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Abstract: The importance of efficient utilization of biomass as renewable energy in terms of global 

warming and resource shortages are well known and documented. Biomass gasification is a 

promising power technology especially for decentralized energy systems. Decisive progress has 

been made in the gasification technologies development during the last decade. This paper deals 

with the control and optimization problems for an isolated microgrid combining the renewable 

energy sources (solar energy and biomass gasification) with a diesel power plant. The control 

problem of an isolated microgrid is formulated as a Markov decision process and we studied how 

reinforcement learning can be employed to address this problem to minimize the total system cost. 

The most economic microgrid configuration was found, and it uses biomass gasification units with 

an internal combustion engine operating both in single-fuel mode (producer gas) and in dual-fuel 

mode (diesel fuel and producer gas). 

Keywords: biomass; operations research; machine learning; microgrids; optimization; CO2 

reduction; mixed integer linear programming; reinforcement learning 

 

1. Introduction 

Hybrid energy systems development based on renewable energy sources (RES) leads to the need 

of solving many practical problems, including the problem of optimal power systems’ structure 

selection (the ratio of capacities in the energy system of energy sources and storage systems) and their 

control. These characteristics of the system depend both on the technical and economic indicators of 

energy sources, as well as on the availability and energy potential of renewable energy resources in 

a given area, including the distribution of this potential (wind speed and solar radiation intensity) 

over time. These problems attract a lot of specialists [1–3], including experts in data driven unit 

commitment problem solvers development. Various software packages have been developed 

(Homer, Calliope, RETScreen, DER-CAM, Compose, iHOGA, and others) to calculate the potential 

of renewable energy and to support the best choice of the hybrid system’s components [4]. 

Optimization of the power and components of a hybrid system with renewable energy sources in 

most cases is carried out to minimize the cost of generated energy, taking into account all costs, to 

provide 100% reliability of energy supply. The following optimization criteria were employed: 

energy efficiency, maximum energy production on a specific source of renewable energy, maximum 

use of installed renewable energy generation capacity, exergy efficiency, minimizing the payback 
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period, minimizing capital costs, environmental impact such as CO2 emissions, and various social 

criteria: creating jobs, effects on human health, human development index, etc. [5–7]. 

In [8], a technological scheme is considered, which includes the generation of thermal energy 

from solar collectors and direct biomass burning in a boiler, the production of superheated water 

vapor, and energy generation in a steam turbine. In [9], the authors presented a technological scheme 

for the production of heat and electric energy through the utilization of pyrolysis gases using the 

regular and organic Rankine cycle. Pyrolysis gas is a by-product of charcoal production. At the same 

time, the application of biomass gasification technology in hybrid power systems remains little 

studied. The main problem is that when analyzing the operation of a hybrid power system with 

biomass gasification, the gasification unit is considered oversimplified [10–17]. The technological 

mode of the hybrid renewable energy system with biomass gasification has not yet been studied, 

especially the transient processes when starting, stopping, and regulating the system. 

Due to the variable energy input from renewable energy sources and the variability of the 

consumer’s electrical load schedule in a hybrid system, it is necessary to have maneuvering energy 

sources such as diesel generator and energy storage systems, e.g., rechargeable batteries. The cost of 

the battery is extremely high and can reach up to 50% of the total cost of the hybrid system [18]. In 

the scheme with gasification of biomass as the main source of energy to provide a buffer and reserve 

supply of producer gas, it is possible to use gas holders. Comparative studies are presented in [19], 

which demonstrated that a hybrid system containing sources of wind energy and biomass 

gasification is more economic in comparison with the wind–diesel systems. In [20,21], it was 

concluded that a biomass gasifier is a more preferable option for powering remote isolated rural areas 

comparing to the solar power plants. One of the ongoing projects is the creation of a micro hybrid 

system on Mount Athos (Greece). The system is mounted on the basis of solar panels and several 

biomass gasification reactors [22]. 

The main problem of hybrid power systems is the intermittency and stochastic character of some 

renewable energy sources. Therefore, combining two or more sources of energy makes it possible to 

counteract the stochastic nature of renewable energy, using, among other things, the stable nature of 

traditional generation and electric energy storage systems. However, for the reliable operation of 

hybrid energy complexes, effective management of such systems is required, which would take into 

account various internal and external input factors including energy volumes, tariffs, weather, 

reliability indicators, and other factors. Many companies including Siemens, HOMER Energy, 

Tendril, Opower, and Vivint, have developed their own concept of a hybrid power system with 

different control schemes [23]. For example, using HOMER, it was found that the Photovoltaic system 

(PV)/wind/diesel hybrid power system is most preferable for providing electricity to consumers on 

Masirah Island, Oman [24]. 

The hybrid energy systems control strategies are divided into three main groups: centralized, 

decentralized, and hybrid (centralized–decentralized). The following two families of mathematical 

methods are widely employed for such control: linear programming methods and artificial 

intelligence technologies (machine learning, multi-agent systems, fuzzy logic, etc.) [25,26]. At the 

same time, it was noted in [27] that the use multivariate of optimization methods together with 

artificial intelligence technologies is an effective approach to control the hybrid power systems with 

biomass gasifiers. 

Biomass is an available and renewable source of energy, which leads to a high interest in the 

development of gasification technologies [28,29]. It is possible to efficiently employ the internal 

combustion engines and biomass Integrated Gasification Combined Cycle (BIGCC) system with high 

efficiency, much higher than that of the biomass Rankine cycle or the Organic Rankine Cycle (ORC) 

The huge energy potential of biomass and waste (primarily forestry and agriculture) is currently used 

only to a small extent, although technically and economically it can be beneficial for various energy 

systems [30,31]. To solve this challenge, it is necessary to study and test the novel methods, as well 

as to study known, and to master, state-of-the-art methods. The creation of reliable technologies 

based on these methods is possible only through deep scientific study of all stages of the process: 
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from the selection of suitable raw materials, to the control of processes in the reactor and the disposal 

of emissions [32–34]. 

Biomass is characterized by a high moisture content and variable size distribution of the source 

material; high reactivity compared to fossil coal [35]; variability of the mechanical properties of 

particles (tendency to agglomerate [34,36] or, conversely, to destruction [37,38]); the formation of 

significant amounts of tarry products during heating and oxidation [33]; and low ash content. The 

latter, however, often have increased corrosion properties and a tendency to form fly ash [34,37,38]. 

Many processes of biomass processing have been proposed [28,33], but their efficiency is very 

sensitive to the conditions of their implementation. There are more specific conversion processes: 

plasma processing [39,40] or the use of supercritical water [33,41], but they are technologically more 

complicated and require higher energy costs. 

The pyrolysis and gasification are potentially applicable in small and medium capacity 

generation [42,43], usually working with an internal combustion engine [44,45], a microturbine [46], 

or a gas burner [47]. However, the combustion and gasification of biomass can be applied at large 

thermal stations to partially replace coal and reduce emissions [48–50]. The processes of co-

combustion of coal and biomass were also considered in [36,51–54]. 

A promising solution for the optimal control of hybrid microgrids with various flexible and 

inflexible power sources is the modeling and control of the operating modes of such systems as the 

Markov decision process (MDP). Such a formulation, in fact, allows one to obtain a rather realistic 

model of a hybrid microgrid with various states, control actions, and probabilistic transitions 

between them. The most advanced methods for solving MDP problems are reinforcement learning 

(RL). Trained RL agents, knowing most of the optimal solutions, can be employed to control the 

energy management of the power system or microgrid in real time. Such an approach will 

significantly reduce computational costs, because a stochactic optimization problem is solved offline 

to find the optimal policy for all possible scenarios. In recent years, several successful studies have 

been published on the use of advanced RL methods for optimal control of microgrids based on deep 

Q-networks (DQN) [55,56], Monte-Carlo tree search (MCTS) [57], deep policy gradient [58], batch RL 

[59], multi-agent RL [60], etc. Part of the research is devoted to comparing the effectiveness of the RL 

methods (capable of giving quick, but approximate solutions) with traditional optimization methods, 

for example, mixed-integer linear programming (MILP) [61,62]. 

The aim of this work is to calculate and to optimize the assets of the operation of a hybrid 

microgrid based on renewable energy sources (solar energy and biomass gasification) and a 

traditional diesel power station. In order to achieve the formulated objectives, the following tasks 

were solved:  

1. The control problem of an isolated microgrid is formulated as an MDP. The modified open-

source RL framework is employed for the modeling of an off-grid microgrid to investigate how 

state-of-the-art RL techniques can utilize the simulated data in order to learn an operation policy 

that minimizes the total system cost.  

2. The biomass gasification unit is employed to obtain producer gas. At the same time, the operation 

of the internal combustion engine (generator) is considered only in producer gas and dual-fuel 

mode (producer gas and diesel fuel). They operate as steerable generators of different 

configurations of a microgrid. 

An optimization model based on MILP is used as a reference for comparing the effectiveness of 

RL models that gives a good approximation for the lower bound of the control problem. 

This paper is organized as follows: Section 2 describes the simulation environment based on the 

MDP used for the RL methods application in Section 3. Section 4 describes the case study and the 

results. The concluding remarks are given in Section 5.  

2. Microgrid MDP-Based Environment Simulator 

A separate feature of microgrids is the use of stochastic components: RES from the generation 

side and flexible active loads from the consumption side. In comparison with large power systems, 
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microgrids are capable of independently generating and delivering electricity to consumers, but only 

do all this at a local level. To ensure reliable and optimal operation of the microgrid, such grids use 

an energy management system, which, in accordance with the developed policy (management 

strategy), are able to automatically switch between energy sources, exchange energy with an external 

network, and even make load shedding if necessary. At the same time, the possible activity of 

consumers and the presence of RES introduce a stochastic nature into the optimization problem, and 

the desire for off-grid operation makes it necessary to apply the principles of online optimization. 

Online optimization is a stochastic optimization application that studies sequential decision 

making. One of the standard modeling approaches in this case is the MDP, which is a specification 

of the sequential decision-making problem for a fully observable environment with a Markov 

transition model and additional rewards. MDPs are useful for studying optimization problems 

solved based on dynamic programming and reinforcement learning. In recent years, MDP appears 

to be a promising mathematical formulation of the optimizing microgrid operation problem [63,64]. 

A number of studies clearly demonstrate the effectiveness of energy microgrids management using 

MDP-based methods: dynamic programming [65,66], deep RL [55,56,58,67], and Monte Carlo models 

[57,68]. 

This paper proposes an MDP-based environment that aims at simulating the techno-economic 

performance of a hybrid AC/DC microgrid, and in particular at quantifying the performance of an 

agent responsible for controlling the devices of the microgrids, as a function of the random processes 

governing all the variables that impact the microgrid operation, e.g., consumption, renewable 

generation, and market prices. Components of the microgrid include non-steerable (i.e., renewable 

PV or wind) and steerable (i.e., diesel, gasified biomass, or co-fired generators), as well as battery 

energy storage systems, and different type of loads. When the energy level from storages and from 

non-flexible production is not sufficient to ensure the loads are served, the steerable generators 

compensate for the remaining energy to be supplied. 

2.1. Dynamics  

The simulated system is composed of several consumption, storage, and generation devices. In 

this paper, intermittent generation and non-flexible consumption are represented by real data 

gathered from an off-grid microgrid.  

2.1.1. Storage  

Let us employ a linear model for the simulation of the battery since it is assumed that the 

simulation time-step size ∆t is large enough (1 h). The dynamics of a battery is modeled as 

���(� + 1) = ���(�) + ∆� ����������
������

−
��

���������

����������
�, (1) 

where ���(�) denotes the state of charge at each time step; t, ��
������

 and ��
���������

 correspond to 

the charging and discharging power, respectively; and �������  , ����������  represent the charging 

and discharging efficiencies of the storage system, respectively. The charging ( ��
������

) and 

discharging (��
���������

) power of the battery are assumed to be limited by a maximum charging and 

discharging rate respectively. For more sophisticated models of the storage systems readers may refer 

to [69] and the references therein. 

2.1.2. Steerable Generator Model 

Steerable generation allows any type of diesel or biomass-based generation that can be 

dispatched at any time-step t. The fuel curve can be used to determine the fuel amount that the 

steerable generator consumes to produce electricity. It is assumed that the fuel curve is a straight line 

and use the following equation gives the generator’s fuel consumption in units/h: 

� = ����� + �����, (2) 
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where �� is the fuel curve slope [units/h/kW], ��is the intercept coefficient [units/h/kW], ������  is 

the rated capacity of the steerable generator [kW], and ���  is the electrical output of the steerable 

generator [kW]. 

The generator fuel intercept coefficient �� gives the no-load fuel consumption of the generator 

divided by its rated capacity. The marginal fuel consumption of the generator is determined by the 

generator fuel curve slope, ��, and can be expressed in units of fuel per hour per kW of output, or 

equivalently, units of fuel per kWh. 

The generator’s electrical efficiency can be defined as the relationship of the electrical energy 

coming out and the chemical energy of the fuel going in using the following equation: 

���� =
�.�∙���

�̇����∙�������
, (3) 

where: �̇���� is the mass flow rate of the fuel [kg/h], �������  is the lower heating value of the fuel 

[MJ/kg]. If the fuel units are kilogram (i.e., gasified biomass unit) then �̇���� and � are equal. If the 

fuel units are L (i.e., diesel unit), the relationship between �̇����  and �  involves the density 

�����: �̇���� = �����(� 1000⁄ ). 

A generator operates in dual-fuel mode (diesel fuel and producer gas). In each time step, the 

MDP-based environment simulator calculates the required output of the generator and the 

corresponding mass flow rates of diesel fuel and producer gas. The system in dual-fuel mode always 

attempts to maximize the use of producer gas and minimize the use of diesel fuel. 

The fuel curve of a generator defines the fuel consumption of the generator in pure diesel mode. 

Therefore, the fuel consumption in pure diesel mode is given by the following equation 

�̇� = ���, (4) 

and 

�̇� = �̇� +
�̇���

����

, 

�̇��� = ����(�̇� − �̇�). (5) 

If actual value of the producer gas flow rate �̇��� is known, at any time step, the diesel fuel 

flow rate can be calculated from Equation (5) 

�̇������ = ���̇�, (6) 

where ���� = 1 − �̇��� �����̇�⁄  is the diesel fraction, i.e., the ratio of diesel fuel used by the generator 

in dual-fuel mode to that required to produce the same output power in pure diesel mode. 

2.2. Stochastic Optimization Formulation 

Due to the stochastic nature of hybrid distributed generation, the dynamic dispatch of the 

microgrid is essentially a stochastic optimization problem. Usually, the goal is to minimize the 

operational cost. The optimization-based controller or agent serves as a baseline for comparison to 

our proposed methods. This controller receives as input all the parameters available and solves an 

optimization problem in receding horizon. The objective function to minimize aggregates 

curtailment, shedding, and fuel costs (the π parameters denote unit costs), are taken from [65]: 

��� Δ� � � � ��
������,�

���� +

�∈���� ��

� ��
������,�

���� + � ��
����

������,�

�∈��∈���� �����

� ,

�

 (7) 

where ��,�
���� , ��

����  is generation curtailment and the curtailment price, respectively; ��,�
����,, ��

����  is 

load shedding and shedding price, respectively; and ��
����

 is the fuel price.  

Due to constraints of the stochastic optimization model, the energy balance equation of the 

following form is suggested: 
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� ��,�
��

�∈�

+ �(��,�
��� �� − ��,�

����

�∈�

) + � ��,�
���������

= � ��,�
������

+

�∈��∈�

�(��,�
��� ����

− ��,�
����

�∈�

), 

where ��,�
�� , ��,�

��� �� are steerable and non-steerable generation, respectively; ��,�
������

, ��,�
���������

are 

charging and discharging power of battery b, respectively; and ��,�
����, ��,�

��� ��������
are shedding power 

and non-flexible demand, respectively.  

In addition, the binary variables ��,� are added to the optimization model to specify the 

minimum operating point of the steerable generators, ∀�∈ Τ: 

��,�����,�
�� ≤ ��

�� ≤ ��,���
��. 

The law of transition of the state of charge s of each battery b is modeled as presented in [57]. 

Thus, this mathematical problem in general is a MILP. 

3. Reinforcement Learning for Energy Microgrids Management 

3.1. Problem Statement 

RL solves the problem of sequential optimal decision making [69]. The mathematical model of 

this problem is MDP. RL is a promising way of machine learning, which suggests that the agent learns 

by interacting with an environment, for example, a microgrid. In simple words, RL is trying to find a 

set of actions (policy) that would be the most beneficial for the agent. 

Centralized microgrids’ control strategy can be separated into four following tasks: estimation 

of parameters of microgrid devices, forecasting consumption and generation from renewable energy 

sources, operational planning for predicting the impact of weather and human activities, and real-

time control to adapt the planned solutions to the current control moment. RL methods use microgrid 

simulation data (or simulated data before the microgrid is actually involved) to study management 

strategies. Therefore, they actually combine the four steps described above. Theoretically, they can 

adapt to certain types of changes without the need for manual tuning. 

This paper proposes the simulation framework, where the RL agent only has access to the 

current non-steerable generation and non-flexible consumption in the microgrid. It has also access to 

the state of charge of the different storages and it must decide how to use the storage systems. The 

steerable generation compensates to establish the equilibrium. In case there is an excess of non-

steerable generation and no more room for storage, the non-steerable generation is “curtailed”, i.e., 

is lost. At each time-step t, the state variable �� = ������,�, ∀�∈ ��, ��
����, ��

����� ∈ � contains all the 

relevant information for the optimization of the system. The control �� = ����,�
���������

, ��,�
������

, ∀�∈

��, (��,�
�� , ∀�∈ �� ∈ � applied at each time-step t contains the charging/discharging decisions for the 

storage systems and the generation level of the steerable generator. At each time-step t, the system 

performs transitions based on the dynamics described above according to ���� = �(��, ��, ��). Each 

transition generates a cost according to the cost function �(��, ��) = (���� + ����� + ���)  ∈ �. Figure 1 

shows the main RL-based approach for energy microgrids optimal management. 

AGENT

ENVIRONMENT
(microgrid)

Policy

RL algorithm

Update 
policy

Reward rt 
(cost function ct)

State st Action at 
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Figure 1. The main reinforcement learning (RL)-based approach for the energy microgrids’ optimal 

management. 

The total discounted cost for the microgrid associated to a policy � ∈ Π is given by 

��(��) = � ���(��, �(��)).

���

���

 (8) 

An optimal policy �∗ is a policy that, for any initial state ��, yields the actions that minimize 

the total discounted cost such as: 

�∗ = min
�

��(�0), (9) 

�∗ = ��� min
�

��(��) (10) 

Most of the RL algorithms include a quality function evaluation that says how “useful” or 

“valuable” the current state (V-function) or state–action pair (Q-function). Both functions return the 

mathematical expectation of the γ-discounted amount of rewards until the end of the simulation 

using a specific policy π. Additionally the state–action value function �(��, ��)  associated to an 

optimal policy �∗ is used to characterize the quality of taking action �� at state ��, and then acting 

optimally and is defined as:  

�(��, ��) = �(��, ��) + � min
����

����(����, ����), (11) 

where �(��, ��) ∈ ℝ  is the reward function, which define each transition and generates an 

operational revenue �� for each individual scenario of the network configuration. 

The optimal action at each time-step t can be obtained using the optimal Q-value as: 

��
∗(��) = ��� min

��

��(��, ��) , � = 0, … , �. (12) 

3.2. Reinforcement Learning Agents  

The key idea of this article was to study advanced RL models for optimal control of an off-grid 

PV-diesel-biomass microgrid. It was decided to consider RL algorithms that in recent years have 

shown so-called superhuman efficiency (i.e., they solved complex mathematical problems better than 

an expert in the subject field), namely DQN agents as the leader in Atari Games, and proximal policy 

optimization (PPO) agents who defeated the best players in Dota and Monte Carlo tree search 

(MCTS), which became the basis of the AlphaGO system. The results of optimizing the microgrid 

regime are compared with results of the reference, classical MILP algorithm. 

The available information for RL agent at each time-step is composed of the consumption, the 

state of charge, the number of cycles and the capacity of each storage device, the renewable 

production, and its capacity. It is assumed that the RL agent has control of the storage devices. 

However, the original action space is continuous and of high-dimensionality. High-level actions are 

used in the decision-making process that are then mapped into the original action space. The 

instantaneous reward is defined as the negative total cost of operation of the microgrid according to 

Equation (7) and is composed of: 

1. fuel costs for the generation, 

2. curtailment cost for the excess of generation that had to be curtailed, and 

3. load shedding cost for the excess of load that had to be shed in order to maintain balance in the 

microgrid. 

3.2.1. MILP-Based Optimizer 

This optimizer solves a linear program that minimizes the cost to optimize its actions. The output 

actions are continuous actions showing the exact charge/discharge level of each storage and the exact 

generation from steerable generators. In the presented study, the authors used an optimization model 
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based on MILP as a reference for comparing the effectiveness of RL models. MILP-based optimization 

formulations, however, suffer from important drawbacks. Most importantly, they are restricted in 

terms of the number of integer or binary variables that can be practically included and are difficult 

to efficiently parallelize. This limits possibilities for optimizing the planning and control of large-

scale microgrids (e.g., larger than 30–100 buildings [62]) and power systems. Compared with MILP, 

RL generates near-optimal solutions on par with the research approaches of conventional operations; 

however, it makes it significantly faster (because an RL-agent has already found all the optimal policy 

offline). The statement of the MILP problem for optimizing microgrid management is described in 

detail above in Section 2. 

3.2.2. Deep Q-Network Agent  

The main idea is to employ the deep neural networks to represent the so-called DQN and train 

this network to predict the total reward [70,71]. The approach is based on the Q-learning algorithm, 

which implements an iterative approximation of the Q function through training on temporal 

differences, where the mean square error between the predictor and the goal is minimized at each 

step, see Equation (11). When the number of states is large, saving a lookup table with all possible 

values of action–state pairs is inappropriate. In [72], a general solution to this problem was proposed 

using the parameterized approximation function �, so that �(�, �) ≈ �(�, �; Θ). It was proposed to 

use a deep neural network as an approximator. The neural network parameters ��  can be updated 

using stochastic gradient descent by sampling batches of transitions, a quadruple (��, ��
� , ��, ����) and 

the parameters ��  are updated according to: 

���� = �� + �(�� − �(��, ��
� ; �))���

�(��, ��
� ; �), (13) 

where � is a scalar step size called the learning rate. 

3.2.3. Monte-Carlo Tree Search Agent  

MCTS is a policy-optimization algorithm for finite-horizon, finite-size MDP, based on random 

episode sampling structured by a decision tree, where each node in the tree represents a complete 

state of the domain and each link represents one possible valid action, leading to a child node 

representing the resulting state after taking an action. The statement of the problem in MCTS is based 

on game theory. It had a strong influence on programs for playing Go, although it finds its application 

in other games. Monte Carlo methods work by approximating future rewards that can be achieved 

through random samplings [73].  

MCTS proceeds in four phases of selection, expansion, rollout, and back-propagation. The 

standard MCTS algorithm proceeds by repeatedly adding one node at a time to the current tree. 

Given that leaf nodes are likely to be far from terminal states, it uses random actions, to estimate 

state–action values. After the rollout phase, the total collected rewards during the episode is back-

propagated through the tree branch, updating their empirical state–action values, and visit counts. 

Choosing which child node to expand (i.e., choosing an action) becomes an exploration/exploitation 

problem given the empirical estimates. Upper confidence bounds (UCB) is an optimization algorithm 

that is used for such settings with provable guarantees [74]. Each parent node chooses its child with 

the largest ���(��, ��) value according to the following formula 

���(��, ��) = �(��, ��) + С�
ln ��

1 + ��

, (14) 

where �� is the visit count for the ith child; �� is the number of visit counts for the parent node. The 

parameter c ≥ 0 controls the tradeoff between choosing lucrative nodes (low c) and exploring nodes 

with low visit counts (high c). It is often set empirically. 

High efficiency is determined by the fact that with the MCTS method the decision tree grows 

asymmetrically: more “interesting” nodes are visited more often, less “interesting” nodes less often, 

and it becomes possible to evaluate a single node without revealing the entire tree. If the task of 
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managing a microgrid is formulated as a partially observable MDP, then a simulator of its operation 

(environment) can be developed in which all possible states can be formed in the form of a tree structure 

and passed using the MCTS agent. 

3.2.4. Proximal Policy Optimization Agent  

PPO agent trying to compute an update at each step that minimizes the cost function while 

ensuring the deviation from the previous policy is relatively small. PPO belongs to the family of 

policy gradient methods, which use several eras of random gradient rise to complete each policy 

update. [75]. In this method [76], a parametrized stochastic policy function �(��|��; �) with 

parameters �  is directly optimized towards the objective defined in Equation (10). After the 

collection of N full trajectories � = ���,�, ��,�, ��,�, ����,�, … , ��,�� a gradient step is performed for the 

update of the parameters � as: 

���� = �� − �∇�� (15) 

with clipped objective ����� proposed in [72], 

∇�� = ����� = ��max (�(�)���, ����(�(�), 1 − �, 1 + �)� (16) 

where � denotes the empirical expectation over time steps, ��� is the estimated advantage at time t, 

�(�) is probability ratio under the new and old policies respectively, � is a hyperparameter, usually 

0.1 or 0.2. 
The optimal policy is derived by performing multiple steps of stochastic gradient descent on this 

objective. While standard policy gradient methods perform one gradient update per data sample, the 

PPO algorithm enables multiple epochs of minibatch updates resulting in better sample efficiency. 

4. Results 

The evaluation of the proposed methodology was performed using empirical data measured by 

the off-grid microgrid system composed of 10 kW of PV panels, 24 kWh of two battery storages, and 

a 10 kW generator. The microgrid configuration contained three loads (each one being 10 kW), a PV 

module, a steerable generator (biomass gasifier with an internal combustion engine operating in only 

producer gas and dual-fuel mode), as well as storage devices (Figure 2). Additionally, the costs for 

curtailment and load shedding were defined. Time-series from the two year historical parameter 

dataset (frequency of 1 h) are used to simulate the three loads and the PV module. The storage devices 

have slightly different characteristics, namely different charging/discharging efficiencies. The 

parameters used for this specific microgrid configuration are given in Table 1.  
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Figure 2. General microgrid configuration. 

Table 1. Microgrid parameters. 

Unit Parameter Value 

Diesel generator lower heating value, �������  [MJ/kg] 43.2 

 fuel density ����� [kg/l] 820 

 fuel (diesel) price, ��
����

 [euro/l] 1 

 minimal power ratio 0.25 

 capacity, ���  [kW] 10 

Gasifier biomass generator lower heating value, �������  [MJ/m3] 6.17 

 biomass flow rate,  �̇��� [kg/h] 15 

 fuel (pellets) price, ��
����

 [euro/kg] 0.11 

 minimal power ratio 0.20 

 capacity, ���  [kW] 10 

Co-fired generator minimal power ratio 0.20 

 producer substitution ratio, ���� 8.5 

 fuel (pellets) price, ��
����

 [euro/kg] 0.11 

 available producer flow rate [kW/h] 28 

 capacity, ���  [kW] 10/20 * 

Storage device battery capacity, [kWh] 12 

 charge/discharge efficiency, ������� , ����������  0.95/0.89 

 maximum/minimum charge rate, [kW]  4.0 

*. In case of co-fired generator the capacity is selected as 10 kW, for the case of no PV, 20 kW.  

The optimization agent system is intended to become multi-objective. It has to minimize the 

operation cost while ensuring the reliability by maximizing the service level or served demand. The 

case of an off-grid system is considered under the assumption that imports are equivalent to load 

shedding 
shed
d( = 100 euro/kW) and exports are equivalent to production curtailment 

curt
g( = 10.5 

euro/kW). 

The technical limits of the generator i.e., the maximum (capacity) and the minimum stable 

(percentage of the capacity) operating point are also specified. The operating points of the steerable 

generators from experimental studies are used to get their fuel curve. Two fuel curve inputs are the 
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intercept coefficient and the slope according to Equation (2). For example, according to the practical 

studies [77], biomass consumption increased with an increase in load; however, specific biomass 

consumption decreased with an increase in load. The following operating points are selected: the 

biomass consumption 13.2 and 15 kg/h at 3.0 and 10.0 kW load, respectively. 

4.1. Microgrid Simulator Description 

To carry out the calculations, the open source simulator of the microgrid operation developed 

in Python [78] was used and modified by the authors. This simulator was implemented as a training 

environment for the optimization of RL agents such as DQN, MCTS, and PPO, for the implementation 

of which the TensorFlow and OpenAI gym libraries were used [79]. To implement the MILP model, 

the code from Gurobi Optimizer was used. 

The optimization agent has control of the storage devices. The actions available at each decision 

step are the charging (C), discharging (D), and idling (I) of each storage device in the microgrid. The 

actions are then converted in implementable actions automatically following a rule-based strategy: 

1. If the total possible production (i.e., PV production, active steerable generators capacity, and the 

storages maximum discharge rate) is lower than the total consumption, a steerable generator is 

activated at its minimum stable generation. This instruction is repeated until the total load can 

be served or until all steerable generators are active. In a few words, the generators are activated 

one by one at their minimum stable generation until the total load can be served. Given the lower 

flexibility of the gasifier biomass generator compared to the diesel generator, it is assumed that 

the biomass generator does not turn off completely but continues to operate in idle mode. For the 

co-fired generator, the possibility of autonomous start-up on diesel fuel remains to ensure 

ignition of the gasifier biomass generator [80–82]. 

2. Once all active steerable generators are known, the net generation can be calculated based on 

their minimum stable generation, the PV production, and the total consumption. 

3. If the net generation is positive, the storages (with charge instruction) charges the excess of 

energy until the net generation becomes zero. The storages with discharge or idle instructions do 

not do anything. The remaining excess of energy is curtailed. 

4. If the net generation is negative, the storages (with discharge instruction) discharges the deficit 

of energy until the net generation becomes zero. The storages with charge or idle instructions do 

not do anything. The remaining deficit of energy is then compensated by the active steerable 

generators which can be adjusted at a higher production level than their minimum stable power. 

If, in addition, steerable generators cannot handle the remaining deficit, this deficit is considered 

as lost load. 

The following protocol was carried out for the training and the evaluation of the proposed RL-

based algorithms and MILP. The policies were trained in the first three months (December–February) 

and were tested in one week of the fourth month (March). The performance of the algorithms was 

compared against the benchmarks of MILP described in Section 2. The following MILP-based 

optimization controller was considered for comparison purposes. A MILP optimization controller 

with perfect knowledge was considered with 12 periods of look-ahead and additional noise around 

the exact value of the stochastic variables. This gave a good approximation for the lower bound of 

the control problem. 

4.2. Analysis of Different Microgrid Configuration Efficiency 

In addition to evaluating the effectiveness of the state-of-the-art optimization models for the 

microgrid management, another and main goal of our paper was a comparative study of the use of 

various types of steerable generators on diesel fuel and wood biomass from the point of view of 

minimizing the operational costs of microgrid, according to Equation (7). The following microgrid 

configurations are examined: 



Energies 2020, 13, 2632 12 of 20 

 

1. Configuration 1 (case 1)—PV (10 kW), diesel generator (10 kW), two storage devices (2 × 10 kWh), 

and three loads (3 × 10 kW).  

2. Configuration 2 (case 2)—PV (10 kW), gasifier biomass generator (10 kW), two storage devices (2 

× 10 kWh), and three loads (3 × 10 kW). 

3. Configuration 3 (case 3)—PV (10 kW), co-fired generator (10 kW), two storage devices (2 × 10 

kWh), and three loads (3 × 10 kW).  

4. Configuration 4 (case 3)—co-fired generator (20 kW), two storage devices (2 × 10 kWh), and three 

loads (3 × 10 kW). 

Case 4 considers a realistic case for some regions of Siberia (Russia), where the installation of PV 

generation is not profitable in remote villages, and the use of generators using diesel fuel incurs 

increased costs (Figure 3). Therefore, the latter case included only a co-fired generator as the main 

energy source for the microgrid, operating in conjunction with two storage devices, where it becomes 

possible to accumulate electricity for cases of possible interruptions in the operation of the main 

generation (temporary lack of biofuel, possible generator breakdown, etc.). For case 4, it is assumed 

that the power of a co-fired generator is 20 kW. In all cases, a gasifier biomass generator and a co-

fired generator used pellets as biofuel. 

 

Figure 3. Plot of the microgrid PV generation for the one-week testing period. 

The results of the described protocol are presented in Table 2, which show the total cost of each 

strategy for each testing period, in order that a comparison can be drawn. As can be seen from the 

table, the closest to the MILP reference solution are policies of the MCTS algorithm for all considered 

cases of microgrid configuration. 

Table 2. Total cost of obtained optimal policies, �∗ for compared optimization agents. 

Models 

Total Costs (euro) 

PV + co-fired 

generator 

(case 1) 

PV + gasifier 

biomass 

generator 

(case 2) 

PV + diesel 

generator 

(case 3) 

Co-fired 

generator 

(case 4) 

MCTS 181 144 630 240 

DQN 1042 975 1619 2140 

PPO 
417 846 1478 

1110 
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MILP 

(ideal model) 
131 122 347 161 

It is clearly seen that the use of a gasifier biomass generator (Case 1) and a co-fired generator 

(Cases 3, 4) can reduce operational costs compared to using a diesel generator (Case 3) as a steerable 

generator in the microgrid. This is clearly shown in the graphs of Figures 4 and 5, which show the 

total costs (including accumulated ones), as well as the dynamics of the components of generation 

and consumption for the microgrid for the one-week testing period. The best option was obtained for 

the configuration of a microgrid containing a solar station and a gasifier biomass generator (Case 2). 

It should also be noted that Case 4 provides slightly higher costs compared to Case 1, i.e., when there 

is no PV generation, due to the fact that the energy management system fails to fully realize the stored 

energy in the storage devices (Figure 5b). This is obvious, since it is more expedient to use storage 

devices if the microgrid contains any RES (sun or wind), and in this respect Case 4 as considered by 

us, may look somewhat artificial. However, for the configuration of a microgrid with only one 

generation source, the meaning of the optimal control problem is lost. 

 

(a) Configuration 3—PV + diesel generator. 

 

(b) Configuration 2—PV + gasifier biomass generator. 

Figure 4. Total costs (left) and generation/load mix – right (The load mix on the graph here does not 

mean the entire total load of the microgrid, but only an illustration of what components of the 

electricity consumption (load, battery, or curtailment) the generated power were used to ensure 
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balance) of different microgrids’ configurations for optimal policies, �∗obtained using the Monte-

Carlo tree search (MCTS) for the one-week testing period. 

 

(a) Configuration 1—PV + co-fired generator. 

 

(b) Configuration 4—co-fired generator. 

Figure 5. Total costs (left) and generation/load mix (right) of different microgrids with co-fired 

generators for optimal policies, �∗ obtained using MCTS for the one-week testing period. 

4.3. Comparative Study of RL-Based Models  

It is observed that in all cases the MCTS policy performed very close to the MILP-based 

optimization controller (Table 2). Perhaps, this is due to the fact that the MCTS algorithm manages 

to anticipate periods of high energy curtailment or load shedding and manages to utilize the storage 

device accordingly. In addition, a fairly good policy, along with MCTS, is provided by the PPO 

algorithm (Figure 6). MCTS policy also gives good results for Case 4, when the optimization of energy 

storage is not always obvious, due to the lack of RES. It is clearly seen that the PPO and DQN 

algorithms actually fail to find adequate policies for this case and the high costs, in fact, are associated 

with large volumes of curtailment lost energy in the storage devices (Figure 7). It is important to note 

that the search for the optimal policy, �∗ in the training process, is much faster for PPO and DQN 

algorithms, when compared to that of the MCTS algorithm. 
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(a) Proximal policy optimization (PPO) algorithm. 

 
(b) MCTS algorithm. 

Figure 6. Dynamics of the charge and discharge of batteries for Case 1 for optimal policies, �∗obtained 

using PPO and MCTS algorithms for the one-week testing period. 
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Figure 7. Dynamics of the charge and discharge of batteries for Case 4 for optimal policies, �∗obtained 

using PPO algorithm for the one-week testing period. 

5. Discussion and Conclusions 

This paper deals with the control and optimization problems for an isolated microgrid 

combining RES (solar energy and biomass gasification) with a diesel power plant. To attack this 

problem, the contemporary methods of stochastic online optimization based on reinforcement 

learning and linear programming were employed, when the microgrids control was based on the 

MDP. The main advanced reinforcement learning methods DQN, PPO, and MCTS were examined, 

and the results were compared with the reference solution of the MILP model. The closest results to 

the reference strategy were demonstrated by the MCTS algorithm for all cases of microgrid 

configuration. 

The multi-objective optimization problem, which was minimizing the total cost of operating a 

microgrid, including the cost of fuel for controlled generators, electric power reduction, and load 

shedding, was addressed. As a result, the most economic microgrid configuration was found and it 

used the gasification of biomass with gasifier/internal combustion engine system operating both in 

single-fuel mode (producer gas) and in dual-fuel mode (diesel fuel and producer gas). Their use in 

the microgrid is cheaper when compared with diesel generators. This is obviously caused by the 

lower cost of biomass, which is pine pellets in our case. It is to be noted that fuel delivery was ignored 

in our case. It should also be outlined that the use of a conventional biomass-gasifier, which burned 

only the producer gas in an internal combustion engine, was somewhat more economical in 

comparison with that of the dual-fuel engine operation mode. However, the latter is more 

maneuverable due to the possibility of starting and flexible engine control by varying the share of 

diesel fuel use, which allows it to be used more efficiently (along with a conventional diesel 

generator) when the corresponding microgrid energy management system is operating. 
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