) method. The pressure-based coupled algorithm solves the momentum and 

pressure-based continuity equations simultaneously. The mass flux is updated and then the energy and 

turbulence equations are solved, the loop is repeated until convergence. Fluent only stores values at the 

cell centers; a second-order upwind interpolation scheme was used to obtain the values at the cell faces. 

The first-order implicit scheme was used to discretize the time-dependent term 
𝜕

𝜕𝑡
𝜌𝜙𝑉 , because it is 

unconditionally stable with respect to time step size. 

Meshing 

The 2.5D mesh is a face mesh extruded over only one cell in depth. At each time step, the triangular 

source face mesh is deformed, re-meshed, smoothed and extruded. It is of crucial importance that the 

mesh keeps its original high quality after deformation. For this reason, the diffusion equation governs the 

mesh motion as the boundary motion is diffused into the deforming mesh according to the diffusion 

coefficient 𝛾: ∇ ∙ (𝛾∇�⃗� ) = 0, where �⃗�  is the mesh displacement velocity. Finite element discretization is 

used to solve the diffusion equation, yielding the velocity at each node. Finally, the mesh nodes move to 

their new positions according to: 𝑥 𝑛𝑒𝑤 = 𝑥 𝑜𝑙𝑑 + �⃗� ∆𝑡. The cells violating the size and skewness criteria are 

bound together and re-meshed. To prevent the mesh from distorting and thus rendering the calculation 

impossible; the cells that do not satisfy the skewness or size criteria are re-meshed. The minimum and 

maximum length scales and maximum skewness were specified as 0.3 mm, 6 mm and 0.8 mm, 

respectively. The difficulty with using the actual plate thickness is the important scale ratio with the square 

cylinder and plate length. That scale mismatch would involve very small cell sizes near the free end. 

Smaller cells do not comply with comparably large deformations occurring within too few time steps; this 

would often result in “negative volumes”. The displacement of the moving boundaries should be inferior 

to the length scales of the adjacent mesh elements. This can be achieved through both smaller time steps 

and greater mesh element size. To circumvent the problem, the plate was modelled thicker (2 mm and 1.5 

mm) with a lower Young’s modulus in order to obtain the same flexural rigidity as the actual physical 

plate. The deformed and undeformed fluid mesh is shown in Figure 4a. 

 
(a) 

 
(b) 

Figure 4. (a) Fluid mesh; (b) Solid mesh. 

The solid mesh as shown in Figure 4b is composed of 50–100 elements along the length of the plate 

(1 node every millimeter) and 10 elements along its thickness. This results in 500–1000 elements depending 
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on the length. The fluid mesh has to match the solid mesh at the interface; therefore, 50–100 elements along 

the length of the plate are specified. To reduce computation time, a size function is specified so that the 

mesh is fine near the plate and coarse in the undisturbed zone. A sizing is also applied at the free end of 

the plate because of the abrupt change in pressure that arises at this location. The fluid mesh contains 

50,000–100,000 extruded triangular elements (wedges) depending on the length of the plate. 

Boundary conditions 

The boundary conditions of the FSI model are displayed in Figure 5. The velocity magnitude is 

set at the velocity inlet for a value that results in comparable Reynolds numbers to during the water 

tunnel experiments. Whereas exact matching is necessary for model validation, for parametric 

investigations, velocity was allowed to increase further. Turbulence intensity at the inlet was set to 

1% and the hydraulic diameter to 0.19 m. The side walls are set as symmetry so that there is no 

velocity gradient occurring at the walls. The outlet is defined as a pressure outlet. The square cylinder 

walls are no-slip walls. The fluid interface is the fluid domain inward boundary containing only the 

plate. The solid interface is the outward surface of the plate. The surface of the plate adjacent to the 

square cylinder is the fixed support. 

 

Figure 5. Boundary conditions for the fluid and solid domain. 

2.3.2. Computational Structural Mechanics 

Assuming that the internal load is proportional to the nodal displacement, and that the stiffness 

matrix remains constant, the finite element semi-discrete equation of motion is expressed as follows [35]: 

[𝑀]
𝜕2�⃗⃗� 

𝜕𝑡2 + [𝐶]
𝜕�⃗⃗� 

𝜕𝑡
+ [𝐾]�⃗� = 𝐹𝑎⃗⃗ ⃗⃗  

𝑡, (25) 

where [𝑀], [𝐾] and [𝐶] represent the mass, stiffness and damping matrices which are a discrete 

representation of the continuous mass, stiffness and damping. 𝐹𝑎⃗⃗ ⃗⃗  
𝑡 is the applied load vector at time 

t. The nodal acceleration, velocity and displacement vectors are 
𝜕2�⃗⃗� 

𝜕𝑡2 , 
𝜕�⃗⃗� 

𝜕𝑡
 and �⃗� , respectively. �⃗�  is the 

unknown degree of freedom vector that must be determined. The mass and stiffness of the model 

plate have to be determined so they represent the actual plate, taking into account the scaling of the 

thickness. Recalling the strain energy equation, Equation (6), the flexural rigidity of the plate is 

defined as 𝐷𝑝 =
𝐸𝑝𝑡𝑝

3

12
. Therefore, with the thickness of the model being scaled to 𝑡𝑚, the Young’s 

modulus for the model is calculated according to: 𝐸𝑚 =
12D𝑝

t𝑚
3 . Similarly, the mass of the model has to 

be changed to match the mass of the plate used in the experiments. The mass per width can be 

expressed as 𝑀𝑝𝑊 = 𝜌𝑝 ∙ 𝑡𝑝 ∙ 𝐿𝑝. The density of the model so that the mass 𝑀𝑝 is matched by the 

larger thickness 𝑡𝑚 is 𝜌𝑚 (
𝑘𝑔

𝑚3) =
𝑀𝑝𝑊

𝑡𝑚∙𝐿𝑚
. The length of the model plate is always equal to the length of 

the actual plate 𝐿𝑚 = 𝐿𝑝. 
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“SOLID186” (20 node 3D brick) elements are used to discretize the continuous solid domain. 

The principle of virtual work is used to derive the element stiffness matrix. The finite element method 

yields a set of discrete simultaneous equations of the form [𝐾]�⃗� = 𝐹𝑎⃗⃗ ⃗⃗   that are solved to calculate the 

degrees of freedom �⃗�  of each element. [𝐾] represents the coefficient matrix including damping and 

inertia effects and 𝐹𝑎⃗⃗ ⃗⃗   the vectors of applied loads. The values within the domain are obtained by 

piecewise polynomial interpolation from the node values. The Newton–Raphson method solves the 

system of non-linear equations through an iterative process. At the very first step, 𝑢0⃗⃗⃗⃗  is set as the 

solution from the present time step. At every iteration, the Jacobian tangent matrix [𝐾𝑖
𝑇] and the 

effective applied load vector 𝐹𝑖𝑛𝑟⃗⃗ ⃗⃗ ⃗⃗   are computed for the actual degrees of freedom 𝑢𝑖⃗⃗  ⃗. Next, the 

degree of freedom increment ∆𝑢𝑖
⃗⃗ ⃗⃗ ⃗⃗   is solved according to the Newton–Raphson equation [35,36]: 

[𝐾𝑖
𝑇]∆𝑢𝑖

⃗⃗ ⃗⃗ ⃗⃗  = 𝐹𝑎⃗⃗ ⃗⃗  − 𝐹𝑖
𝑛𝑟⃗⃗ ⃗⃗ ⃗⃗  . (26) 

The right-hand side of the equation represents the residual. Then, the degree-of-freedom value 

for the next iteration is �⃗� 𝑖+1 = 𝑢𝑖⃗⃗  ⃗ + ∆𝑢𝑖
⃗⃗ ⃗⃗ ⃗⃗  . This process is repeated until convergence, when 𝐹𝑖𝑛𝑟⃗⃗ ⃗⃗ ⃗⃗  ≈ 𝐹𝑎⃗⃗ ⃗⃗  . 

Twenty iterations maximum were set for the solver. 

2.3.3. System Coupling 

Since the fluid and solid domains’ mesh schemes are different and solved separately, the nodal 

positions are not matched. For this reason, the transferred quantities have to be mapped on the targeted 

nodes. To transfer the fluid results to the structural solver, the structural nodes are projected on to the face 

of the fluid mesh normal to the cells faces or to the closest node on the cell face. To maintain high accuracy, 

both meshes should have similar scales. The kinematic coupling condition states that the fluid at the 

interface must have the same velocity as the moving boundary. Assuming that the tangential velocity at 

the interface is always zero, the kinematic coupling condition becomes 𝑢𝑓⃗⃗⃗⃗ =
𝜕

𝜕𝑡
𝑑𝑠
⃗⃗⃗⃗ , where 𝑢𝑓⃗⃗⃗⃗  is the fluid 

velocity vector and 𝑑𝑠
⃗⃗⃗⃗  the boundary displacement vector. The traction condition states that the interface 

should be in equilibrium, meaning that the forces exerted at the interface by the fluid on the structure and 

by the structure on the fluid should be equal. The pressure and viscous stress on the fluid mesh are 

mapped onto the nodes of the structural mesh at the interface. The stress vectors should be opposite and 

of the same magnitude: 𝜎𝑖⃗⃗⃗  
𝑠
+ 𝜎𝑖⃗⃗⃗  

𝑓
= 0 where the traction vector from the fluid cell is 𝜎𝑖⃗⃗⃗  

𝑓
= −𝑝𝑛𝑖⃗⃗  ⃗

𝑓
+

𝜏𝑖𝑗𝑛𝑗⃗⃗  ⃗
𝑓
 and that from the solid cell is 𝜎𝑖⃗⃗⃗  

𝑠
= 𝜎𝑖𝑗𝑛𝑗⃗⃗  ⃗

𝑠
. 

FSI modelling was carried out using the commercial package ANSYS on a four-core i5-6600 3.6 

GHZ computer. One simulation case could take from four to eight days of computations. For this 

reason, the number of modelled configurations is limited. ANSYS Fluent and ANSYS Mechanical 

APDL are coupled using the system coupling feature of ANSYS WORKBENCH. Five coupling 

iterations are carried out within each time step. Implementing stagger loops (as shown in Figure 6.) 

provides an implicit solution needed for strongly coupled problems. Convergence is reached when, 

at the fluid–solid interface, the pressure loads from the fluid and the structure displacements have 

both a variation below a 1% root mean square. The time step ranged from 0.5 ∙ 10−5 to 2 ∙ 10−5 s. 

This was to ensure that the increment in boundary displacements remained in scales comparable to 

the smallest mesh cell sizes. 

 

Figure 6. Fluid–structure interaction model stagger loop solution procedure. 
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3. Results and Discussion 

Water tunnel experiments are used to understand the fluid–structure interaction mechanism and 

to validate the FSI model, which in turn can be used to investigate the thickness and square cylinder 

diameter influence on the plate response. 

3.1. Water Tunnel Experiments and FSI Model Validation 

Water tunnel experiments were carried out for plate lengths of L = 50, 75, 100 and 125 mm. The 

incoming free-stream velocity ranges from 0.54 m/s to 0.95 m/s. The square cylinder diameter is D = 15 

mm. 

3.1.1. Flow Field 

The flow field described using particle image velocimetry showed that the vortices interacting 

with the plate create different deflected shapes. The deflected shapes become more complex when 

the vortices on the both sides of the plate simultaneously interact at different locations. In this case, 

flow impinges on the plate simultaneously at different locations on the both sides, thus bending the 

plate into a wave shape (Figure 7b–d). The travelling wave bending pattern generates more stress 

within the plate as the radius of curvature decreases (Equation (4)). In order to maximize flapping 

power, the travelling wave bending pattern is sought for; its occurrence depends on the plate–wake 

interaction. Figure 7a shows that a mode-1-like oscillation occurs mostly when flow is impinging on 

one side of the plate near the free end, and the vortex working on the plate is of similar scale with the 

plate. When, on the other side, the flow simultaneously impinges near the center of the plate, the 

plate might then bend into a mode 2 shape. Thus, the plate is in an oscillating pattern with mode-1- 

and mode-2-like shapes. Figure 7c shows that, because of the increase in plate length, vortices on both 

sides of the plate can produce significant work. In that configuration, the scale of the vortices is 

smaller than half the plate length, thus allowing for simultaneous impinging flow on both sides 

leading to more complex bent shapes. The flow field from the simulation data matches well the flow 

field measured with PIV. The vortices shed by the plate near its free end are more obvious within the 

simulations. Figure 7a shows clearly that the plate sheds a tip vortex with an opposite direction of 

rotation back to the wake. This means that the drag of the whole structure is now greater than that of 

a square cylinder alone. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Comparison between the velocity vectors given by PIV and simulations for characteristic 

shapes, tp = 100 µm, W = 10 mm (a) L = 50 mm at RE = 12,295, (b,c) L = 75 mm at RE = 14,279, (d) L = 

100 mm at RE = 14,279. 

3.1.2. Deflected Shapes 

Figure 8 shows the evolution of the plate shapes when the incoming velocity is increased. At 

lower incoming velocities for shorter plates, the plates witness mostly splitter plate oscillations or 

mode-1-like oscillations. When the dynamic pressure increases (more kinetic energy), while the 

amplitude remains of the same order of magnitude, the plate undergoes more acute bending and 

mode-2-like shapes become obvious. 
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(a) (b) 

Figure 8. Water tunnel data characteristic deflected shapes tp = 80 µm, W = 5 mm, L = 50 mm (a) RE 

= 8025; (b) RE = 13,245. 

From L = 75 mm on, mode-3-like shapes occur. The bending pattern changed from oscillations 

to undulations, which results in a greater level of strain energy. Increasing the plate length led to a 

different flapping pattern because of an enhanced plate–wake interaction. The deflected shapes 

predicted by the FSI model are in good agreement with the water tunnel experiments, although 

bending was slightly overpredicted and amplitude was always underpredicted and went up to 30% 

lower for the worst matching recorded. Amplitude was underpredicted because the FSI model has to 

be prevented from undergoing a sudden increase in amplitude, which would often result in 

divergence of the computation. 

Comparing Figures 9 and 10, at similar incoming velocity, longer plates have more acute 

bending because increased length yields lower natural frequencies and creates a more prominent 

interaction with the vortices in the wake. Indeed, mode-3-like deflected shapes become more obvious 

with the longer plate. 

  
(a) (b) 

Figure 9. Characteristic deflected shapes tp = 100 µm, W = 10 mm, L = 75 mm RE = 14,279 (a) Water 

tunnel data; (b) FSI model results. 

  

(a) (b) 

Figure 10. Characteristic deflected shapes tp = 100 µm, W = 10 mm, L = 100 mm RE = 14,279 (a) Water 

tunnel data; (b) FSI model results. 
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3.1.3. Bending Power and Flapping Frequency 

As shown in Figure 11a, the flapping power increases irregularly with incoming flow velocity and 

plate length. The irregular jumps in flapping power are due to the occurrence of more complex bent 

shapes. The plate tp = 80 µm, L = 50 mm has a lower level of strain energy than that one of same length and 

thickness tp = 100 µm, precisely because of the reduced thickness. This highlights the need for seeking 

optimum thickness above which the plate would be too rigid to allow significant bending and below 

which the strain energy could still be increased further. Figure 11a demonstrates that the bending power 

increases irregularly with the incoming velocity as more kinetic energy is conveyed towards the plate. 

Longer plates reach higher power levels because they make more efficient use of the vortices in the wake. 

When comparing the simulation results to the water tunnel experiments results shown in Figure 11a, it 

can be seen that, in general, the strain energy tends to be overpredicted by the two-dimensional model 

precisely because the flow is entirely focalized on the plate as there is no out-of-plane flow. Out-of-plane 

flow and out-of-plane bending were witnessed in the water tunnel experiments, thus lowering the 

conversion to strain energy. The bending power order of magnitude computed is similar to experimental 

data, with the difference mostly under 20%. Shorter plates have significantly better agreement. Worst 

matching occurred for the longer plates at higher incoming velocities. Obviously, cases with less 

turbulence and less instability are easier to model. The results are satisfying taking into account the two-

dimensional model, turbulence modelling, the change of fluid from water to air, scaling the plate thickness 

and the mesh deformation algorithm. In conclusion, the power can be predicted with a 20% interval of 

confidence for a range of Reynolds number between 8000 and 15000. 

   

(a) (b) (c) 

Figure 11. (a) Bending power evolution with the Reynolds number from water tunnel experiments, 

and FSI model results highlighted with the arrows; (b) high-strain-energy shape recorded at RE = 9202 

L = 50 mm plate; (c) high-strain-energy shape recorded at RE = 9202 L = 125 mm plate. 

Figure 11b,c shows the radically different flapping pattern for two different plate lengths at 

identical incoming flow velocity. Jumps in the flapping power for the plates are explained by the 

increase in the higher-order modal contributions, indeed, the more frequent occurrence of mode 2, 3 

and 4 shapes spikes up the strain energy [14]. The mode shapes of a free vibrating cantilever beam 

are used purely as a descriptive tool to categorize the deflected shapes of the plates; they help 

understanding their energy harvesting potential. In Tables 4 and 5, averaged over all the various 

deflected shapes, the mode 1 contribution is the greatest because the undulating shapes are for these 

cases superimposed to an oscillation as the plate shifts to one side or the other when undulating. The 

ratio of higher-order contributions to the mode 1 contribution testifies of the significance of the 

undulations. Tables 4 and 5 show the modal contributions before and after the jump in power shown 
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in Figure 11a. Increased higher-order modal contributions represent increased occurrence of 

undulations. When the modal contributions are correlated to the power output, it becomes obvious 

that undulating patterns bring higher levels of strain energy and bending power. 

Table 4. Averaged modal contributions ratio to mode 1 contribution, L = 100 mm. 

RE M1 M2 M3 M4 

11,272 1 0.46 0.57 0.20 

12,295 1 0.77 0.49 0.27 

Table 5. Averaged modal contributions ratio to mode 1 contribution, L = 125 mm. 

RE M1 M2 M3 M4 

11,272 1 0.42 0.26 0.16 

12,295 1 0.51 0.23 0.25 

For a square cylinder alone, the vortex shedding frequency is calculated from Equation (1). The lock-

in state is defined as when the plate’s oscillation frequency matches the vortex shedding frequency. 

The shorter plates are in the lock-in state as their response frequency is close to the square 

cylinder vortex shedding frequency. The longest plate L = 125 mm has a flapping frequency lagging 

behind the square cylinder vortex shedding frequency due to a more complex interaction with the 

wake. As it is undulating, more different complex deflected shapes occur and therefore the period at 

which each shape reappears is increased. Additionally, the plate sheds vortices in the wake and the 

large-amplitude deflections that interact outside of the wake zone greatly increase the drag of the 

whole structure (cylinder + plate) which results in a vortex shedding frequency lower than that of the 

square cylinder alone. As reported by An et al. [1], the presence of the plate in the wake of the cylinder 

when reaching a certain length significantly lowers the Strouhal number. Liu et al. [37] investigated 

how to suppress the vortex shedding by inserting a rigid splitter plate in the wake of the square 

cylinder. The presence of the splitter plate modifies the wake structures and thus the vortex shedding 

frequency decreases and is eventually suppressed; the Strouhal number decreases and becomes null 

when the plate reaches the same scale as the diameter of the cylinder (according to their 

measurements with a confined circular cylinder at a Reynolds number of around 3000). In summary, 

increasing the plate length decreases the vortex shedding frequency. 

From comparison between Table 6 and the results displayed in Figure 12a, it appears that the 

plates oscillate and undulate beyond their first mode natural frequency. Plates with lower natural 

frequencies shift to a travelling wave bending pattern at lower incoming velocities because of the 

coupling with the vortex shedding frequency and the dynamic pressure. 

  
(a) (b) 

Figure 12. Water tunnel data. (a) Vortex shedding frequency and flapping frequencies of the plates; 

(b) Square cylinder vortex shedding-frequency-to-flapping-frequency ratio. 
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Table 6. Modal frequencies of the plates. 

L mm 𝒇𝒏𝟏 (Hz) 𝒇𝒏𝟐 (Hz) 𝒇𝒏𝟑 (Hz) 

50 7 44 123 

75 3.1 19 55 

100 1.8 11 31 

125 1.1 7 20 

3.2. FSI Parametric Investigation 

3.2.1. Square Cylinder Diameter 

Varying the diameter 𝐷  allows for different scales of vorticity in the wake. The Reynolds 

number representing the turbulence is based on the square cylinder diameter. Thus, a smaller 

diameter induces a smaller disturbance in the flow but also vortices of smaller scales passing at a 

higher frequency. Longer plates witness more plate–wake interaction with a given diameter, but we 

look to find out if it is possible to obtain the same plate–wake interaction for shorter plates clamped 

to smaller square cylinders. The eddies within the flow have various scales and there must be a scale 

at which the energy transfer is optimized. 

From Table 7, we observe two points: D = 10 mm yields higher power outputs than D = 15 mm 

(compared with the experimental data) and D = 8 mm gives lower power outputs than D = 15 mm. This 

precisely means that there is an optimum square diameter for a given plate length and flow regime. 

Table 7. Simulations results for the plate L = 50 mm, tp = 100 µm. 

D (mm) 𝒖𝒇 (m/s) RE 𝑷𝒔𝑾 (mW/m) 

8 9.2 4974 16 

8 14.3 7718 114 

10 9.2 6218 65 

10 11.3 7616 200 

10 12.3 8307 235 

10 14.3 9648 394 

The kinetic energy lost from the mean flow is gained by the turbulent fluctuations. This explains why 

a bigger obstacle to the flow results in higher turbulence intensity. Indeed, as shown in Figure 13, turbulent 

kinetic energy is higher for D = 10 mm than for D = 8 mm near the edges of the square cylinder where the 

flow separates and also surrounding the plate. The only exception is where the freestream velocity directly 

impinges on the plate, which means that the drag of the whole structure (plate + square) is greater than 

the drag of the square alone. The plate motion fuels on the turbulent kinetic energy because of the 

unsteady dynamic pressure distribution resulting. Figure 13a, demonstrates that the plate starts bending 

into mode-3-like shapes, which explains the higher power output. It is important to notice that bending 

in mode-3-like shapes was not witnessed at this plate length with D = 15 mm in the water tunnel 

experiments. 

  
(a) (b) 
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Figure 13. Turbulent kinetic energy contours (m2/s2) and velocity vectors for higher strain energy 

shapes at uf = 14.3 m/s.: (a) D = 10 mm, RE = 9648; (b) D = 8 mm, RE = 7718. 

Table 8 shows that for the L = 75 mm plate, compared with the water tunnel data: using a square 

of 10 mm in diameter gave rise to higher flapping power levels than with a 15-mm square cylinder 

diameter. From uf = 12.3 m/s, the increase in flapping power is more significant due to the occurrence 

of mode-4-like bent shapes as shown in Figure 14b. Those shapes did not occur under D = 15 mm. 

Again, this testifies to how decisive the size of the vortices is for optimum interaction with the plate. 

At a higher incoming velocity, the plate–wake interaction is more significant as reflected by the 

vorticity contours. This is owing to the bending of the plate, which in turn changes the flow pattern 

in the wake. Indeed, Figure 14b shows several vortices simultaneously interacting with the plate at 

different locations on each side of the plate. The impinging flow bends the plate and the curved plate 

traps the flow further. Vortices are generated behind the resulting humps. The plate bends into an 

undulating pattern thus drastically increasing the strain energy, while in Figure 14a the bending 

pattern is limited to oscillations generating minimum strain energy. 

  
(a) (b) 

  
(c) (d) 

Figure 14. Velocity vectors and vorticity contours for high-strain-energy shapes for the plate L = 75 

mm, D = 10 mm, tp = 100 µm, at (a) RE = 6218; (b) RE = 12162; transversal velocity v magnitude contours 

(m/s) and velocity vectors for high-strain-energy shapes, plate L = 100 mm, tp = 100 µm, at (c) uf = 20 

m/s, RE = 5405, D = 4 mm; (d) uf = 20 m/s, RE = 16,216, D = 12 mm. 

Table 8. Simulations results for the plate L = 75 mm, tp = 100 µm. 

D (mm) 𝒖𝒇 (m/s) RE 𝑷𝒔𝑾 (mW/m) 

10 9.2 6218 55 

10 11.3 7616 97 

10 12.3 8307 205 

10 18 12,162 434 

Figure 15 shows the simulation results for the plate L = 100 mm, tp = 100 µm. For a velocity 

corresponding to 14.3 m/s in the simulations, the plate with D = 15 mm (RE = 14,279 from the water 

tunnel data in Figure 11a) recorded a greater power output than with D = 10 mm and D = 8 mm. D = 

12 mm gives the most power overall. The dynamic pressure on the plate triggers the flapping 

response and, in this case, the increase in diameter increased the dynamic pressure on the plate. This 

explains why diameters smaller than D = 12 mm despite a higher incoming fluid velocity results in 

lower bending power levels. The Reynolds numbers indicated in Figure 15 serve to determine the 

corresponding velocities in a water flow. From Figure 14c, it is obvious that the plate–wake 
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interaction is far from optimum as only the front part of the plate near the clamped end is interacting 

with the vortices. In this case, the smaller diameter gives rise to a higher vortex shedding frequency, 

but the reduced dynamic pressure prevents the plate from having optimum interaction with the 

wake. Indeed, the part of the plate near the free end interacts with the freestream velocity outside of 

the wake zone. This explains why the high-strain-energy shapes are limited to mode-3-like shapes. 

Hence, the strain energy output is limited. In Figure 14d, the transversal velocity v magnitude is 

higher due to the increased turbulence (higher Reynolds number). The scale of the vortices is greater 

in this case thus translating into a more optimum plate–wake interaction as the plate remains mostly 

in the wake of the square cylinder. As a result, high-strain-energy shapes go beyond mode-3-like 

shapes leading to a further increase in strain energy. 

 

Figure 15. L = 100 mm, tp = 100 µm, Power per width evolution with the incoming fluid velocity and 

square cylinder diameter D. 

3.2.2. Plate Thickness 

For a given plate length, thickness tremendously influences the response. Equation (4) shows 

that the stress within the plate depends on both the thickness and the curvature. There is an intricate 

relationship between thickness and power output because the curvature of the plate also influences 

the dynamic pressure distribution. Because the plate is highly unstable, optimum thickness can only 

be found by varying the input dynamic pressure and monitoring the plate response. Several plate 

thicknesses at various incoming velocities under various square cylinder diameters were modelled 

and information is given on the parameters leading to greater power output. 

Figure 16a shows that, at incoming flow velocities below 15 m/s, the tp = 400 µm plate is still too 

stiff to witness any bending. Moreover, below 30 m/s, a tp = 240 µm plate leads to higher power output 

for that plate length. 

As shown in Figure 16b, the tp = 400 µm plate is too stiff to witness mode 2 dominant shapes at 

and below uf = 30 m/s. There is only weak change in the curvature with time and, therefore, the power 

output is minimum. This is precisely the reason why the tp = 240 µm plate has a higher power output. 

Figure 16b shows how the plate deflects towards the suction side; the low-pressure circular zones 

show the vortices shed in the wake. At uf = 30 m/s, two configurations compete: D = 10 mm and D = 

2.5 mm; the latter does not create enough turbulence to trigger higher-order-mode-like deflected 

shapes. The increase in the averaged mode 2 contribution (normalized with tp) explains the surge in 

bending power for the D = 10 mm, uf = 30 m/s configuration. As shown in Figure 17a, the tp = 240 µm 

plate exhibits mode 1 and 2 dominant shapes. Although the maximum stress occurs close to the 

clamped end, it is fundamental to notice that the high stress values correspond to mode-2-like 

deflected shapes. Consequently, higher-order-mode-like deflected shapes lead to greater stress and 

greater power output. For PVDF, according to Guo et al. [38], the yield stress limit nears 30 MPa; this 
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could become a concern under very large Reynolds numbers. The stress changes sign along the plate 

when bending into a mode 2 dominant shape, the location of the strain node varies within the range 

of 10 mm to 13 mm from the clamped edge as shown in Figure 17b. Therefore, the piezoelectric cells 

should be placed on each side of the neutral layer from the clamped edge to the strain node and from 

the strain node to the free end. 

Figure 18 shows that the configuration tp = 840 µm, D = 8 mm undergoes significant bending only 

after uf = 55 m/s (RE = 29,730) as the dynamic pressure increases, the response becomes mode-3-like shape 

dominant past uf = 60 m/s (RE = 32,432). The configuration tp = 600 µm, D = 12 mm is too rigid to bend 

below uf = 20 m/s (RE = 16,216). Within uf = 40 m/s (RE = 21,622) to uf = 50 m/s (RE = 27,027), the configuration 

tp = 600 µm, D = 8 mm becomes optimum. At uf = 60 m/s (RE = 48,649) the configuration D = 12 mm, tp = 

700 µm achieves the highest power output. Between uf = 40 m/s and uf = 30 m/s, the configuration D = 12 

mm, tp = 500 µm is optimum. Below uf = 20 m/s, tp = 600 µm renders the plate too stiff to bend. At uf = 40 

m/s, tp = 600 µm, three configurations compete, and D = 8 mm gives the highest power output. Therefore, 

the characteristic deflected shapes and the stress distribution for this configuration were plotted in Figure 

19; for further estimation of the piezoelectric energy harvesting efficiency. As shown in Figure 20, the 

flapping pattern resulting from D = 8 mm and D = 12 mm is completely different. With D = 8 mm, the 

vortices have a smaller scale and are able to trigger complex bending of the plate as there are more 

impinging locations along the plate. For D = 12 mm, the vortices are of a much larger scale and there are 

less impinging locations along the plate. This phenomenon sheds a new light on the results shown in 

Figure 15, meaning that the optimum square cylinder size now depends on the stiffness of the plate as 

well as on the flow regime. This implies that the optimum thickness of the plate depends not only on the 

dynamic pressure impinging on the plate but also on the vortices’ scale and passing frequency. Long 

plates have lower natural frequencies, making them more unstable and more likely to switch bending 

pattern. This is why the optimum thickness varies significantly with the incoming velocity. The averaged 

normalized (with tp) modal contributions monitor the bending occurring. Relatively significant 

contributions from higher-order mode shapes when the flapping power is high demonstrate that the 

undulating pattern is optimum. The only concern with an undulating harvesting plate is the location of 

the strain nodes because cancelling of the charges might occur if a piezoelectric cell undergoes both 

traction and compression. Figure 19b clearly shows the locations of the strain nodes for the plate D = 8 

mm tp = 600 µm. Piezoelectric cells on each side of the neutral layer must be truncated at the strain nodes 

so that minimum cancellation of the charges occurs during flapping. The first strain node is located at 8 

mm to 12 mm from the clamped end. The second strain node is located at 36 mm to 46 mm from the 

clamped end. Depending on the shapes, the strain nodes shift, this becomes a concern when the plate 

undulates mostly into mode-3- or mode-4-like shapes as cancellation of charges within the piezoelectric 

cells might arise. The highest stress value occurs for mode-3-like shapes. Figure 19a shows that the 

amplitude of the undulating pattern is small, and the plate undulates without an underlying oscillation 

pattern. This bending pattern generates high strain energy and is sought for as it mimics anguilliform 

swimming motion. 



Energies 2020, 13, 2645 24 of 29 

 

 
 

(a) (b) 

Figure 16. (a) Bending power PsW evolution with thickness and incoming velocity for L = 50 mm; (b) 

Mode 1 shape dominant bending pattern for the L = 50 mm, D = 15 mm, uf = 30 m/s, tp = 400 µm, 

highest strain energy shape, pressure contours and velocity vectors. 

  
(a) (b) 

Figure 17. L = 50 mm, D = 10 mm, uf = 30 m/s, RE = 20,000, tp = 240 µm plate: (a) Characteristic deflected 

shapes; (b) stress distribution on the outer fiber for the deflected shapes. 
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Figure 18. Bending power PsW evolution with thickness and incoming velocity for L = 100 mm. 

  
(a) (b) 

Figure 19. L = 100 mm, D = 8 mm tp = 600 µm plate, uf = 40 m/s, RE = 21621: (a) characteristic shapes; 

(b) stress distribution on the outer fiber for the above shapes. 

As shown in Figure 20, both the plate free end and the square cylinder shed vortices. The 

shedding frequencies of both the square cylinder and the plate tip are about the same. The vortex 

shed by the tip and the plate rotate in opposite directions. The vortex shedding frequency is lower 

than that of a square cylinder alone because of the significant perturbation of the wake by the plate. 

The Strouhal number for the whole structure (square + plate) from the computed vortex shedding 

frequency and based on D = 12 mm and uf = 40 m/s is St = 0.11, and for D = 8 mm it is St = 0.06. This 

decrease in Strouhal number compares well with the frequency ratio decrease (Figure 12b) observed 

in the water tunnel experiments with the D = 15 mm, L = 125 mm plate (D/L = 0.12 ratio). For D = 12 

mm, the strain energy signal varies at less than half the vortex shedding frequency, this shows poor 

coupling and explains the lower power output. For D = 8 mm, the strain energy signal has about the 

same frequency as the vortex shedding frequency. This shows optimal coupling of the plate and the 

wake and this is precisely why there is a surge in the power output shown in Figure 18. In contrast 

with Figure 15, D = 12 mm gave in this case poor power output. As the plate is unstable and can jump 

into different mode-like deflected shapes, plates of different stiffness may react differently in regard 

to the incoming vortices scales and frequencies. It can be concluded that both square cylinder vortex 

shedding frequency and square-cylinder-induced dynamic pressure trigger the response of the plate. 

Considering Equation (17), a decrease in frequency leads to lower production of electrical energy. 

Hence, the decrease in flapping frequency of plates with lower D/L ratio is likely to translate in lower 

piezoelectric conversion efficiency. 
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Figure 20. Vortex shedding for the L = 100 mm, tp = 600 µm plate at uf = 40 m/s, (a–c), D = 8 mm (d), 

(e,f) D = 12 mm. 

3.3. Estimated Piezoelectric Power Output 

The piezoelectric power output for the plates can be estimated using Equation (17). The 

piezoelectric layers are separated at the strain nodes into segments. The 𝐿 = 50 mm plate has mostly 

one strain node and two segments on each side while the L = 100 mm plate has mostly two strain 

nodes and three segments on each side. The power output is calculated for each segment and added 

together. Therefore, considering the plates 𝐿 = 50 mm, 𝐷 = 10 mm, 𝑡𝑝 = 240 µm at 𝑢𝑓 = 30 m/s, RE 

= 20,000 (𝑢𝑓 = 2 m/s in water) and L = 100 mm, D = 8 mm, tp = 600 µm at uf = 40 m/s, RE = 21,621 (𝑢𝑓 = 

2.7 m/s in water), the power output variation with the load resistance is given in Table 9. 

Table 9. Estimated piezoelectric power output for the plates L = 50 mm, L = 100 mm. 

L (mm) 𝑹𝒍 (MΩ) 𝑷𝒍𝟏
 (mW/m) 𝑷𝒍𝟐

 (mW/m) 𝑷𝒍𝟑
 (mW/m) 

50 10 135 98 - 

50 50 207 40 - 

50 100 140 21 - 

100 10 132 105 526 

100 50 184 132 658 

100 100 132 79 500 

From Table 9, it is striking that. for the longer plate, most power output (around 70%) comes 

from the last segment between the second strain node to the free end. The stress distribution shown 

in Figure 19b well illustrates the phenomenon. The longer plate has comparable power output with 

the shorter plate from the clamped end to the second strain node. The difference arises after the 

second strain node, which results from the dominant mode-3-like deflected shapes. This highlights 

that the undulating bending pattern of longer plates leads to increased energy production compared 

to an oscillating pattern. This agrees with the literature as longer plates are known to generate more 

strain energy [9–15]. 

The conversion efficiency from fluid momentum to strain is given by: 𝜂𝑓 =
𝑃𝑓

𝑃𝑠𝑊
 where 𝑃𝑓 

(mw/m) represents the two-dimensional free-stream kinetic power hypothetically flowing through 

the cross-sectional length of the plate, which is represented by: 𝑃𝑓 =
1

2
𝜌𝑓𝐿𝑝𝑢𝑓

3 . The maximum 

conversion efficiency of strain energy into electricity is defined as 𝜂𝑚 =
P𝑙𝑚𝑎𝑥

𝑃𝑠𝑊
. The global conversion 

efficiency of fluid momentum into electricity is estimated as 𝜂𝑔 =
P𝑙𝑚𝑎𝑥

𝑃𝑓
. Finally, the conversion 

efficiencies for the plates in Table 9 are given in Table 10. 
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Table 10. Conversion efficiencies. 

L mm 𝜼𝒇𝒂𝒊𝒓 % 𝜼𝒇𝒘𝒂𝒕𝒆𝒓 % 𝜼𝒎 % 𝜼𝒈 air % 𝜼𝒈 water % 

50 0.36 1.5 8 0.03 0.12 

100 0.64 2.5 4 0.03 0.1 

The longer plate has a higher conversion efficiency from fluid kinetic power to bending power 

because it produces significantly more strain energy than its shorter counterpart. The lower flapping 

frequency for the longer plate translates into lower conversion to electrical energy. In regard to 

studies with harvesters relying on splitter plate oscillations [2–6], the lower-efficiency 𝜂𝑚 

encountered here can be owing to both the frequency lag and charge cancellation occurring within 

the cells due to the strain node shifts. The conversion efficiency can be further increased when 

piezoelectric cells can be placed where cancellation of charges is minimum and curvature significant. 

Moreover, if the frequency lag could be reduced, the efficiency would rise. This might require a 

significant design modification, for example adding a mass at the free end. This would need further 

investigation. Nonetheless, in renewable energy scavenging devices, cost-effectiveness and 

convenient implementation are more important than conversion efficiency. In the end, longer plates 

yield more power output; the square cylinder diameter and plate thickness should be determined 

according to the available incoming flow velocity range on site. 

4. Conclusions 

The purpose of the present study is to investigate the influence of the key geometric parameters 

governing the plate response. Water tunnel experiments were carried out to describe the flapping 

dynamics of the plate and also to assess the accuracy of the FSI model. The model being two-

dimensional, power was often overpredicted as out-of-plane flow cannot be accounted for. 

Nonetheless, the width should always be such that torsion is not significant to optimize the power 

output. The FSI model was used to conduct parametric investigation of the square cylinder diameter 

and plate thickness. Several optimized values were given and information for prototype design was 

provided. It was found that the geometric parameters should be chosen according to the target 

incoming flow velocity range and that longer plates have greater power output but lower conversion 

efficiencies. Since weak electromagnetic coupling is assumed, stiffening of the plate in operation is 

not accounted for. The next step would be to build a prototype allowing to carry out measurements 

under different load resistance values in order to investigate the fully coupled fluid–structure-

electromechanical system. This would also allow experimental investigation for finding the optimum 

piezoelectric cell location and for increasing the flapping frequency through design modifications. 

This is the work remaining to translate the concept into an operational energy harvester. 
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