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Abstract: In the last few years, one of the most important challenges of power technologies has been 

the integration of traditional energy production systems and distributed energy resources. Large-

scale photovoltaic systems and wind farms may decrease the quality of the electrical grid service, 

mainly due to voltage and frequency peaks and fluctuations. Besides, new functionalities, such as 

the operation in islanded mode of some portions of the medium-voltage grid, are more and more 

required. In this respect, a model predictive control for voltage and frequency regulation in 

interconnected local distribution systems is presented. In the proposed model, each local system 

represents a collection of intelligent buildings and microgrids with a large capacity in active and 

reactive power regulation. The related model formalization includes a linear approximation of the 

power flow equations, based on stochastic variables related to the electrical load and to the 

production from renewable sources. A model predictive control problem is formalized, and a 

closed-loop linear control law has been obtained. In the results section, the proposed approach has 

been tested on the Institute of Electrical and Electronics Engineers(IEEE) 5 bus system, considering 

multiple loads and renewable sources variations on each local system. 

Keywords: optimal control; model predictive control; power systems; islanded mode; voltage and 

frequency regulation; interconnected microgrids 

 

1. Introduction 

The increase of intermittent renewable energy sources (RES) has created instability issues, 

requiring new controllers for modern smart microgrids [1–3]. Actually, RES may cause 

voltage/frequency peaks and fluctuations that negatively affect the quality of the electrical grid 

service. On the other hand, RES represents an important alternative to reduce global fossil fuel 

consumption. The need for new control strategies is also motivated by the increase of distributed 

small generators that cause millions of new producers potentially involved in the energy market. In 

such a scenario, in the balancing market, new actors, such as aggregators [4], are present and new 

functionalities are more and more required. For example, in order to preserve the electrical grid from 

faults and emergency situations, it may be necessary to reduce the power demand and to operate 

some portions of the medium-voltage grid in islanded mode. These new set-ups require new fast 

controllers, which can take into account voltage and frequency models. 

In addition, the grid operators, i.e., the transmission system operator (TSO) and distribution 

system operator (DSO), are forced to deeply change their roles. As an example, the DSO must become 

active in its activities as a grid manager [5]. The DSO, in particular, is responsible for the normal 

operation of the distribution grid and its subsystems (i.e., managing power quality and energy 

losses). Among others, the new roles for the DSO are: operational security management, dynamic 
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voltage and frequency control, outages response, performing restoration actions, and market 

operations. In this framework, it becomes hard to define an effective optimal control, which derives 

from the structure of the power grid, and, specifically, from the presence of several issues: renewable 

and traditional power production, bidirectional power flows, and stochastic modelling issues (due to 

uncertainties in forecasting power generated from renewable resources). The main challenge is to 

define and to solve control problems embedding prediction models for the regulation of frequency, 

voltage, and active and reactive power flows. Indeed, the complete power flow equations are 

nonlinear and nonconvex [6]. Therefore, optimization problems can hardly apply them to compute 

the control in real time. On the other hand, there is the need to represent in detail the physical system 

to provide reliable control strategies [7]. 

This work focuses on the optimal control of interconnected local systems in a distribution grid. 

A local system can represent a group of renewable generators, passive and active loads, or microgrids 

with a large capacity for active and reactive power regulation. The proposed approach can be used: 

 To reduce frequency oscillations and to improve inertia response due to a sudden change 

in the grid (i.e., a variation on a renewable power plant production), and 

 To manage a portion of the distribution grid that is operated in islanded mode because of 

demand response programs and/or emergency requirements. 

In fact, an increase in the RES penetration can decrease the number of generation units that 

provide reserve power for primary and secondary control. So, the frequency deviation increases [8]. 

New equations for inverters’ control to regulate frequency and voltage are required when a change 

in the grid occurs (e.g., a loss of load). 

The modelling approach proposed in this paper is based on the concept of virtual inertia [9–11]. 

An electrical model is defined, including voltage (magnitude and phase), frequency, active and 

reactive power, and stochastic components. So, the definition of an optimal control problem for 

frequency and voltage regulation in multi-local systems is introduced. The aim is to define a closed-

loop controller for the mitigation of frequency and voltage variations. 

The paper is organized as follows. Section 2 reports the state-of-the-art and discusses the 

innovation of the proposed work. In Sections 3 and 4, the system and the optimal control problem 

are formalized. Finally, the application to a case study is described in Section 5, while conclusions 

and future developments are reported in Section 6. The Appendix reports proofs related to 

demonstrations not included in the text for sake of readability. 

2. Literature review 

Nowadays, the control of interconnected local distribution systems is a challenging problem. In 

this respect, several papers focus on the definition and solution of optimization and control problems. 

A detailed survey [12] on multi-microgrids systems has been recently published, where operational 

management and control are quoted as challenging problems to be faced. Zheng et al. [13] propose a 

distributed model predictive control (MPC) approach using discrete-time Laguerre functions for load 

frequency control in multi-area interconnected power systems, in order to overcome the problems of 

computational burden and online optimization. The advantage of an MPC approach is that it allows 

for implementing a multivariable controller that controls the outputs simultaneously by taking into 

account all the interactions among system variables. Another strength of MPC (not used in our work, 

where a closed fast feedback is adopted) is that it can handle constraints. Khooban and Niknam [14] 

propose a heuristic algorithm and a fuzzy logic approach to tune parameters of classical proportional 

integral (PI) controllers for multi-area load frequency control. However, electrical models are not 

detailed. In the literature of microgrids, there are several interesting approaches based on MPC but 

related to the single microgrid, and thus not interconnected with other local systems. In Reference 

[15], a novel fractional-order model predictive control method is proposed to achieve the optimal 

frequency control of an islanded microgrid by introducing a fractional order integral cost function 

into the MPC approach. As in the present work, frequency regulation is attained, even if hereinafter 
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we propose a more detailed system model, where active and reactive powers are present and voltage 

is regulated. 

In Reference [16], a feedback linearization is applied to design a predictive controller for the 

secondary control of the voltage and frequency in an islanded microgrid. The goal is to improve the 

performance of a closed-loop nonlinear system. The control scheme is fully distributed, and necessary 

and sufficient conditions for convergence and stability of the whole system are described. As a similar 

approach, we model both active and reactive power, but providing a control strategy for the whole 

optimization problem that can be used under a MPC scheme. In Reference [17], a MPC-based 

controller uses a simplified voltage prediction model to predict the voltage behavior in an islanded 

microgrid. Apart from the fact that we consider multiple microgrids, in our model, we use a more 

detailed electrical model and we derive an optimal control law. The same considerations can be done 

in comparison with References [18,19]. 

The approach considered in the present paper gives a strong emphasis on the model of the 

electrical grid. Specifically, the approach is based on the concept of virtual inertia [20,21]. The 

problem of virtual inertia control is mainly felt in microgrids and grids where RES are present, as it 

is necessary to cope with small inertia and uncertainties. In Reference [22], the authors propose an 

approach to increase the inertia of the photovoltaic (PV) system through inertia emulation, which can 

be obtained by controlling the charging/discharging of the DC-link capacitor and adjusting the PV 

generation. Wu et al. [23] consider an islanded microgrid with renewables and storage systems, in 

which virtual inertia allows power curtailment of RES units and demand response (loads’ shifting). 

In fact, these approaches are also useful for islanded microgrids, and several works are present in the 

recent literature for frequency and voltage regulation, and for stability [24–28]. 

In Reference [24], the authors assess that droop control methods are not suitable for renewable 

energy-based microgrids due to their limited capability for power delivery. They propose a 

supercapacitor-based DC-link voltage stabilizer and a battery energy storage system-based frequency 

stabilizer. In particular, as in Reference [25], a fuzzy-based controller is proposed. In Reference [26], 

the authors highlight the drawbacks of PI controller gains and propose the Grasshopper 

Optimization Algorithm to optimize the PI controller parameters. 

An additional critical issue is represented by the demand of electric vehicles in a smart grid. To 

face such problem, in Reference [27], distributed controllers are proposed. Other papers [28] focus on 

improvements of droop controllers and on new approaches for the optimal dispatch in hierarchical 

microgrids [25]. Specifically, two control modes are considered for the generation units: a voltage 

control mode, with an active droop control loop, and a power control mode, which allows setting the 

output power in advance. Some recent works that study virtual inertia are References [29–33]. In 

Reference [29], the authors study a novel control scheme for virtual inertia converters to operate in 

unbalanced settings, operating test on real hardware. In Reference [30], an adaptive controller 

method for a PV-based virtual inertia system is discussed. The approach is studied in the case of the 

small-signal stability and low-frequency oscillation, which are characteristics of the PV generators. 

In Reference [31], the authors aim at improving the inertia of a microgrid by reducing the time delay 

of the communication system to overcome frequency oscillations, finding a compromise with the 

increase of operational costs. 

In Reference [32], the authors propose an approach to find the proper value of inertia constant, 

together with the frequency droop coefficient of DERs (distributed energy resources) and tuning load 

frequency controllers’ parameters to improve the frequency stability. A multi-objective decision 

problem is formulated in which the following goals are considered: minimizing the maximum 

frequency deviation while promptly bringing the frequency back to the desirable region, and 

minimizing a higher inertia constant that results in a higher cost of energy storages. With a significant 

difference, here, we propose an optimal control problem to minimize frequency and voltage 

deviations for multiple microgrids and the optimization problem is analytically solved taking into 

account both active and reactive power. 

In Reference [33], virtual inertia in islanded microgrids is studied. An H-infinite (H∞) robust 

control approach to the virtual inertial control loop is implemented, taking into account the high 
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penetration of renewables, thus enhancing the robust performance and the stability of the microgrid 

during contingencies. In the present paper, we propose a control law to minimize frequency and 

voltage deviations taking into account both active and reactive power under an MPC scheme. 

Hereinafter, the electrical grid connecting different local systems is modelled. This paper aims 

at studying the regulation of voltage and frequency within local systems interconnected through a 

distribution network. Since these systems have a strong renewable, uncontrolled, and intermittent 

component, they intrinsically represent a disturbance that, if not controlled, may cause a decrease in 

the system performance and quality. It is worthwhile to observe that the problem faced is not to be 

confused with the classic problem of inter-area oscillations between systems connected by a high-

voltage grid. 

In this work, an MPC approach is proposed, taking into account uncertainties, and deriving an 

optimal solution that can be used in closed-loop and in real time. In the literature of power systems, 

similar control approaches can be found [34,35]. Delfino et al. [36] propose a multilevel architecture 

for interconnected microgrids in which the DC power flow equations are used at a higher level, an 

analytical solution emulates each microgrid, and the AC power flow equations are used at the lower 

level. Minciardi and Robba [37] formalize a decision model in which a stochastic optimal control 

problem is defined and solved. An optimal control strategy can be also found in Reference [38]. The 

authors consider the problem of load-frequency control in a multi-area power system proposing a 

hierarchical optimal robust controller. They decompose the overall problem in subsystems, solve the 

lower level through a control strategy, and finally, iteratively coordinate local systems. However, a 

detailed representation of the electrical network is not present. Annaswamy and Kiani, in Reference 

[39], include a discrete-time decentralized linear quadratic regulator (LQR) controller in a transactive 

architecture for hierarchical smart grids. In the present paper, with respect to References [34] and 

[35], a detailed representation of the electrical network is included in order to regulate voltage, and 

control active and reactive power. With respect to References [36] and [37], the decision problem has 

been solved analytically. In addition, References [34–39] do not consider frequency variations and 

equivalent inertia. Other optimal control strategies for the smart grid are present in the literature 

[40,41] but not in the area of interconnected local systems. 

In summary, the main contributions of the proposed paper are: 

 The statement of the frequency and voltage control problem of distribution grids in 

islanded mode expressed as an MPC of an affine system affected by additive noise. 

 The inclusion of models for the control of frequency, voltage, and active and reactive power 

in distribution grids. 

 The derivation of an analytical solution for the stochastic MPC problem based on a two-

stage decomposition. 

 An optimal control strategy for the inter-local systems variation problem that can be used 

either for frequency and voltage regulation or the operation in the islanded mode of portions of the 

distribution grid for demand response purposes. 

3. The System Model and the Optimization Problem 

Consider a distribution power grid (Figure 1) modeled as an undirected graph G = (A, L), where 

the set of nodes  1,...,A N  characterizes the set of local systems and  1,...,L b  is the set of links 

that connect the nodes. Specifically, each local system is interfaced with the distribution grid by a 

power converter which can perform a virtual inertia control (allowing the inverter to behave as a 

fictitious synchronous generator) with equivalent inertia time constant 
iH ( i A ) and damping 

factor 
iKD ( i A ). The set of arcs, L, represents the set of lines that connect the local systems—each 

line has a proper impedance  , , ,   ,i j i j i jZ R jX i j A   , with  , ,i jR i j A  being the line resistance 

and  , ,i jX i j A  being the line inductance. All local systems are composed of different devices: 

distributed controllable resources with high regulation capacity (denoted by G), reactive power-

regulating sources (denoted by NG), renewable non-controllable resources (denoted by RES), and 
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passive loads (denoted by L). Each local system can be modeled as an equivalent synchronous 

generator with equivalent inertia to consider its contribution to the frequency regulation of the whole 

grid. 

In the following paragraphs, the state and the control variables are defined, and the optimization 

problem is formalized. All the quantities (but the phases) and the equations are expressed at discrete 

time per unit (p.u.) values. As suggested by the literature, this method offers computational 

simplicity by eliminating units and expressing system quantities as dimensionless ratios. 

 

Figure 1. An interconnected local systems power system. 

The decision variables are: 

 , 0,, , 1i t tP i A T   : active power injected at node i. 

 , 0,, , 1i t tQ i A T   : reactive power injected at node i. 

 , , 0, , 1i t t TPG i A    : distributed controllable source active power at node i. 

 , , 0, , 1i t t TQNG i A    : reactive power regulating source reactive power at node i. 

 ,i tPm : regulation active power injected by local system i. 

 i, 0, , , 1t tV i A T   : voltage amplitude at node i 

The parameters are: 

 , , 0, , 1i t t TPL i A    : load active power at node i. 

 , , 0, , 1i t t TQL i A    : load reactive power at node i. 

 , , 0, , 1i t t TQG i A    : distributed controllable source reactive power at node i. 

 , , 0, , 1i t t TPNG i A    : reactive power regulating source active power at node i. 

 , , 0, , 1i t tPRES i A T   : renewable source active power at node i. 

 , , 0, , 1i t tQRES i A T   : renewable source reactive power at node i. 

The state variables are: 

 , 0,, , 1i t ti TA    : voltage phase at node i (rad). 

 , 0,, , 1i t ti TA    : frequency at node i. 

The decision variables detail for a local system is reported in Figure 2. 
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Figure 2. Local systems’ variables detail. 

The electrical grid inside each local system i is not considered, and thus only the power balance 

must be satisfied: 

, , , , ,i t i t i t i t i tPG PNG PRES PL P               0, ,, 1ti A T     (1) 

, , , , ,i t i t i t i t i tQG QNG QRES QL Q              0, ,, 1ti A T     (2) 

Each local system is associated with a time-varying voltage phasor of magnitude ,i tV  and phase 

,i t . The discrete-time system dynamics ( t  is the time interval length) are governed by the equations 

of the virtual inertia controller, linking the node angle, ,i t , to the frequency difference to the nominal 

value ( ,i t - 0 ): 

, 1 , , 0( )i t i t i t t                          0, , 1t Ti A     (3) 

where the frequency is related to the active power supply–demand imbalance:  

, , , 0

, 1 ,

( )

2

i t i t i i t

i t i t

i

Pm PG KD
t

H

 
 

  
              0, ,, 1ti A T     (4) 

where iKD  is the local system damping factor. The distribution grid model includes the linearized 

power flow equations for a medium voltage AC grid, with  , ,1/ ,i j i jG R i j A   as the line 

conductance, and  , ,1/ ,i j i jB X i j A    as the line susceptance. That is: 

 , , , , , ,i t i j j t i j i t j t
j A

P G V B  


               0, , , 1i j tA T    (5) 

 , , , , , ,i t i j j t i j i t j t
j A

Q B V G  


               0, , , 1i j tA T    (6) 

The model described by Equations (5) and (6) is the well-known linearized version of power 

flow equations, obtained considering the first term of Taylor expansion of the sinusoidal terms of the 

equations and just considering the voltage difference between nodes [42–44]. 

In the following paragraphs, the linear model described by the previous equations is reformulated in 

the state space canonical form. 

Proposition I: The system model, described by Equations (1)–(6), can be expressed as an affine 

system affected by additive noise: 
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1
ˆˆ

t t t t tx Ax Bu Ch Ch           0, , 1t T    (7) 

with 

 , ,[ , 1,..., 1, , 1,..., 1],t i t i tu Pm i N QTN i N      

 , ,[ , 1,..., 1; , 1,..., 1]t i t i tx i N i N      , 

where A, B, C, and Ĉ  are known matrices, th  is a vector of parameters, and ˆ
th  represents 

stochastic noise with  ˆ 0tE h  . 

Proof of Proposition I: The Proof is shown in the Appendix, Section A1. 

In the day ahead, the DSO plans the production and energy flow based on different objectives, 

such as the minimization of losses and the capacity of the lines. It is reasonable to consider variations 

concerning an already predetermined working point. However, given the strong variability of part 

of the energy sources involved in our problem, control policies are required to mitigate deviations 

from an initial working point. 

The proposed objective function aims at minimizing four different contributions: the square of 

the difference between the phases of the grid nodes, the quadratic deviation of the frequency from 

the steady-state value, the voltage quadratic deviation from the desired value, 0V , and the quadratic 

deviation of the active regulation power to the set point *Pm : 

       
1 12 2 2 *

, , , 0 , 0 ,
0 , 0 0 0

min
T T T T

i t j t i t i t i t i
t i j A t i A t i A t i A

i j

V V Pm Pm   
 

       


  
                              

     (8) 

Proposition II: The objective function (8) can be expressed as a stochastic quadratic function with 

mixed terms: 

 
       

   
   

1

0

ˆ ˆ ˆ ˆ' '1
ˆ ˆmin , '

2 ˆ ˆ2 ' '

T
t t t t t t t t

t t T T T
t t t t t

x x Q x x u u R u u
J x u E x x Q x x

x x F u u





       
     

      
  (9) 

where tx  and tu  are the state and control vectors respectively, ˆ ˆ,x u  are the tracking parameters, 

and Qt, Rt, Ft , QT are known matrices. 

Proof of Proposition II: The Proof is shown in the Appendix, Section A2. 

4. The Model Predictive Control Problem 

4.1. The MPC Scheme 

The MPC scheme is defined in Figure 3. The optimization horizon (T) is the length over which 

the optimization problem runs and (S) is the simulation horizon. Both horizons (T) and (S) can be 

chosen according to the available information about uncertain parameters/forecasts (current states, 

forecasted demands, and renewables). In the MPC approach, in the first run, the solution related to 

the first time interval is considered. Then, uncertain parameters (new information from sensors in the 

field and new forecasts) are inserted in the procedure and a new optimization problem is run (second 

run), and so on for the whole duration of the simulation horizon (S). The MPC approach allows for 

updating new information when available and reducing uncertainties related to renewables’ 

availability and load forecasting. 
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Figure 3. Model predictive control (MPC) scheme. 

4.2. Explicit Solution of the MPC Problem 

The optimization problem is in the form: 

 
       

   
   

1

0

ˆ ˆ ˆ ˆ' '1
ˆ ˆmin , '

2 ˆ ˆ2 ' '

T
t t t t t t t t

t t T T T
t t t t t

x x Q x x u u R u u
J x u E x x Q x x

x x F u u





       
     

      
  (10) 

subject to (s.t.) Equation (7). 

By a change of variables ˆ
t tz x x   and ˆ

t t te u u  , the optimization problem is given by: 

 
1

' ' ' '

0

1
min , 2

2

T

t t t t t t t t t T T T
t

J z e E z Q z e R e z F e z Q z




 
      

 
  (11) 

s.t. 

1
ˆˆ

t t t t tz Az Be Ch        0, , 1t T    (12) 

where:  

  ˆ ˆ
t t tCh A I x Bu       0, , 1t T    (13) 

The Equations (11)–(13) are a stochastic MPC problem, which is “non-standard,” due to the 

presence of the known input sequence, t , in the state equation. In the following claims, it is shown 

how to solve the MPC problem in a closed-form through a two-stage decomposition. 

Claim I: Due to its linearity, the decision problem in Equations (11)–(13) can be decomposed 

separating the stochastic ( 1
s
tz  ) and deterministic ( 1

d
tz  ) components [45]: 

     , , ,s s d dJ z e J z e J z e   (14) 

s.t. 

1
ˆˆs s s

t t t tz Az Be Ch            0, , 1t T    (15) 
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0 0sz   (16) 

1
d d d
t t t tz Az Be                    0, , 1t T    (17) 

0 0
dz z  (18) 

The optimal control strategy is given by: 

* ,* ,*s d
t t tz z z                0, , 1t T    (19) 

* ,* ,*s d
t t te e e   0, , 1t T    (20) 

Proof of Claim I: The Proof is shown in the Appendix., Section A3. 

Claim II: The optimal control problem to determine 
,*d

te , due to its linearity, can be written as: 

           
1

1 1 1 1 1

0

1
min , ' ' 2 ' '

2

T
d d d d d d d d d d

t t t t t t t t t t t t T T T T T
t

J z e E z r Q z r e Re z r Fe z r Q z r




 
         

 
  (21) 

where: 

1 2d d d
t t tz z z    0, , 1t T    (22) 

1 1
1

d d d
t t tz Az Be     0, , 1t T    (23) 

1
0 0dz   (24) 

2 2
1

d d
t t tz Az     0, , 1t T    (25) 

2
0 0
dz z  (26) 

2d
t tz r   0, , 1t T    (27) 

Proof of Claim II: The Proof is shown in the Appendix, Section A4. 

Proposition III: The optimal control law for the problem in Equations (11)–(13), and taking into 

account Claim I and Claim II, is given by: 

 * s 1
1( ) ' 'd g

t t t t t t t te K z z K B g F r        0, , 1t T    (28) 

with 

       
1

1 1 1 1' ' ' ' ( )t t t t t t t t t t t t t tg A M P I E P E g M r A M g Q D r


   
         
 

   

0, , 1t T    

(29) 
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   
1

1 1' ' 't t t tK R B P B B P A F


      0, , 1t T    (30) 

     
1

1 1' 't t t t t t t t tP Q D A M P I E P A M


           0, , 1t T    (31) 

 
1

1'g
t t tK R B P B



         0, , 1t T    (32) 

1t t tr Ar     (33) 

T TP Q         0, , 1t T    (34) 

T T Tg Q r      0, , 1t T    (35) 

being: 
1 't t tM BR F

, 
1 't t t tD FR F

, 
1 't t t tD FR F

 and
1 't tE BR B

. 

Proof of Proposition III: The Proof is shown in the Appendix, Section A5. 

As reported in Claim I and Claim II, the original problem can be so decomposed into a stochastic 

problem and a deterministic discrete tracking problem. The closed-loop optimal control strategy is 

obtained as follows [46]: 

Sub-problem 1: Stochastic problem. 

The optimal control problem to determine 
,*s

te  is given by:  

 
1

0

1
min , ' ' 2 ' '

2

T
s s s s s s s s
t t t t t t t t t T T T

t

J z e E z Q z e R e z F e z Q z




 
      

 
  (36) 

s.t. 

1
ˆˆs s s

t t t tz Az Be Ch             0, , 1t T    (37) 

0 0sz         0, , 1t T    (38) 

Proposition IV: The solution of the optimal control problem, Equations (36)–(38), is given by the 

following recursive equations: 

* *s s
t t te K z       0, , 1t T    (39) 

with 

   
1

1 1' ' 't t t tK R B P B B P A F


      0, , 1t T    (40) 

     
1

1 1' 't t t t t t t t tP Q D A M P I E P A M


             0, , 1t T    (41) 

T TP Q  (42) 

being 
1 't t tM BR F

,
1 't t t tD FR F

 and
1 't tE BR B

. 

Proof of Proposition IV: The Proof is shown in the Appendix, Section A6. 

Sub-problem 2: Deterministic problem. 

As reported in Claim II, the optimal control problem to determine 
,*d

te  can be written as:  
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           
1

1 1 1 1 1

0

1
min , ' ' 2 ' '

2

T
d d d d d d d d d d

t t t t t t t t t t t t T T T T T
t

J z e E z r Q z r e Re z r Fe z r Q z r




             
 (43) 

s.t. 

1 1
1

d d d
t t tz Az Be      0, , 1t T    (44) 

1
0 0dz   (45) 

being 
2d

t tz r 
, 

2
0 0
dz z

, 
2 2
1

d d
t t tz Az   

,   ˆ ˆ
t t tCh A I x Bu     . 

Proposition V: The optimal control strategy for the problem, Equations (43)–(45), is given by 

 ,* 1
1' 'd d g

k t t t t t te K z K B g F r      0, , 1t T    (46) 

with 

       
1

1 1 1 1' ' ' ' ( )t t t t t t t t t t t t t tg A M P I E P E g M r A M g Q D r


   
         
 

0, , 1t T    

(47) 

   
1

1 1' ' 't t t t tK R B P B B P A F


      0, , 1t T    (48) 

 
1

1'g
t t tK R B P B



    0, , 1t T    (49) 

     
1

1 1' 't t t t t t t tP Q D A M P I E P A M


           0, , 1t T    (50) 

1t t tr Ar       0, , 1t T    (51) 

T TP Q  (52) 

T T Tg Q r  (53) 

5. Application to a Case Study 

5.1. Case Study Description 

To show the effectiveness of the theoretical results presented in the previous section, the 

proposed control strategy has been applied to a modified IEEE 5-bus system (N = 5) [47], shown in 

Figure 4. The test network has been adapted to our problem through the following assumptions. Each 

bus corresponds to a local system, and, keeping the network topology unchanged, the values of 

cables’ resistance, Ri,j, and reactance, Xi,j, have conveniently rescaled to a distribution grid system 

(assuming base quantities of 10 MVA for apparent power, 
0V = 15 KV for voltage and 

0 = 50 Hz for 

frequency). Table 1 shows the detailed values of the line parameters Ri,j, and Xi,j for the case study. 
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Figure 4.  Modified IEEE 5 bus test system. 

Table 1. Lines data. 

Line Resistance Ri,j (p.u.) Reactance Xi,j (p.u.) 

1–2 0.088 0.266 

1–3 0.355 1.066 

2–3 0.266 0.800 

2–4 0.266 0.800 

2–5 0.177 0.533 

3–4 0.177 0.533 

4–5 0.355 1.066 

The parameters that characterize each local system, i.e., the inertia constant, Hi, and the 

equivalent damping factor, KDi, are reported in Table 2. The local system 5 is the slack node, in which 

the voltage, 5,tV , is fixed to 1 (p.u.) and the phase, 5,t , is equal to 0 (rad). The case study can be 

representative of small local systems connected by a distribution grid (such as interconnected 

microgrids), in which there is a great presence of generation from renewable resources. 

Table 2. Local systems’ parameters. 

Parameter Local System 1 Local System 2 Local System 3 Local System 4 

KDi (p.u) 3 4 3.5 5 

Hi (s) 5 4 5.5 6 

The simulation horizon is 60 s, with a discretization step t  of 0.5 s. This horizon length has 

been chosen as a trade-off between the following two aspects: (a) to avoid delays due to the 

centralized communication from the controller to the local systems, and (b) to enhance the reliability 

of the short-term forecasting of RES and loads. 

To make the approach more effective, the MPC strategy is applied, in which only a part of the 

optimal control law is applied (e.g., 10 seconds over a T = 60 second horizon), and there is a 

continuous recalculation of the control law based on new measurements and forecasting. The length 

of the MPC control horizon is justified by recent developments on the nowcasting of renewable 

power sources that predict 1 min future PV values [48,49]. 

At this point, by the means of the local systems’ parameters and the distribution network, it is 

possible to quantify the matrices A and B, defined in the Appendix, Section A1, described by 

Equations (A19) and (A20), and needed by Equation (7): 
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1 0 0 0 0.5 0 0 0

0 1 0 0 0 0.5 0 0

0 0 1 0 0 0 0.5 0

0 0 0 1 0 0 0 0.5

-0.22 0.21 3.8e-19 0.035 0.76 0 0 0

0.16 -0.47 0.062 0.046 0 0.66 0 0

-2.08e-18 0.07 -0.54 0.070 0 0 0.58 0

0.0421 0.07 0.093 -0.20 0 0 0 0.80

A

 
 
 
 
 
   
 
 
 
 
 
 

 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0.05 0 0 0 0.33 0 -6.93e-18 -2.77e-17

0 0.062 0 0 0 0.33 4.51e-17 6.93e-17

0 0 0.055 0 4.6e-17 5.55e-17 0.33 2.77e-17

0 0 0 0.041 -5.55e-17 2.77e-17 -1.38e-17 0.33

B

 
 
 
 
 
   
 
 
 
 
 
 

 

In each MPC step, the optimal control law is the sum of the solution of two different control 

problems: a stochastic problem defined by Equations (36)–(38), with the optimal solution, Equations 

(39)–(42), and a deterministic problem, Equations (43)–(45), with the optimal solution, Equations (46)–

(53). Both control laws have been recursively defined, i.e., all the parameters that define the control 

can be calculated offline, the parameters are known, and the forecasts of renewable generation and 

load. 

The variations on the system are caused by the combined variation of load and RES Psc,i,t  on the 

local systems defined by Equation (A4), represented into the model in the terms th  and ˆ
th  defined 

by Equations (A21) and (A22) respectively, deterministic and stochastic parts of the noise. Figure 5 

reports the values, ,
d
i tPsc , for the whole simulation horizon. Data have been obtained by adapting 

real power measurements from photovoltaic, residential, and industrial loads, and rescaled to obtain 

congruent measurements for the distribution networks. The stochastic part of the noise, ,
s
i tPsc ~ 

N(0,1), affects the state at each instant t. 

The power profiles on each local system could be critical for the whole system. Without any 

upper-level controller but only with the damping given by each local system, the generators could 

not be able to efficiently compensate (i.e., in a reasonable time, according to the dynamics of the 

system) the given power variation, causing frequency and voltage variations. 

The objective of the proposed controller is to reduce the voltage and frequency variations 

(during the transient period) and, after the perturbation, bringing them back to their reference value. 

In a practical context, numerous frequency variations and voltage peaks on the grid could cause the 

intervention of protection systems, sensitive to variations in voltage or frequency, disconnecting 

some portions of the network itself, causing a blackout for many users. 
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Figure 5. Deterministic part of the net load, ,
d
i tPsc  (difference between renewable generation and 

load), data on each local system. 

5.2. Optimal Control Results 

Optimal solutions for the state variables in the case with control or without control are reported 

in Figures 6 and 7. It can be seen how the presence of the proposed control can limit frequency 

variations (i.e., the power quality remains within acceptable limits, the voltage deviation from the 

reference value is less than 5%). The dotted line represents the system with no control (only the 

damping coefficient is considered). In this case, each local system operates without any central 

controller (like the one developed here), but the system only reacts based on the physics of the system 

with constant inputs equal to those of the equilibrium point. The bold line represents the controlled 

system using the developed approach. It is important to note that without the proposed control 

strategy, the system does not reach a steady state for the whole simulation. 

Figure 8 shows the voltage pattern for each local system in the presence or absence of the 

developed control. The control strategy helps in containing the variations affecting this variable, 

improving the system’s power quality. Finally, Figures 9 and 10 show the optimal active and reactive 

power at each local system. 

When there is no control, the objective function value is equal to 0.1098, while when the 

proposed control strategy is applied, it is 0.0151. 

Table 3 shows the objective function values and contributions. 

Table 3. Objective function values and contributions. 

Contribution Phase Frequency Voltage Active power 

No Control 0.00854 8.71e-4 0.0095 0 

With Control 0.00853 8.64e-4 0.0042 0.0015 
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Figure 6. Phase optimal results at each local system. 

 

Figure 7. Frequency optimal results at each local system. 
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Figure 8. Voltage optimal results at each local system. 

 

Figure 9. Optimal active power at each local system. 
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Figure 10. Optimal reactive power at each local system. 

The test has been developed in MATLAB-SIMULINK (2018b, Mathworks, Natick, 

Massachusetts, USA), running on a PC Intel i7, 16 GB RAM. The MATLAB tool has been used to 

calculate a priori the control laws defined recursively in Section 4. 

5.3. Closed-Loop Stability Analysis 

This subsection aims to perform a sensitivity analysis concerning the asymptotic stability 

properties of the proposed system, with respect to the damping parameter, KDi. The choice of this 

parameter is fundamental with regards to the design of the control system based on virtual inertia. It 

is well known from power systems theory that the asymptotic stability of a synchronous machine is 

directly linked to its damping factor, similarly for the virtual inertia that mimics this behavior. 

The first part of Figure 11 shows how different choices of damping factors at each node affect 

the norm of the eigenvalues of the open-loop system for each element of the state vector x . The 

values are chosen in an interval between 50%  of the ones used for the use case, 20 different 

damping factors are considered. 

It is noteworthy that for lower values of KDi, some eigenvalues have a norm greater than 1, so 

the system is unstable. This is consistent with the power system theory. To this end, the asymptotical 

closed-loop stability of the proposed controller for an infinite time control law defined is analyzed, 

as in Reference . As can be seen from the second part of Figure 11, the proposed optimal controller 

also guarantees the asymptotical stability in the cases in which the system was designed as unstable. 

This aspect is crucial for the optimal control of this kind of problem, as it also fixes design instabilities. 
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Figure 11. Sensitivity analysis of the stability property for the proposed system. 

6. Conclusion and Future Developments 

The proposed work introduced an approach based on optimal control for the regulation of 

voltage and frequency in multi-local systems (such as interconnected microgrids) in a distribution 

grid. This represents one of the most challenging problems regarding the dynamic aspects of a smart 

grid. 

If not considered and properly mitigated, these aspects can drastically damage the entire system. 

To reduce these effects, the paper considers accurate grid models and the presence of innovative 

devices that allow for better regulating the power flows on the grid and, consequently, voltage and 

frequency at each node. It is worthwhile to observe that the main contribution of this paper is not to 

assess the controller performance (that is optimal by definition to the linearized model) but to 

propose a model that can be linearized and controlled by a closed-form control law. 

To cope with the variability represented by renewable sources and load, this approach was used 

in an MPC framework. In this case, just the control law corresponding to the first time interval would 

be applied, while an update of the law would be performed according to the new forecasts made in 

the short term. This would allow a further increase in the quality of the system. The IEEE 5 bus system 

was used to test the control strategy, considering multiple loads and renewable sources variations on 

each local system. The results showed a strong decrease in the number of variations as well as strong 

damping of the frequency and voltage peaks in each local system. This greatly increases the power 

quality of the electrical system. A sensitivity analysis about the asymptotical stability was also given, 

showing that the proposed control can also prevent instabilities caused by an incorrect design of the 

damping parameters. 
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Future developments will concern several aspects. First, delays in the communication between 

the central controller and each local system could be inserted in the optimal control problem. 

The particular model of the local systems will be the focus of future investigations. Furthermore, 

distributed and team robust approaches to overcome the poor robustness of totally centralized 

control approaches in case of emergencies will be considered. 
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Appendix 

A1. Proof of Proposition Ⅰ 

Equations (5) and (6) in the absence of shunt admittances can be written in the compact form: 

tt t p pP GV B K          t=0,…,T-1 (A1) 

tt p t qQ B V G K        t=0,…,T-1 (A2) 

with 

,

,

,

,

[ , 1,..., 1]

[ , 1,..., 1]

[ , 1,..., 1]

[ , 1,..., 1]

t i t

t i t

t i t

t i t

V V i N

i N

Q Q i N

P P i N

 

  

  

  

  

 

where pK and qK are known parameters coming from considering the voltage slack bus equal to 1. 

Equation (1) can be inserted in the frequency state Equation (4): 

, , , , ,

, 1 ,

1( )

2

i t i t i t i t i i t

i t i t

i

Pm PNG Psc P KD
t

H


 

    
         0, , 1t Ti A     (A3) 

being 

, , , , ,
d s

i t i t i t i t i tPsc PRES PL Psc Psc      0, , 1t Ti A     (A4) 

where ,
d
i tPsc and ,

s
i tPsc are the deterministic and stochastic parts of the net load, respectively. 

The frequency state equation is given by: 

1 , , , , , ,t t t m m t t s s tA B P B P C h C h                0, , 1t T    (A5) 

being: 

,[ , 1,..., 1]t i t i N     

, ,[ , 1,..., 1]m t i tP Pm i N    
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, , ,[ , 1,..., 1]s
s t i th Psc i N     

, , ,[ , 1,..., 1]d
t i t i i th PNG KD Psc i N       

where 

1

1

1

1

1 0 0
2

0 0

0

0 0 0 1
2

N

N

KD
t

H

A

KD
t

H







 
  

 
 

  
 
 

  
  



 

  
 

1

1

0 0
2

0 0

0

0 0 0
2 N

t

H

B

t

H





 
 
 
 

  
 
 

 
  



 

  
 

, ,m sB C C B        

Substituting Equation (A1) in the frequency state equation, we obtain: 

1 , , , , , ,( )tt t t p p m m t t s s tA B GV B K B P C h C h                  0, , 1t T    (A6) 

then, the voltage can be obtained from the Equation of reactive power (A1). That is: 

1 1 1
tt p t p p qV B Q B G B K         0, , 1t T    (54) 

and substituting Equation (A7) in the frequency state Equation (A6) we have: 

1
1 , , , , , ,

1 1 1( )

t t m m t t s s t p t

tp p p q p

A B P C h C h B GB Q

B GB G B B B GB K B K

      

   

 






  

    

   
  0, , 1t T    (A8) 

substituting Equation (2) (where the control variable is ,i tQNG ) into Equation (A8), we get: 

1
1 , , , , ,s, , , , ,

1 1

( )

( )

t t m m t t s t p G t NG t RES t L t

tp p p q p

A B P C h C h B GB Q Q Q Q

B GB G B B B GB K B K

      

   

 






 

       

   
 

0, , 1t T    

(A9) 

with 

, ,

, ,

, ,

, ,

[ , 1,..., 1]

[ , 1,..., 1]

[ , 1,..., 1]

[ , 1,..., 1]

G t i t

NG t i t

RES t i t

L t i t

Q QG i N

Q QNG i N

Q QRES i N

Q QL i N

  

  

  

  

 

Let us pose: 
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1
, p pA B GB G B B   

   (A10) 

, , , ,[ ; , 1,..., 1]t t i t i t i t q p ph h QG QRES QL K B K i N         

1( )pD B GB 
   

(A11) 

, ( t)sC C diag     (A12) 

T

d

C
C

D





 
  
 

 (A13) 

1 1
, ,TN t p p NG tQ B G B Q    (A14) 

then, we obtain: 

1 , , , ,s, , , tt t m m t d t s t TN tA B P C h C h Q A                0, , 1t T    (A15) 

It is important to note that , ,[ , 1,..., 1]TN t i tQ QTN i N    is an auxiliary variable that is crucial to 

define the objective function accurately (as it will be explained in the following). Thus, in the state 

equation, we have to satisfy the following condition: 
1 1 1

, , ,TN TN t TN p p NG t p NG tC Q C B G B Q B GB Q
    . Thus, 

one should write 
1

1 1 1
TN p p pC B G B B GB


      . 

Then, we obtain: 

1 , , , ,s, , , tt t m m t d t s t TN TN tA B P C h C h C Q A                 0, , 1t T    (A16) 

as regards the other state equation, one can write: 

1 , ,t t tA A A              0, , 1t T    (A17) 

where ,( 1x 1), ( 1x 1)A N N A N N       are known matrices.  

Finally, posing tx  , ,[ , 1,..., 1; , 1,..., 1]i t i ti N i N      and tu 

, ,[ , 1,..., 1; , 1,..., 1]i t i tPm i N QTN i N    , it is possible to write: 

1
ˆˆ

t t t t tx Ax Bu Ch Ch       0, , 1t T    (A18) 

where: 

A A
A

A A

 

 

 
  
 

 (A19) 

,

0 0

m TN

B
B C

 
   

 (A20) 
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t

t

I
h

h

 
  
 

 (A21) 

,s,

0
ˆ
t

t

h
h

 
  
  

 (A22) 

, 0

0 d

A
C

C

  
  
 

 (A23) 

Ĉ=
,

0 0

0 sC

 
 
 

 (A24) 

A2. Proof of Proposition II 

As regards the objective function, we consider the four terms in Equation (7): 

 The first term can be written as T
t tQ  . 

 The second term is given by 0 0( ) ( )T
t tQ     . 

 The fourth term is given by * *
, ,( ) ( )T

m t m p m t mP P R P P  . 

With 

* *[ , 1,..., 1]m iP Pm i N    

where Q Q and pR are the identity matrix of appropriate dimensions. 

The third objective is the most complicated and it is given by (substituting voltage with Equation 

(A7)): 

1 1
, , , ,

1 1
, , , ,

( ( ) )

( ( ) )

T
tp G t NG t RES t L t q p

tv p G t NG t RES t L t q p

B Q Q Q Q K B G I

R B Q Q Q Q K B G I





 

 

      

      
  0, , 1t T    (A25) 

Equation (A25) can be written as posing 
1

, , ,( )t p G t RES t L t qY B Q Q Q K I     : 

1 1 1 1
, ,( ) ( )T

t tp NG t p t v p NG t p tB Q B G Y R B Q B G Y            0, , 1t T    (A26) 

to reformulate Equation (A26), we can write, posing: 

1 1 2 1 2 1 1 1 2
, ,( ) ( ) ( )t tp NG t p t p p p NG t p tB Q B G Y B G B G B Q G B Y            

 0, , 1t T    

(A27) 

and posing 
1 1

, ,TN t p p NG tQ B G B Q  
 ,

1
t pG B Y  

 

2
1 2 2 1 2 2

, , ,( ) ( ) ( ) ( ( ) 2( ) )t t tp TN t t p TN t t TN t tB G Q B G Q Q            

 0, , 1t T    

(A28) 

and thus, posing 1 2( )pM B G , the overall objective function can be expressed as: 



Energies 2020, 13, 2637 23 of 30 

 

* *
0 0 , ,

, , ,

[ ( ) ( ) ( ) ( )

( ) ( ) 2 ( )]

T T
T T

t t t tt t m t m p m t m
t

T
tTN t t TN t t TN t t

J Q Q P P R P P M

Q M Q M Q

        

   

       

    


 (A29) 

Equation (A29) can be expressed in a vector form by using the following notation: [ ; ]t t tx   ,

, ,[ ; ]t m t TN tu P Q , 0
ˆ [0; ]x  ,

*ˆ [ ; ]t m tu P   

           
1

0

ˆ ˆ ˆ ˆ ˆ ˆ' ' 2 '
T

t t t t t t t t t t t t
t

J x x Q x x u u R u u x x F u u




          

with 

0

0

M Q
Q

Q





 
  

 
 (A30) 

0

0

pR
R

M

 
  

 
 (A31) 

0

0 0

M
F

 
  

 
 (A32) 

A3. Proof of Claim I 

Due to its linearity, the system state equation can be written separating the stochastic ( 1
s
tz  ) and 

deterministic ( 1
d
tz  ) components [45]: 

   1 1 1
ˆˆs d s d s d

t t t t t t t t tz z z A z z B e e Ch                     0, , 1t T    (A33) 

thus, the system can be so decomposed into a stochastic and deterministic subsystem. That is: 

1

0

ˆˆ 0,..., 1

0

s s s
t t t t

s

z Az Be Ch t T

z

     


 (A34) 

1

0 0

0,..., 1d d d
t t t t

d

z Az Be t T

z z

     


 (A35) 

the objective function is: 

 
1

1 1 1 1

1 1 1 1
0 1 1

( )' ( ) ( )' ( )1
min , ( )' ( )

2 2( )' ( )

s d s d s d s dT
t t t t t t t t t t s d s d

t t T t ts d s d
t t t t t t

z z Q z z e e R e e
J z e E z z Q z z

z z F e e


   

   
  

       
     

      
  (A36) 

Also, the cost function (Equation (A36)) can be decomposed into its stochastic and deterministic 

components represented by the functions  ,s sJ z e  and  ,d dJ z e , defined straightforwardly. This 

means that for each admissible solution  ,z e , and the corresponding stochastic  ,s sz e  and 

deterministic  ,d dz e  components, the following identity holds: 



Energies 2020, 13, 2637 24 of 30 

 

     , , ,s s d dJ z e J z e J z e  . (A37) 

This immediately follows from the assumptions on the stochastic process, ˆˆ
tCh , which implies 

  0s
tE z  , and   0s

tE e  t . In fact, in this way, the expected values of terms 

' , ' , 'R , 'R , 'F , 'Fs d d s d s s d d s s d
t t t t t t t t t t t t t t t t t tz Q z z Q z e e e e z e z z  are equal to zero. 

Thus, the overall optimal solution is given by: 

* ,* ,*s d
t t tz z z   0, , 1t T    (A38) 

* ,* ,*s d
t t te e e   0, , 1t T    (A39) 

being, of course  *, *,,d dz e ,  *, *,,s sz e , the optimal solutions of the problem corresponding to the 

optimization of the deterministic and stochastic costs, respectively. In fact, for every admissible 

solution  ,z e , the following relationship can be written: 

           *, *, *, *, * *, , , , , ,s s d d s s d dJ z e J z e J z e J z e J z e J z e     . (A40) 

A4. Proof of Claim II 

The proof follows the results obtained in the continuous domain and reported in Reference [50]. 

The optimal control problem to determine 
,*d

te  is given by: 

 
1

0

1
min , ' ' 2 ' '

2

T
d d d d d d d
t t t t t t t t t T T T

t

J z e E z Q z e R e z F e z Q z




 
      

 
  (A41) 

s.t. 

1
d d d
t t t tz Az Be       0, , 1t T    (A42) 

0 0
dz z  (A43) 

The deterministic problem can be introduced observing that 
d
tz can be decomposed in two parts: 

1 2d d d
t t tz z z    0, , 1t T    (A44) 

where: 

1 1
1

d d d
t t tz Az Be    0, , 1t T    (A45) 

1
0 0dz   (A46) 

2 2
1

d d
t t tz Az      0, , 1t T    (A47) 



Energies 2020, 13, 2637 25 of 30 

 

2
0 0
dz z  (A48) 

The vector 
2d

tz  may be exactly determined for each instant t. This means that the deterministic 

component of the cost function can only be influenced by the values of 
1d

tz . Then, putting 
2d

t tz r  , 

the optimization of  1 ,d dJ z e  is equivalent to the optimization of 

           
1

1 1 1 1 1

0

1
min , ' ' 2 ' '

2

T
d d d d d d d d
t t t t t t t t t t t t T T T T T

t

J z e E z r Q z r e Re z r Fe z r Q z r




 
         

 
  (A49) 

A5. Proof of Proposition III 

As reported in Reference [47], the following steps have been considered for the solution of 

discrete-time optimal control (Equations (35)–(37)): 

1. Calculate the Hamiltonian function: 

   
1

1 1
0

1
, , ' ' 2 '

2

T
s s s s s s s s s s
t t t t t t t t t t t t t t t

t

H z e z Q z e R e z F e Az Be 


 


        (A50) 

2. Obtain state, co-state, and control from the Hamiltonian: 

 1 s,* s,* s,*
1

1

, ,s s
t t t

t t t

t

H z e
z Az Be












  


 0, , 1t T    (A51) 

 1 * * s,* s,*
1

, ,
'

s s
t t t

t t t t t t

t

H z e
A Q z Fe

z


 






   


 0, , 1t T    (A52) 

 1 * s,* s,*
1

, ,
0 ' R '

s s
t t t

t t t t t

t

H z e
B e F z

e









   


  0, , 1t T    (A53) 

3. Obtain open-loop optimal control: 

Solving Equation (A53) and replacing it into Equations (A51) and (A52): 

s,* 1 * 1 s,*
1' 't t t t t te R B R F z 

      0, , 1t T    (A54) 

s,* s,* * s,*
1 1t t t t t tz Az E M z        0, , 1t T    (A55) 

* * s,* * s,*
1 1' 't t t t t t t tA Q z M D z          0, , 1t T    (A56) 

For the sake of simplicity, we have defined 
1 't t tM BR F ,

1 't t t tD FR F  and
1 't tE BR B . 

The final (boundary) condition is given by: 

 s,* s,*

s,*

s,*

'1

2

T T T

T T T

T

z Q z
Q z

z



 


0, , 1t T    (A57) 

4. Obtain the Riccati equation: 
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We make the assumption: 

* s,*
t t tPz   0, , 1t T    (A58) 

and replacing Equation (A62) into Equation (A59), we obtain: 

s,* s,* s,* s,*
1 1 1t t t t t t tz Az E P z M z     0, , 1t T    (A59) 

 
1s,* s,* s,*

1 1t t t t t tz I E P Az M z


 
      0, , 1t T    (A60) 

We then replace Equations (A62) and (A64) into Equation (A60): 

     1 1s,* s,* s,* s,* s,* s,* s,*
1 1 1 1'

0 ,

'

, 1

t t t t t t t t t t t t t t t t t t t tPz A P I EP Az Mz Qz Dz M

t

P I E M

T

P Az z
 

   
           





 

  (A61) 

this equation must hold for all values of the state 
*
tz , which in turn leads to the fact that the coefficient 

of 
*
tz  in Equation (A61) must individually vanish. That is, 

     
1

1 1' 't t t t t t t t tP Q D A M P I E P A M


                   0, , 1t T    (A62) 

5. Closed-loop optimal control: 

Obtaining these solutions off-line, use Equation (A58) in the control relation Equation (A54) to 

get the closed-loop optimal control as 

 ,* 1 ,* ,* 1 ,*
1' 's s s s

t t t t t t t te R B P Az Be R F z 
      0, , 1t T    (A63) 

Now, pre-multiplying by R  and solving for the optimal control, we have: 

* *s s
t t te K z     0, , 1t T    (A64) 

   
1

1 1' ' 't t t tK R B P B B P A F


       0, , 1t T    (A65) 

     
1

1 1' 't t t t t t t t tP Q D A M P I E P A M


              0, , 1t T    (A66) 

T TP Q  (A67) 

A6. Proof of Proposition IV 

The proof follows the same steps of Proposition III. Specifically, the Hamiltonian function and 

related conditions are given by: 

          
1

1 1 1 1 1
1 1

0

1
, , ' ' 2 '

2

T
d d d d d d d d d
t t t t t t t t t t t t t t t t t t

t

H z e z r Q z r e R e z r Fe Az Be 


 


       

0, , 1t T    

(A68) 
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 1
1 1,* 1,* ,*

1

1

, ,d d
t t t d d d

t t t

t

H z e
z Az Be












  


  0, , 1t T    (A69) 

 1
1 * * d,* *

1

,e ,
'

d d
t t t

t t t t t t t t

t

H z
A Q z Q r Fe

z


 






    


   0, , 1t T    (A70) 

 1
1 * d,* d1,*

1

,e ,
0 ' R e '( )

d d
t t t

t t t t t t

t

H z
B F z r

e









    


 0, , 1t T    (A71) 

,* 1 * 1 1,*
1' '( )d d

t t t t t t te R B R F z r 
      0, , 1t T    (A72) 

1,* 1,* * 1,*
1 1 ( )d d d

t t t t t t tz Az E M z r       0, , 1t T    (A73) 

* * 1,* * 1,*
1 1' ' ( )d d

t t t t t t t t t t tA Q z Q r M D z r           0, , 1t T    (A74) 

    1 1

1

1

'1

2

d d
T T T T T

d
T T T T Td

T

z r Q z r
Q z Q r

z


  
  


    0, , 1t T    (A75) 

being 
1 'M BR F ,

1 'D FR F  and
1 'E BR B . 

We may assume that 
* d1,*
t t t tPz g   , and we obtain 

1,* 1,* 1,* 1,*
1 1 1 1 ( )d d d d

t t t t t t t t t tz Az E P z E g M z r          0, , 1t T    (A76) 

 
11,* 1,* 1,*

1 1 1 ( )d d d
t t t t t t t t tz I E P Az E g M z r



  
         0, , 1t T    (A77) 

 

 

1

11,* 1,*
1 11,* 1,*

1

1

11,*
1 11,* 1,*

1

'
( )

( ) '
( )

t td d
t t t k t t td d

t t t t t t
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This equation must hold for all values of the state 
*
tz , which in turn leads to the fact that the coefficient 

of tz  and the rest of the terms in Equation (A77) must individually vanish. That is 
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Finally, the closed-loop optimal control is 
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with 
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