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Abstract: Short-term load forecasting (STLF) is very important for planning and operating power
systems and markets. Various algorithms have been developed for STLF. However, numerous
utilities still apply additional correction processes, which depend on experienced professionals.
In this study, an STLF algorithm that uses a similar day selection method based on reinforcement
learning is proposed to substitute the dependence on an expert’s experience. The proposed algorithm
consists of the selection of similar days, which is based on the reinforcement algorithm, and the
STLF, which is based on an artificial neural network. The proposed similar day selection model
based on the reinforcement learning algorithm is developed based on the Deep Q-Network technique,
which is a value-based reinforcement learning algorithm. The proposed similar day selection model
and load forecasting model are tested using the measured load and meteorological data for Korea.
The proposed algorithm shows an improvement accuracy of load forecasting over previous algorithms.
The proposed STLF algorithm is expected to improve the predictive accuracy of STLF because it can
be applied in a complementary manner along with other load forecasting algorithms.

Keywords: short-term load forecasting; deep Q-network (DQN); backpropagation neural network
(BPNN); long short-term memory (LSTM); reinforcement learning algorithm

1. Introduction

One of the main research topics in power engineering is short-term load forecasting (STLF),
which consists of predicting the demand for an electrical load within a few hours or days. Improving
the accuracy of STLF is important for the stability, safety, and efficiency of a power system. This is
because STLF affects the power market and the planning and operations of the power plants in a
power system [1,2]. In particular, the supply capacity of small photovoltaic (PV) power generators
has increased in recent years. The increment in PV power generation has increased the uncertainty of
load change, thereby making it increasingly difficult to predict the power demand. In recent years,
numerous researchers have studied the improvement in the accuracy of STLF to address this problem.

Conventionally, STLF has been mainly used as a time series predictive model [3–9] that is based on
the trend of the load changes in historical data and as a regressive prediction model [10–14] based on
the relationship between the load and external variables such as weather [15]. However, conventional
predictive models have the limitation that they do not reflect the nonlinear behavior in recent load
trends [16]. To overcome these limitations, various forecasting methods such as fuzzy logic [17],
fuzzy neural networks [18], particle swarm optimization [19], and support vector machines [20,21]
were proposed. These methods can reflect the nonlinear behavior of the load. In particular, various
forecasting models based on artificial neural networks (ANNs) have been primarily used [22]. The load
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forecasting models based on ANNs are being investigated in a variety of environments, and they are
applied in a number of utilities that perform load forecasting with high accuracy.

Most load forecasting models set the load as an output variable and describe the quantitative
relationship between the load and external variables. In contrast, the STLF method that uses similar
days is based on finding a load that is similar to the load of the past and the forecasted target day [23].
Typically, the STLF method based on a similar day predicts the load of the target day by using the load
of a similar day and external factors [15]. Even though the key advantage of the STLF method is that it
is highly intuitive, it is considerably difficult to create a mathematical rule in terms of selecting similar
days from the data for nonlinear external variables and the effect of nonlinearities. Thus, in most
utilities, additional corrections by an experienced professional operator are still used along with the
STLF algorithm based on similar days.

This study proposes the concept of applying the reinforcement learning algorithm, which is an
artificial intelligence technique, to select a similar day. The STLF algorithm that uses similar days is based
on the backpropagation neural network (BPNN) model. In recent years, studies have attempted to apply
the reinforcement learning algorithm in load forecasting. The representative case is the study of the
selection algorithms for the optimal model of load forecasting [24,25]. A reinforcement learning-based
control method for occupant comfort in buildings was studied from an energy perspective [26].
In addition, studies in the field of energy and demand response have rapidly increased since the
publication of the paper “Playing Atari with Deep Reinforcement Learning” in 2015. Most of these
studies are related to the control of electric vehicles, batteries, heating, ventilation, and air conditioning
(HVAC) systems, and no studies related to load forecasting have hitherto been reported [27].

The reinforcement learning algorithm is one of the most representative machine learning techniques
along with supervised learning and unsupervised learning. After 2013, the Deep Q-Network (DQN)
method was proposed by DeepMind. The DQN method has been used in numerous studies in
a variety of fields. Reinforcement learning is mainly applied to areas such as robot control, stock
trading, resource allocation, recommendation systems, and natural language processing. Additionally,
reinforcement learning is known to exhibit a good performance in making the optimal selection
under given conditions [28]. Reinforcement learning is divided into value-based learning, which is
represented by Q-learning, SARSA, DQN, and policy-based learning, which is represented by deep
deterministic policy gradient (DDPG), advantage actor critic (A2C), asynchronous advantage actor
critic (A3C), and proximal policy optimization (PPO)s. In this study, the DQN method is used to train
the agent policy.

The purpose of this study is to apply the reinforcement learning algorithm to mathematically
solve the problem of similar day selection while matching the level of an experienced professional
operator. In addition, this work proposes a high-accuracy STLF algorithm that used the selected similar
day from the proposed similar day selection model. The proposed algorithm is compared with the
commonly used similar day selection method based on the Euclidean distance. The performance of
the proposed STLF algorithm is investigated by comparing it with the load forecasting algorithm that
utilizes a long short-term memory (LSTM) layer [29]. The data used for testing and investigation
include the power demand and weather data that were acquired in South Korea in 2018 by the Korea
Power Exchange and Korea Meteorological Administration. The proposed method is expected to be
used as a foundation to improve the accuracy of STLF in the future.

The rest of this paper is organized as follows: Section 2 presents the overall model structure of
the STLF algorithm, which applies the proposed similar day selection. Section 3 presents a Markov
decision process (MDP) and the equations utilized for selecting a similar day while using reinforcement
learning. Section 4 describes the case studies of the similar day selection results and the 24-h prediction
result obtained using the proposed algorithm. Finally, Section 5 summarizes the proposed algorithm
and presents the conclusions and directions for future work.
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2. Architecture of the Proposed Algorithm

The architecture of the proposed algorithm consists of the selection of similar days based on
the reinforcement algorithm and STLF based on an ANN. The procedure of the proposed algorithm
is subdivided into the learning procedure for the similar day selection model and the STLF model.
Thereafter, the testing procedure selects similar days and predicts the short-term load using the trained
models. The learning procedure for the two models is repeated during every timestep in the testing
period to continuously reflect the trend of the load as the forecasting point changes. As described in a
previous study [30] that uses reinforcement learning with the DQN method, the use of continuous
data reduces the performance of the reinforcement algorithm agent. Therefore, the architecture of the
proposed algorithm contains a separate memory control module that manages the memory of the data.
Figure 1 shows the overall procedure of the proposed algorithm.
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2.1. Similar Day Selection Model Based on Reinforcement Learning

The purpose of the similar day selection model is to find the date when the load is similar to the
load of the forecasted target date by searching for previous dates. This similar load indicates the 24-h
load in MW or the pattern of the 24-h load. It depends on how the load for the selected day is used in
the forecasting model. The proposed load forecasting model uses the amount of load as input data.
The load forecasting model that uses the similar date based on the pattern of the 24-h load will be
studied in the future. The general load forecasting model based on a similar day starts with creating a
similar day selection criterion. This criterion determines which dates from the past will be selected
as similar dates based on the forecasting date. The criterion is created while considering the factors
to be used and the calculations to be performed to determine the selected factors. Various studies
have shown that calendar factors and meteorological factors are primarily used for selecting similar
days. These factors are known to accurately represent load changes. The calendar factors generally
include the distance between the forecasted date and past dates, the day of the week, and special days
such as public holidays. In addition, the meteorological factors generally include temperature, sun
irradiation, raindrops, humidity, wind speed, and sensory temperature. The meteorological factors are
mostly continuous variables, whereas the calendar factors are discrete variables, except for the distance
between the days. The discrete variables, such as the day of the week, cannot directly calculate the
similarity between the dates that are expressed as scalar values. Therefore, the proposed model is
designed by categorizing the calendar factors while excluding the distance between the dates.

The meteorological factors for the forecasting date are unknown because they occur in the future;
hence, the predicted meteorological factors should be used. However, to avoid the prediction error
in the meteorological factors, the actual values of the meteorological factors are used instead of the
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predicted values. The proposed similar day selection model is trained using the past date, and similar
days are selected by utilizing the trained model. The proposed similar day selection model is founded
by the reinforcement learning algorithm, which uses the state for the target day as input data and
similar days as output data. Figure 2 illustrates the structure of the proposed similar day selection
model, which consists of an environment, an agent, and replay memory. The details of the behavior
and formulation of the similar day selection model are described in Section 3.
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2.2. Similar Day Selection Model Based on the Euclidean Distance

Numerous previous studies have calculated the weighted Euclidean distance of the factors that
affect the load to select similar days from previous days. Equation (1) uses the weighted Euclidean
distance as a comparison method to investigate the performance of the proposed similar day selection
model in the case studies:

WED f .i =

√
w1∆D f .i

dd
2 + w2∆T f .i

24
2 + w3∆SI f .isum2 + w4∆R f .isum2, (1)

where WED is the weighted Euclidean distance between the forecasted target day and past days; f
is the index of the forecasted target day; i is the index of the past date; ∆Ddd is the distance of days
between dates f and i; ∆T24 is the Euclidean difference in the 24-h temperature; ∆SIsum is the Euclidean
difference in the 24-h sun irradiation; and ∆Rsum is the Euclidean difference in the 24-h raindrops.
In addition, w is the weight calculated through training from the past data, and it is approximated by
minimizing the following cost function.

Minimize
n∑

k=1

(
y f .i
− f (xk, w)

)2
, k ∈ K

f (xk, w)= α×WED f .i + β
(2)

where y f .i is a dependent variable that represents the difference between the loads of target date f and
past date i. Moreover, y(f ) is calculated as the root mean square percent error [31] between the loads of
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the target date and past date, as given by Equation (3). α and β are the independent variables for the
slope and y-intercept, respectively. K represents the past data that are used to calculate the weight.

y f .i =
1

24
×

24∑
t=1

√√√√
(

ld f
t − ldi

t

ld f
t

)2, (3)

where ld f
t is the load of the target day at time t and ldi

t is the load of past day i at time t. Similar days
are selected using the smallest days by calculating the weighted Euclidean distance (WED) of the past
days for the forecasted date. In addition, the range of the past days strongly affects the selection of
similar days. In this study, the range of the past days is determined through trial and error.

The Euclidean distance similarity (EDS) between the measured loads of the target day and past
days is defined to evaluate the performance of a selection result. As the EDS approaches one, the load
of the selected day becomes more similar to the load of the target day. Moreover, as the EDS approaches
zero, the load of the selected day becomes more dissimilar to the load of the target day. The EDS can
be determined through the following equation:

EDS =
1

1 + 1
24 ×

∑24
t=1

√
(

ld f
t −ldi

t

ld f
t

)2

. (4)

2.3. STLF Model Based on the BPNN

The purpose of the STLF model is to accurately predict the load of the target day. The input values
of the proposed STLF model are the 24-h load and the meteorological factors of the selected days
obtained using the similar day selection model. Here, temperature, sun irradiation, and raindrops
are used as the meteorological factors. The output is the 24-h load for the target day. The BPNN is
based on repetitive processes for calculating the gradient of the error in the backpropagation algorithm
and a signal that is transferred forward. The general BPNN model can be mathematically expressed
by defining the network structure based on layers, input and output data, activation functions, and
other parameters to train the model. The network structure of the proposed BPNN model features a
typical feedforward architecture with an input layer, a hidden layer, and an output layer, as shown in
Figure 3 [32].
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The input variables, Xn, in the input layer of the proposed BPNN model include the 24-h load
and the meteorological factors for the selected similar days. The output variable, Ym, in the output
layer of the proposed BPNN model is the 24-h load for the target day. In the proposed STLF model,
the input layer and output layer use the sigmoid function as the activation function and the output
layer is linearly activated. The generalized delta rule is used to train the weight of the model [33].



Energies 2020, 13, 2640 6 of 19

2.4. STLF Model Based on Long Short-Term Memory

The STLF model with an LSTM layer is used for comparison in the case studies. This model
uses the load of recent days, the meteorological factors of recent days and the target day as the input
variables. In addition, the 24-h load for the target day is the output variable. Figure 4 presents the
structure of the STLF model based on LSTM [29].
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Figure 4. Structure of the short-term load forecasting (STLF) model based on long short-term memory
(LSTM).

The normalized historical data consist of the day index, D, the time index, H, the temperature,
T, for the day index, and the load, L, over the past few days. In addition, the normalized prediction
data consist of the day index, PD, the time index, PH, and the temperature, PT, for the target day.
The hyperparameter of this model is created using trial and error, which is the same as the proposed
algorithm. The details of the STLF algorithm based on the LSTM method are published in another
paper [29].

3. Methodology of Proposed Similar Day Selection Method

The application of the reinforcement learning algorithm to solve a problem in the real world
starts with the mathematical definition of the problem. This mathematical expression is the same as
the expression of the MDP, and it can be expressed by state, action, reward, and cost functions in the
finite MDP problem [34]. Furthermore, the interaction between the agent and environment should be
defined. In addition, the Q-function to explain the action of the agent and the learning method with
the corresponding data should be presented.

The reinforcement learning algorithm can be explained as the discrete stochastic version of the
optimal control problem [34]. This implies that an optimal selection should be made through the
interactions that occur at the sequential timesteps in a particular timeline. If this reinforcement learning
algorithm is applied to the problem of similar day selection, it can be described as the problem of
selecting the best similar day for STLF whenever the target day changes. This interaction is performed
between the agent, which is subject to action, and the environment that responds according to the action.
For timestep t, the agent selects action At according to the observed state St from the environment, and
then, the action At is forwarded to the environment. The environment communicates changed status
St+1 along with prospective reward Rt+1 by reacting to action At. This continuously repeated process
is referred to as agent–environment interaction, which is demonstrated in Figure 5.
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In these repetitive interactions, the agent has a rule that determines the action to be performed
depending on the observed state, and this rule is referred to as a policy. If the policy of the
agent always makes the best selection for the expected cumulative reward for the future, then the
policy can be assumed to be optimal. Thus, to mathematically represent the reinforcement learning
algorithm, the state, action, and rewards must be defined according to the problem. Subsequently,
the agent–environment interactions and the learning method of the policy of the agent should
be designed.

3.1. Formulation of the Reinforcement Learning Algorithm

As previously described, the input variables for the similar day selection model use the calendar
and meteorological factors. The purpose of the similar day selection model is to select the most similar
date for the EDS, which can be calculated using Equation (4). From the agent’s perspective, the policy
selects a specific date wherein the EDS is the highest, which is available for only the observation range.
The observable states for the agent are the load, the calendar factors, the meteorological factors of
the past days, and the action of selecting one of the past days as a similar day. Assuming that the
target day changes for each timestep, the agent should be designed to perform the action of selecting a
similar day that is based on the historical information for each target day.

The environment should output the reward at timestep t and the state at timestep t + 1 according
to the action of the agent performed at timestep t. The reward at timestep t is obtained by calculating
the EDS of the load between the target day and similar days, which is determined by the action of the
agent at timestep t. In addition, the state at timestep t + 1 is designed to be the state by moving the
forecasted target day by one day.

The interaction between the environment and agent is reliable, as demonstrated in Equation (5),
where S is the universal set of the state, which is one of the environment’s output variables, St is the
state at timestep t, which is an element of S. A is the universal set of the action determined by the
agent, At. This is the action at timestep t, which is an element of A.

At = agent(St)

Rt, St+1 = environment(St, At)
(5)

State St is determined by the historical data that the agent can observe for each timestep. Assuming
that the number of elements of the state is M and the number of observation days of the agent is N at
timestep t, state St can be determined from Equation (6) as follows:

S =


s11 · · · sm1
...

. . .
...

s1n · · · smn


s1n = {s1n, . . . , smn} =

{
∆D f .n

dd, ∆T f .n
24, ∆SI f .n

24, ∆R f .n
24

} (6)

where f is the index of the target day, n is the index of the past day, m is the index of the elements
of the state, ∆D f .n

dd is the distance between target day f and past day n, ∆T f .n
24 is the Euclidean
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distance between the 24-h temperature for target day f and past day n, ∆SI f .n
24 is the Euclidean

distance between the 24-h sun irradiation for target day f and past day n, and ∆R f .n
24 is the Euclidean

distance between the 24-h raindrops for target day f and past day n. The meteorological factors contain
24 elements that consider the difference in time series characteristics; thus, the total number of elements,
m, in one past day is 73. In addition, the observation range should be set depending on the target
system. The observation range for the proposed algorithm is set to be 90 days, which includes the
past 30 days and 60 days from the previous year. Therefore, the total number of states for the output
variables of the environment during timestep t is 6570 elements.

The agents for finding similar days are learned using historical data. In the process of learning
using past days, the environment already knows the information of past data, such as the load and
meteorological data. Thus, it is possible to calculate the similarity between the loads of the target
day and selected similar days from the agent. The learning of the agent to find similar days is a
deterministic environment because it is limited in scope according to the target day and uses historical
data. Therefore, the status of step t does not depend on the decision of the agent. In addition,
the environment only reads the state information according to the timestep t of the sequence and
forwards it to the agent. Figure 6 illustrates the range of episodes according to the target date.
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An episode is a period for learning the policy of the agent, which is expressed in the form of the
DQN. In the example shown in Figure 5, if the target date is 14 March 2018, the initial timestep of the
episode is 10 January 2018, which is 30 days before the target day, excluding special days. Furthermore,
the terminal date is 13 March 2018. The agent receives the state information from the environment at
each timestep. The state information comprises the calendar and meteorological factors of 90 days
before each timestep. As the action of the agent in a deterministic environment does not affect the state
transition, the state transition from the selected actions for similar days is not considered.

The number for the universal action set is the same as the observation range, n, and it can be
expressed by the following equation:

A = {a1, · · · , an}. (7)

Here, element an is a digit value, which implies that it is either zero or one. This indicates that
a selected day can be expressed as one. One or more similar days can be selected depending on the
manner in which they are used. The output of agent At could consist of a number of combinations, {n

k ,
depending on the number of selected days, k, according to the following equation:

{n
k =

n!
k!(n− k)!

. (8)

A reward should be provided if the loads of the target day and selected days are similar and
should not be provided if the loads are not similar. The EDS is calculated using the loads of the target



Energies 2020, 13, 2640 9 of 19

day and selected days from Equation (4). In the proposed algorithm, the environment calculates the
EDS from the past few days. A reward may or may not be provided, depending on whether a selected
day is in the top three selected days.

3.2. Deep Q-Network Training Algorithm

In this section, the DQN used to select a similar day is defined and an explanation is provided for
the training method of the DQN. The proposed method is developed based on the DQN approach,
among a number of different reinforcement methods. The DQN algorithm uses the Q-function as
a state–action value function that can be approximated by the deep feedforward neural network
structure [30]. The state–action value function expresses the expected cumulative reward, Q. This occurs
when the agent selects action At according to policy π in current state St. Policy π denotes a rule of the
agent that determines which action to perform depending on the observed state. Figure 7 illustrates
the structure of the deep feed forward neural network used to express the expected cumulative reward,
Q, according to action At for state St.
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The cumulative reward, Q(St, At), can be expressed by applying Equation (9) with the reward at
the current timestep, Rt, and the expected reward at the next timestep, Q(St+1, At+1).

Q(St, At)= Rt + Q(St+1, At+1) (9)

If the present value of the reward is higher than the reward expected in the future, Equation (9)
can be expressed as Equation (10) by applying the discount factor:

Q(St, At)= Rt + γQ(St+1, At+1) (10)

If Q is expressed as maxQ(St+1, At+1) when selecting the action to maximize the expected
cumulative reward at timestep t + 1, Equation (10) can be expressed as Equation (11) using the Bellman
Equation [34].

Q(St, At)= Rt + γmaxQ(St+1, At+1) (11)

By assuming that an optimal cumulative reward, Q∗, exists, Q∗, can be expressed as Equation (12):

Q∗(St, At)= Rt + γmaxQ∗(St+1, At+1) (12)
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To make the random Q-function closer to the optimal Q-function through learning, the minimized
loss function is defined as the difference between the Q-function and optimal Q-function. Loss function
L can be determined using Equation (13):

L = Q∗(St, At) −Q(St, At)

L = Rt + γmaxQ∗(St+1, At+1) −Q(St, At)
(13)

As the optimal Q-function is unknown, it is replaced with the target Q-function. The target
Q-function uses the random variables at the beginning of training. Then, it is periodically replaced
with the best Q-function that is found during the learning period. If the target Q-function is denoted as
Q̂, the loss function can be expressed by Equation (14):

L = Rt + γmaxQ̂(St+1, At+1) −Q(St, At) (14)

The epsilon-greedy exploration method is used because it is not possible to find the value of an
unexperienced action if the agent is operated by the Q-function. This is the agent that typically works
with the Q-function; however, the agent selects a random action according to the probability of epsilon
ε. The epsilon of the proposed algorithm starts with a value of 0.3, and then it converges to zero as the
learning progresses.

The performance of the agent is reduced by performing repetitive learning with only highly
relevant samples; hence, an experience replay method is used. This method is conceptually similar to a
minibatch, which is a method of storing the previous history of samples in memory. Random samples
are selected and used during the learning period. The pseudocode of the proposed DQN algorithm is
as follows:

Algorithm 1. Q-network training algorithm for a similar day

Initialize: Replay memory D to capacity N
Initialize: Action Q-network Q with random weights θ
Initialize: Action Q-network Q̂ with random weights θ̂
for episode = 1, M do

observe initial state St use formulation (5)
for t = 1, T do

select an action a
with probability ε select a random action
else select action At = argmaxQ(St, A)

observe Rt and St+1 use formulation (4)
store experience < St, At, Rt, St+1 > in replay memory D
sample random transitions < S j, A j, R j, S j+1 > from D

set y j =

{
R j, i f episode terminates at step j + 1
Rt + γmaxQ̂(St+1, At+1), otherwise

train θ using
(
y j −Q

(
S j, A j

))2
as loss function

end for
update Q̂ = Q every 20th step

end for

4. Case Studies

4.1. Data Description and Parameter Setting

The proposed algorithm is simulated using the measured load and meteorological data for Korea.
All data used in the simulations are normalized to values ranging from zero to one to prevent the
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degradation of the predicted performance. The min-max normalization method is used, as shown in
Equation (15):

X′ =
X −Xmin

Xmax −Xmin
(15)

X′ is the value after normalization, X is the original value, Xmin is the minimum value of the data
in the observation range, and Xmax is the maximum value of the data in the observation range.
The normalization criteria for the simulation data are shown in Table 1.

Table 1. Normalization criteria for the simulation data.

Elements (Unit) Maximum Minimum

Load (MW) 100,000 0
Day Distance (Days) 700 0

Temperature (◦C) 40 −40
Sun Radiation (W/m2) 10 0

Raindrops (mm) 100 0

The proposed algorithm consists of the similar day selection model and STLF model. Each
model contains a separate neural network structure, and each neural network contains a separate
hyperparameter. The hyperparameters of the similar day selection model consist of the number of
hidden layers, the number of perceptrons, the buffer size, and the iteration number of an episode.
The hyperparameters of the STLF model comprise the number of hidden layers, the number of
perceptrons, and the learning rate. It is important to select the hyperparameters because they
significantly impact the learning speed and performance. The hyperparameters are selected through
trial and error in the simulation. The hyperparameters for each model are shown in Table 2.

Table 2. Hyperparameters of the models for the case studies.

Model Number of
Hidden Layers

Number of
Perceptrons

Size of the
Buffer (N)

Iteration Number
of Episodes (M)

Learning
Rate (M)

Similar Selection Model 3 5000 1000 1000 0.001

Load Forecasting Model 2 1000 - - 0.001

Data should be divided into training data and test data to evaluate the algorithms to solve
prediction problems such as load forecasting. In this case study, the data for 32 days between March
and April 2018 are used as the test data. The data for 30 days prior to the target day are used as the
training data.

The historical total load of Korean power systems and the weather information for the Korean
peninsula are used. The historical total load was provided by the Korea Power Exchange, which is the
national service of the Republic of Korea. It controls the operation of Korea’s electricity market and
power systems, the execution of real-time dispatch, and the establishment of the basic plan for supply
and demand. The weather information was provided by the Korea Meteorological Administration,
which is the national meteorological service of the Republic of Korea.

The Korean power systems had a supply capacity of 9957 MW and a peak load of 9247 MW in
July 2018. The load composition was 55.7% for industrial load, 22.2% for commercial load, 13.9% for
residential load, and the remaining 8.2% was used for other loads such as education and farming.

4.2. Performance of the Proposed Similar Day Selection Model

The performance of the similar day selection model is shown by calculating the EDS using
Equation (4). As the EDS approaches one, the loads of the selected day and target day become more
similar. Moreover, as the EDS value approaches zero, the loads of the selected day and target day
become more dissimilar. The proposed similar day selection model improves the performance of
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the agent through repetitive learning. The agent calculates 32 rewards per episode. The initial agent
is completely unlearned, and the proposed algorithm updates the parameters of the DQN for each
iteration. To ensure that the DQN is learning as the episode progresses, the boxplot shown in Figure 8
groups the 320 rewards that are calculated during the 10 episodes. In addition, Figure 9 presents the
average similarities between the loads of the selected days and target day, obtained using the DQN
that is learned in each episode.Energies 2020, 13, x FOR PEER REVIEW 12 of 18 
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Figure 8 shows that the reward approaches 0.97 as the episodes progress. Figure 9 shows that the
similar day selection performance between 6 March to 9 March improves in training. This implies that
the similar day selection model works as expected. It is hypothesized that the similar day selection
model can work for other test days as well.

Next, we compare the performance of the proposed similar day selection model and WED model.
The EDS of the proposed model and WED model cannot be one because there is no past day that has
the same load as the target day. Thus, the EDS is presented when the least similar date is selected,
which is assumed using the optimal model. This implies that when the outputs of the proposed model
and WED model are the same as that of the optimal model, the model selects the best similar day.
Therefore, the performance of the optimal model is the criterion for evaluating the performance of the
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proposed model and WED model. The previous week (PW) model, which selects the same day of the
previous week, is compared with the proposed model. The accuracy of the PW model is relatively low
because it always selects the same day of the previous week as the due date.

With March 14 as an example date, Table 3 shows the selected days that utilize the EDS when
using the proposed reinforcement learning (RL) model, WED model, PW model, and optimal model.
The average performances of the optimal model, RL model, PW model, and WED model on 14 March are
0.9892, 0.9844, 0.9171, and 0.9576, respectively. A comparison of the similar day selection performance
of the models during March and April 2018 is presented in Figure 10, Figure 11, Table 4, and Table 5.
For the entire simulation period, the similarity is 0.9833 when the optimal days are selected, whereas it
is 0.9719 and 0.9546 for the RL model and WED model, respectively.

Table 3. Selected days and the Euclidean distance similarity (EDS) results of the models on 14
March 2018.

Selected Days
Optimal Model RL Model WED Model PW Model

Date EDS Date EDS Date EDS Date EDS

Selected Day 1 2017-03-30 0.9935 2017-03-29 0.9805 2018-03-13 0.9751 2018-03-07 0.9171

Selected Day 2 2017-03-24 0.9872 2017-03-24 0.9872 2017-03-29 0.9805

Selected Day 3 2017-03-22 0.9868 2017-03-23 0.9856 2018-03-07 0.9171

Average 0.9892 0.9844 0.9576
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Table 4. Similar day selection performance results in March and April 2018.

Month
Euclidean Distance Similarity

Optimal Model PW Model WED Model RL Model

1st week of March 0.9851 0.9123 0.9138 0.9650

2nd week of March 0.9704 0.9181 0.9473 0.9572

3rd week of March 0.9866 0.9413 0.9655 0.9766

4th week of March 0.9811 0.9444 0.9602 0.9757

1st week of April 0.9862 0.9598 0.9557 0.9699

2nd week of April 0.9823 0.9353 0.9628 0.9790

3rd week of April 0.9868 0.9682 0.9622 0.9736

4th week of April 0.9853 0.9673 0.9700 0.9783

Total Average 0.9833 0.9436 0.9546 0.9719

Table 5. Similar day selection performance results by the day of week.

Day of Week
Euclidean Distance Similarity

Optimal Model PW Model WED Model RL Model

Monday 0.9828 0.9541 0.9570 0.9711

Tuesday 0.9790 0.9530 0.9583 0.9692

Wednesday 0.9770 0.9476 0.9499 0.9636

Thursday 0.9792 0.9429 0.9527 0.9683

Friday 0.9789 0.9426 0.9551 0.9701

Saturday 0.9799 0.9478 0.9563 0.9655

Sunday 0.9777 0.9508 0.9581 0.9646
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4.3. Performance of the Proposed STLF Model

The accuracy of the proposed STLF model is compared with that of two models. The proposed
model is a BPNN-based STLF model that uses the similar days selected by the proposed RL model
(RL-BPNN model). The first model for comparison is a BPNN-based STLF model that uses the similar
days selected by the WED model (WED-BPNN model). The second model for comparison is an
LSTM-based STLF model (LSTM model) that is referenced in a previous study [29].

The accuracy of the STLF model is shown by calculating the mean absolute percentage error
(MAPE) of the measured load and the forecasted load by each model, according to the following
equation [36]:

MAPE(%) =
1

24

24∑
t=1

∣∣∣∣∣∣∣L
measured
t − L f orecast

t

Lmeasured
t

∣∣∣∣∣∣∣× 100 (16)

The simulation uses 58 days in March and April 2018, except special days, as test data, which is
the same as the test data set for the similar day selection model cases. The training period for each
model is 30 days prior to the test day. Figure 12, Figure 13, Table 6, and Table 7 compare the MAPEs of
the models for each day during the entire simulation period. In addition, Figure 14 shows a boxplot
for the comparison of the general performance of the models.Energies 2020, 13, x FOR PEER REVIEW 15 of 18 
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Table 6. MAPE of the models during March and April 2018.

Month
MAPE [%]

RL_BPNN Model LSTM Model WED_BPNN Model

March 1.5133 1.8339 2.9937

April 1.1754 1.2363 1.9720

Average 1.3444 1.5351 2.4829

Table 7. MAPE of the models by day of week.

Day
MAPE (%)

RL_BPNN Model LSTM Model WED_BPNN Model

Monday 1.5295 1.5238 2.4172

Tuesday 1.2087 2.0282 2.4494

Wednesday 1.1524 1.1629 2.0219

Thursday 1.1854 1.7220 1.9567

Friday 0.9354 0.9625 2.3526

Saturday 1.8035 1.8046 3.2950

Sunday 1.5167 1.5109 2.7521
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It is confirmed that the proposed RL-BPNN model outperforms the other two models in terms of
the average and maximum MAPE for the entire duration of the simulation. The average MAPEs of the
loads forecasted by the proposed RL-BPNN model, WED-BPNN model, and LSTM model are 1.3444%,
2.4829%, and 1.5351%, respectively. The accuracy of the proposed model is 0.1907% higher than that
of the LSTM model. In particular, the LSTM model reflects the time series characteristics of recent
data; hence, the prediction error of the LSTM model increases intermittently. In contrast, the proposed
RL-BPNN model is based on the similarity of the historical load data. As a result, the outlier is
relatively small and the prediction error shows a continuous tendency. As there are advantages and
disadvantages to each model, it would be better to use two algorithms in a complementary manner
rather than using a single algorithm. In particular, the complementary forecasting methods that use
the proposed method, such as the ensemble model, can contribute towards improving the predictive
accuracy of STLF.
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5. Conclusions

This work proposed an algorithm that uses a similar day selection model that is based on
reinforcement learning and a load forecasting model, based on a BPNN that uses similar days.
The proposed similar day selection model was developed based on the DQN technique. In addition,
an MDP, environment, and agent were defined to develop a similar day selection model based on
reinforcement learning. The proposed similar day selection model and the load forecasting model
were tested using the measured load and meteorological data for Korea. The results of the case studies
showed that the proposed method improved accuracy. That is, the proposed similar day selection
model could determine the day that exhibited similar loads (97.19%), which was an improvement of
1.73% over the WED model. Moreover, the average MAPE of the proposed load forecasting model was
1.3444%, which was an improvement of 0.1907% in accuracy over the LSTM model.

The proposed similar day selection model does not require an environment-dependent weight
learning process, unlike the widely used weighted Euclidean-based method. Therefore, the proposed
model is expected to be highly capable of responding to environmental changes such as seasonal
variations. Moreover, the parameters of the proposed model can be adjusted to maximize rewards
through repetitive learning, so that it is possible to maintain the selection performance while considering
the changes in the load over time. In particular, the proposed algorithm based on reinforcement
learning can eliminate the dependence on an expert’s experience. Therefore, it is expected that
the accuracy of STLF can be improved by applying the proposed algorithm along with other load
forecasting algorithms via techniques such as the ensemble model.

Future research should address the quantification of the manner in which reinforcement learning
models adapt to varying conditions. Furthermore, the similar day approach should be employed
to conduct research on various artificial neural network models. Finally, research on improving the
performance with regard to selecting the similar days should be performed by applying various
model-based and model-free reinforcement learning techniques and selecting the similar days using
a multi-agent system. Finally, the implementation of the STLF method using similar day selection
models should be addressed.
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