
energies

Article

FPGA Implementation of Homotopic Path Planning
Method with Automatic Assignment of
Repulsion Parameter

Hector Eduardo De Cos-Cholula 1,*,†, Gerardo Ulises Diaz-Arango 1,†,
Luis Hernandez-Martinez 1,*,†, Hector Vazquez-Leal 2,3,†, Arturo Sarmiento-Reyes 1,†,
Maria Teresa Sanz-Pascual 1,† , Agustin Leobardo Herrera-May 4,5,†

and Roberto Castaneda-Sheissa 3,†

1 Electronics Department, National Institute for Astrophysics, Optics and Electronics (INAOE),
Sta. María Tonantzintla, Puebla 72840, Mexico; guda.diaz.gd@gmail.com (G.U.D.-A.);
jarocho@inaoep.mx (A.S.-R.); materesa@inaoep.mx (M.T.S.-P.)

2 Consejo Veracruzano de Investigación Científica y Desarrollo Tecnológico (COVEICYDET),
Av. Rafael Murillo Vidal 1735, Cuauhtémoc, Xalapa 91069, Veracruz, Mexico; hvazquez@uv.mx

3 Facultad de Instrumentación Electrónica, Universidad Veracruzana, Xalapa 91000, Veracruz, Mexico;
rocastaneda@uv.mx

4 Micro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455,
Boca del Río 94294, Veracruz, Mexico; leherrera@uv.mx

5 Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat,
Universidad Veracruzana, Calzada Ruíz Cortines 455, Boca del Río 94294, Veracruz, Mexico

* Correspondence: hdecos@inaoep.mx (H.E.D.C.-C.); luish@inaoep.mx (L.H.-M.);
Tel.: +52-222-2470517 (H.E.D.C.-C.)

† These authors contributed equally to this work.

Received: 15 April 2020; Accepted: 12 May 2020; Published: 21 May 2020
����������
�������

Abstract: In recent times, autonomous robots have become more relevant, aiming not only to be
an extension of mobility and human performance but also allowing them to independently solve
specific problems such as finding free-collision paths within some defined environments. In order to
achieve this, several techniques have been developed, like action-reaction algorithms, sampling-based
algorithms, and deterministic algorithms such as the Homotopy Path Planning Method (HPPM).
This work presents, for the first time, a complete deterministic collision-free path planning scheme
implemented in FPGA, which is mounted on a Scribbler 2 robot from Parallax. Then, an automatic
algorithm of the repulsion parameter for the HPPM method is presented, using as a reference
the minimum distance between the center of each obstacle with respect to the homotopic ideal
path; furthermore, an algorithm is proposed for discriminating dead-end routes and collision risk
trajectories, which allows us to obtain a feasible free-collision path that takes into account the robot
dimensions. Besides, comparative performance tests have been carried out against other path-finding
methods from the low degrees of freedom (low DoF) and sampling-based planners. Our proposal
exhibits path calculation times which are 5 to 10 times faster on FPGA implementation, compared to
the other methods and 10 to 100 times faster on PC implementation also compared to the rest. Similar
results are obtained with regards to memory consumption, namely 20 to 200 times lower on FPGA
implementation and 10 to 100 times lower on PC implementation.

Keywords: mobile robotics; homotopic continuation method; homotopy path planning method;
repulsion parameter; FPGA implementation

Energies 2020, 13, 2623; doi:10.3390/en13102623 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-5820-7608
https://orcid.org/0000-0002-7373-9258
http://www.mdpi.com/1996-1073/13/10/2623?type=check_update&version=1
http://dx.doi.org/10.3390/en13102623
http://www.mdpi.com/journal/energies

Energies 2020, 13, 2623 2 of 31

1. Introduction

Robotics has improved the quality of human life by simplifying tasks, especially those that require
high precision or imply physical risks [1]. As a consequence, it has been necessary that the robot could
properly move within a particular environment [2], in order to extend its coverage range. Therefore,
the study of free-collision movements in a given environment has become a need to guarantee robot
safety and the surrounding objects or persons. Several methods have been developed to obtain
feasible paths to avoid collisions, such as low degrees of freedom (DoF) methods or sampling-based
techniques [3]; several of them are optimized [4–6] and deterministic algorithms [7,8]. The following
lines will provide a brief description of these methods.

Among the low DoF methods, the Bug algorithm is a planning method that uses static
environment maps and local analysis [9], by simulating the behavior of insects. This algorithm
aims to reach the final position using a straight line; if an obstacle appears, the algorithm tries to
surround it. In practice, preventing collisions depends on the information obtained from optical or
proximity sensors. In fact, the method performs a 360◦ scan to determine the next position based
on information provided by the sensors. Whether a change of the sensed distance from infinity to
a determined value is detected, or from a certain value to infinity, or between two different values,
results in a new point for the motion trajectory. The main disadvantage lies in the need of sensors to
recognize the environment, and even so, the method can often fall into closed loops without reaching
the end point. In order to solve these issues, the algorithm has been modified and there are recently
developed variants that complement the initial idea [10–12].

In addition, regarding low DoF algorithms, we can mention the Artificial Potential Fields method
(APF) [13] as an alternative. It is based on the allocation of repulsion forces between the robot and
obstacles, as well as attraction forces between the robot and goal position. By superimposing the
resultant forces, a resultant vector is generated that determines the next point in the trajectory. For this
method, both the gain constant and the influence distance are fixed values defined at the beginning
of the algorithm; in addition, a partial derivative vector between the obstacle and robot is generated.
Complexity of the method increases when a set of nearby, or adjacent, obstacles are present within
the range of influence, thus, for each one the partial derivative vector has to be calculated. Moreover,
under certain conditions, it is possible that local minima is generated during the trajectory calculation,
which the robot would interpret as having reached the desired final position because attraction and
repulsion forces are in equilibrium. An important advantage of this algorithm is the possibility to
work in continuous real time domains [7,14].

The Expansive-Configuration Space Trees (EST) (The acronym EST to describe Expansive-
Configuration Space Trees does not appear in the original papers but is used in many others for
convenience.) is an algorithm of random planning that samples a portion of the space that is relevant
to the analysis, avoiding the cost of determining the entire environment [15,16]. It performs two
basic steps, expansion and connection. During expansion, the number of points to be sampled
(milestones) is set as well as the distance between new and previous points. These milestones
are selected randomly, independently, and uniformly within the free space (environment without
obstacles). To improve the response time, two trees (two space expansion configurations) are generated
simultaneously, one having the initial point as its root and the other having solution point as the
other root, both growing until both expansions are visible to each other. Under a certain proximity
condition, a connection of the spaces (through both trees) is established, generating the solution
path. This algorithm is executed until the solution path is found or until the maximum number of
iterations have been reached. An issue with this method appears when the solution space contains
narrow corridors, because the radius of expansion needs to take small values, which causes a notorious
increase in execution time. Conversely, another shortcoming occurs when trajectories exhibit numerous
vertices, which complicates the selection of an accurate trajectory. Although it is possible to execute a
smoothing algorithm, there is the possibility that during its execution the smoothed path could cause
collisions with the obstacles. Moreover, in the original EST algorithm, the tree grows in all directions,

Energies 2020, 13, 2623 3 of 31

generating numerous points to evaluate and expand; nevertheless, this can be reduced by guiding the
robot through a specific path [17].

The Kinodynamic Planning by Interior-Exterior Cell Exploration (KPIECE) is a suitable method for
real-time path planning that iteratively builds a tree of movements in the solution space [18,19]. Motion
trees are started with an initial position, and a null control function is applied at time t = 0. Afterwards,
continuous segments are generated by using a propagation function with fixed step size. The solution
space is discretized by creating cells so small that they allow just a single movement within each one.
Cells are classified in two groups, namely Interior and Exterior cells. This classification is important
because the algorithm focuses on the exterior group by selecting those cells that allow a more efficient
exploration leading to a faster encompassing of the free space. The next breakthrough point is decided
by a probabilistic calculation, preferring the displacement on recently added cells. The problem of this
method lies in the compromise between cell size and memory space. Consequently, if the free space
presents a high degree of complexity, then, results from algorithm progress are relatively slow because
memory space must be increased in order to keep a record on importance indicators, cell classification,
progress, and penalties.

The Probabilistic RoadMap method (PRM) [20,21], consists of two phases: a preprocessing phase
and a search phase. The preprocessing phase encompasses three processes, roadmap construction,
connectivity checker, and the collision verifier. The first process starts with a single-node graph
containing the starting point. Around it, a maximum radius region is defined. Within it a uniform
probability distribution of a set N of possible arrival nodes is generated. These selected nodes in N must
avoid collisions with any obstacles in the region. Connectivity checker establishes valid connections
between these nodes and the starting point by generating additional edges to the graph. Collision
verifier is aimed to avoid collisions of the edges with obstacles using an iterative halving algorithm of
the edge until a minimum segment size is reached. In case that collision verifier does not detect any
issue, the edge is considered valid and stored. The search phase is devoted to finding a valid shortest
path using any search algorithm such as Dijkstra’s or A*. An important advantage of this method is
the roadmap reusability for other pairs of starting-final nodes, for the case of static environments.

Rapidly-exploring Random Tree (RRT) [22–24] is a sampling scheme to perform fast searches
in large-dimensional spaces. The given spaces may contain geometrical or differential constraints
depending on obstacles, type of robot, or dynamics implicit in the problem. This procedure starts
by generating a randomly-selected set of sampling points near a specific vertex. The search for a
tree continues by resorting to an extension function that is used as a metric to choose the next set of
vertices. The method also achieves collision detection to determine if the next step of the search fulfils
the original constraints. During each iteration, three situations may arise. First: the goal position has
been reached, then the search ends. Second: a new vertex in the tree has been found, but it is not the
goal, then continue with the expansion procedure. Finally, third: the vertex is stuck, then it cannot be
used for any further expansion procedure.

Several variants of the RRT method have been proposed in order to deal with different
optimization parameters. Among them, the RRT_Connect [4] has been designed with the goal of
solving problems that do not consider differential restrictions. It is based on two main ideas: one is to
grow trees simultaneously from starting and goal positions and the other is to use heuristics attempting
to reach a maximum distance rather than a fixed step size per expansion. During each iteration,
both trees try to connect to the nearest vertex of the other one, resulting in a guided exploration.
Another variant is the RRT_Star method [5,6], which is an optimal version of the RRT with respect to
the path length, by removing loops and redundant nodes in the graph during the growing process and
operates only with directed trees. Although the algorithm optimizes path length, it exhibits a serious
shortcoming because its execution time tends to increase. This means that if search time is exceeded,
then the method is not able to find a solution.

There are also several alternative methods, focused on optimizing path planning and obstacle
avoidance, like those based on Cellular automata (CA) [25–27], whose main characteristic is its time

Energies 2020, 13, 2623 4 of 31

and space handling at a discrete level. Generally speaking, CA needs, at least, a network of regular cells
within n-dimensional space, a set of variables that provide the local state of each cell for every discrete
time instant, and a rule specifying evolution time of the states related to a central cell neighborhood.
For two-dimensional CAs, the 5-cell Von Neumann neighborhood (central, front, rear, left, and right
cells), or the 9-cell Moore neighborhood (central, front, rear, left, right, and their four diagonals) are
generally considered. In order to simulate such a system, it must be finite and have boundaries.
Within this method, the next state result directly depends on the previous state but nevertheless can
be expanded considering several previous states, thus creating a memory system. The movement
scheme is similar to that of potential fields; nevertheless, different approximation schemes can be used.
The model is attracted to the goal point, seeking to move on every step towards the goal complying
with the noncollision rule, which prohibits moving to occupied cells within the neighborhood at that
specific time analysis. This method maintains the movement and analysis scheme, updating the states
on every step, until the goal point is reached. It has several advantages such as the application in static,
dynamic, or combined systems and the inclusion or disappearance of obstacles during its execution,
the goal point modification through the process, among others.

Otherwise, there are deterministic methods, that is, methods for obtaining trajectories that are
executed only once with the certainty that, if the problem has at least one real solution, it will be found;
one of these methods is the Homotopic Path Planning Method (HPPM) [8,28–32]. The HPPM makes
use of the Homotopic Continuation Method (HCM), which has been initially used to solve systems
of Non-linear Algebraic Equations (NAEs) for the case when these systems have multiple solutions.
These are found through the conversion of a homotopic map; HPPM includes obstacle representation
within the environment through mathematical singularities in the system of equations to be solved.
To generate the homotopic conversion, one starts from a system of nonlinear equations with known
solution values and ends when solutions of the desired system of equations are reached by integrating
on an additional term known as the homotopic parameter (λ). During this conversion, a family of γ

curves is generated and within all of them, the HPPM will take advantage of the one that implicitly
contains the collision-free path. In the study cases presented in this article we will only work in two
dimensions; nevertheless, the HPPM algorithm can be expanded to n-dimensions, as shown in [8].
An advantage of the HPPM is, when applied in environments with a high density of obstacles and
narrow corridors as well [31], memory use and computation time increases at slower rate compared
to the methods previously mentioned, especially if it is considered that the solution method could
be implemented in an embedded system like a Field Programmable Gate Array (FPGA). This work
proposes a methodology that properly assigns the repulsion parameter for terrestrial mobile robots,
given that it constitutes a key value for finding an optimized collision-free path. The goal is to obtain a
solution path as close to the optimum, in terms of distance, as possible.

This paper is organized as follows: Section 2 describes HCM and the path planning solution
using HPPM. Description of the repulsion parameter and proposed methodology for its assignment is
described in Section 3. The implementation of this in a FPGA is presented in Section 4. Three study
cases are provided in Section 5. A brief discussion is given in Section 6. Finally, Section 7 presents the
conclusions of this work.

2. Homotopy Continuation Method as a Collision-Free Path Planning Method

The Homotopy Continuation Method (HCM) is used to solve NAEs applying a procedure that
involves transforming the NAEs into a trivial problem simple to solve; then, it transforms gradually
the trivial problem into the original NAEs increasing the probability of finding a solution. The NAEs
to solve is:

f (x) = 0, f ∈ Rn −→ Rn, (1)

Energies 2020, 13, 2623 5 of 31

where n indicates the number of x variables of the problem. Based on this, a homotopic map is
generated, which has the following representation:

H(f (x), λ) = 0, H ∈ Rn+1 −→ Rn, (2)

where the homotopic parameter λ is responsible for carrying out the continuous deformation of the
system of NAEs during its sweep from 0 to 1. When λ = 0 the solution of the system for H−1(0)
is known or can be calculated by numerical methods in a simple way; when λ = 1 the function
H(f (x), 1) = f (x), which implies that the set of solutions for f (x) has been found.

The perturbations that the homotopic system goes through generates a family of γ curves;
nevertheless, not all of these curves generate the path from λ = 0 to λ = 1, some produce closed
curves and others tend to diverge without intersecting at λ = 1. The curve that generates the path
from λ = 0 to λ = 1 is what essentially constitutes the solution for trajectory analysis. A possible
representation to generate the homotopic map would be:

H(f (x), λ) = λ f (x) + (1− λ)G(x) = 0, λ ∈ [0, 1], (3)

where, G(x) is a simple solving system. For this study, the method known as Newton’s homotopy [33]
is used, where through G(x) = f (x)− f (x0) allows one to find solutions of the system based on an
initial point x0. Its representation usually looks like the following:

H(f (x), λ) = λ f (x) + (1− λ)(f (x)− f (x0)) = 0. (4)

During the process, the value of λ may increase or decrease as it encounters backward trajectories;
therefore, predictor-corrector scheme shall be repeated until λ exceeds the value of 1, which means
that the original system has been solved and the homotopic path that goes from λ = 0 to λ = 1 has
been found. For all this to take place, it is important to define the system of non-linear equations
appropriately; once this has been defined, a suitable numerical continuity method is proposed,
otherwise global convergence of the system cannot be guaranteed.

In order to solve the problem for robotic applications presented in this investigation, it is important
to take into account the management of a normalized space, that is, dimensions adjustment. Then,
it is considered to reduce HPPM complexity from n-dimensions to only two of them. Initial position
A = (xinitial , yinitial) is set, for this article, at A = (0, 0); then, goal point B = (xgoal , ygoal) will be
B = (1, 1), delimited by a unitary length and width map. In addition, it must be aided by a pair of
equations whose only solution is found at end point B = (xgoal , ygoal) = (1, 1), so that:

f1(x, y) = 0, x, y ∈ R,
f2(x, y) = 0, x, y ∈ R.

(5)

In such a way that f1(1, 1) = 0 and f2(1, 1) = 0. This is how a pair of linear equations can be established:

L1(x, y) = ax + by + c = 0, x, y ∈ R,
L2(x, y) = dx + ey + f = 0, x, y ∈ R,

m1 = −a/b,
m2 = −d/e,

(6)

where, a, b, c, d, e and f are constants so that these lines intersect at point B = (xgoal , ygoal) = (1, 1).
For this work, we propose c = (1 + m1) and f = (1 + m2), where, m1 and m2 represent the respective
slopes of each auxiliary line. As already mentioned, homotopy will start from a simple, or known
solution; as for this case, the one generated by the crossing of lines L1 and L2.

Energies 2020, 13, 2623 6 of 31

Values used here are m1 = −4 and m2 = −1, since they have shown that to accomplish the
desired behavior of the resulting trajectory, according to the study carried out in [31] with various
combinations of slopes for the crossing of line L1 with L2.

Once the standardized space has been established, obstacles must be included. HPPM can work
with all kinds of obstacles represented with closed curves where, for this article, we will use circular
and rectangular representations. Circular obstacles are represented as:

Ci(x, y) = (x− xi)
2 + (y− yi)

2 − (ri)
2, (7)

where (xi, yi) are the coordinates of the i-th circular obstacle of radius ri. While rectangular obstacles
are analytically approximated through the ellipsoidal equation:

Ri(x, y) =
(

x− xi
αi

)2η

+

(
y− yi

βi

)2η

− 1, (8)

where (xi, yi) are the coordinates of the center of the i-th rectangular obstacle, and the base and
height approximations approach 2α and 2β, respectively, as η tends to infinity; for this study, η = 2
defines the vertices of each rectangle. Supported by these descriptions, the set of obstacles in [31] are
expressed through:

W(x, y) =
k

∑
i=1

(
pi

|Obji(x, y)|+ Obji(x, y)

)
, (9)

where Obji could be either, Ci(x, y) or Ri(x, y); pi is known as the repulsion parameter assigned to the
i-th obstacle Obji. To complete the inclusion of obstacles to the system, a compensation function must
be generated:

Q = W(1, 1) =
k

∑
i=1

(
pi

|Obji(1, 1)|+ Obji(1, 1)

)
, (10)

which evaluates the alterations caused by the obstacles at final point B = (xgoal , ygoal) = (1, 1).
With this, the full system of non-linear equations can be established that will describe the problem:

f1(x, y) = L1(x, y) = 0 x, y ∈ R,
f2(x, y) = L2(x, y) + W(x, y)−Q = 0 x, y ∈ R,

(11)

which converts the equation f2 into the constraint equation. Applying (11) in (4) it gets:

H1(f1(x, y), λ) = f1(x, y)− (1− λ) f1(x0, y0) = 0,
H2(f2(x, y), λ) = f2(x, y)− (1− λ) f2(x0, y0) = 0,

(12)

where starting point A has coordinates (x0, y0). Therefore, the system is established (see Figure 1).
An appropriate path tracking procedure that supports HPPM should be considered. One of them

is the Hyperspherical Algorithm [34–36] which, as its name implies, is based on the generation of an
n-dimension sphere with radius r and its center lies on the homotopic curve in Oi. The contour of this
sphere touches at least two points of the same curve, Oi+1 and Oi−1, as can be seen in Figure 2.

Energies 2020, 13, 2623 7 of 31

Figure 1. Environment map.

Figure 2. Hyperspherical Algorithm Representation for two dimensions.

A terrestrial robot has two-dimension variables ((x, y)); in addition, there is the need to provide
the homotopic parameter λ; therefore, the algorithm will use an equation dependent on three variables,
represented by:

Si(x, y, λ) = (x− cx)
2 + (y− cy)

2 + (λ− cλ)
2 − r2

i = 0, (13)

where (cx, cy, cλ) is the center Oi of each sphere and ri its particular radius. Combining this new
function with the system (12), the following system is obtained:

H1(f1(x, y), λ) = f1(x, y)− (1− λ) f1(x0, y0) = 0,
H2(f2(x, y), λ) = f2(x, y)− (1− λ) f2(x0, y0) = 0,
Si(x, y, λ) = (x− cx)2 + (y− cy)2 + (λ− cλ)

2 − r2
i = 0,

(14)

Energies 2020, 13, 2623 8 of 31

The algorithm changes values after each iteration, that is, updates the center value; in addition,
some curve segments may have very closed return points, then, radius values vary to prevent reversal
of jump issues between homotopic curves [35,37]. Figure 3 shows this adjustment based on this
method. To avoid complications when designing the spheres and maintaining the homotopic trajectory,
the method uses a predictor-corrector model complementing the spherical tracking.

Figure 3. Hyperspherical algorithm with variable radius.

To find the next advance position on the path, the Euler predictor algorithm is applied; the reported
works [34,37,38] present and verify its effectiveness. It takes advantage of the hypersphere centered
at the current position within the homotopic curve (cx, cy, cλ) and draws a tangent vector −→vp on its
center; when this vector propagates in space, it touches two points of the hypersphere Si. From this
pair of points, the closest to the advance solution direction γ will be selected as the predictor point;
this procedure is thoroughly explained in [39,40]. According to this, predictor point (xp, yp, λp) formula
can be expressed as:

(xp, yp, λp) = (cx, cy, cλ) + ri
∥∥−→vp

∥∥ , (15)

The predicted point is near the solution curve; nevertheless, it is necessary to execute the
corrective algorithm so that this approximation is positioned on the homotopic path. For this case,
the Newton-Raphson algorithm is used [35,37]. Thus, the corrective step can be expressed as:

(xi+1, yi+1, λi+1) = (xi, yi, λi)− [J(xi, yi, λi)]
−1H(xi, yi, λi), (16)

where i = 0, 1, 2, ...; (x0, y0, λ0) = (xp, yp, λp), and [J(xi, yi, λi)]
−1 is the inverse Jacobian matrix of

H(xi, yi, λi). That is the system representation at current point (xi, yi, λi). Since it is an iterative method,
the obtained value becomes the current value for the next iteration, and so on until any of the following
situations is reached: it converges to a point in the homotopic curve, reaches a convergence value with
a minimum difference established between one iteration and the next (which for this investigation has
a value of 1× 10−8), or consumes the maximum number of iterations (50 for this procedure).

From now on, the predictor-corrector scheme, in conjunction with the hyperspheric advance
scheme, will be repeated for every position progressed over the path until λ has crossed the 1 value;
which implies that there is a path from the start to goal position [8,28–31,33].

The fundamental difference from the original HPPM is that this proposal adds an automated
calculation algorithm for the repulsion parameters, useful for the most complex study cases, where
calculations by hand would be time-consuming and cumbersome, as can be noticed in the cases found
in [31].

Energies 2020, 13, 2623 9 of 31

3. Automatic Assignment of the Repulsion Parameter

In HPPM, obstacles are considered as elements that interfere with the ideal path [8]; the repulsion
parameter is a value that determines trajectory direction. It sets up a direct relation between direction
and proximity distance with respect to the obstacle in such a way that, if the parameter is small,
the path will be close to the obstacle. Therefore, as the parameter value increases, the path is repulsed
away from the obstacle. At this point, assignment of repulsion parameters depends on the user empiric
knowledge, that is, based on previous experiences. Recently, an alternative of automatic assignation to
the repulsion parameter in the homotopic method has been provided [30], which is explained below.

3.1. Assignment of the Repulsion Parameter

To assign the repulsion parameter, it is necessary to know the initial point (A) and goal position
(B); then, we can define an ideal path, represented by a straight line, between these two points (l0).
In addition, we define a set of auxiliary straight lines which are parallel and equidistant to the ideal
path. These paths are defined as

li : y− yi = m(x− xi), (17)

where i takes integer values, positive or negative, depending on the required regions in the solution
space. To establish this, qualitative tests were carried out modifying the number of auxiliary lines
and obstacles quantity. For the cases of one and two auxiliary lines (Figure 4a), the influence of these
lines on the behavior of obstacles is minimal. In addition, if obstacle number increases, this influence
practically disappears.

For three auxiliary lines (Figure 4b), the regions influence associated to these lines can be perceived
and the strength of the repulsion parameters begins to numerically reinforce the idea of maintaining
calculated trajectory close to the ideal path. Nevertheless, since each obstacle is compared in position
to every auxiliary line, the execution time importance of this algorithm also begins to be noticed.

For the case of four auxiliary lines (Figure 4c), the regions influence improves according to the
repulsion parameter settings; for this option, execution time becomes considerable, especially if the
amount of obstacles increases.

Tests were carried out with five auxiliary lines and more (Figure 4d–f). As a result, regions
influence on repulsion parameters remains effective, although the time required for the algorithm to
assign values after the sweep of positions for each obstacle with respect to the auxiliary trajectories
exceeds the main algorithm’s execution time.

Furthermore, noticing that the improvement ratio between the number of auxiliary lines and
the resulting path is linear, while the relationship between the assignment of repulsion parameters
algorithm execution time and the number of obstacles grows exponentially, we found that four auxiliary
lines per side is the best option.

These auxiliary straight lines (17) are employed to compare every obstacle position with respect
to the ideal path (green line in Figure 5), in such way that if the obstacle is close to this ideal path,
the algorithm will assign a relatively small repulsion value causing the obtained trajectory to stay close
to the mentioned ideal path; if the obstacle is far from the ideal path, a higher repulsion value will be
assigned, keeping the trajectory away from the area where the mentioned obstacle is and adjusting the
trajectory closer to the ideal path.

Energies 2020, 13, 2623 10 of 31

(a) Two auxiliary lines. (b) Three auxiliary lines.

(c) Four auxiliary lines. (d) Five auxiliary lines.

(e) Ten auxiliary lines. (f) Fifteen auxiliary lines.

Figure 4. Analysis of auxiliary lines.

Energies 2020, 13, 2623 11 of 31

Figure 5. Auxiliary straight lines and ideal path for initial point A and goal position B.

This turns (17) into (18), such that:

li = lk : y− yk = m(x− xk) ⇒ (k ∈ R | k = [−4, 4]; k 6= 0); (18)

where i turns into k; k takes integer values ranging from −4 (for obstacles above the ideal path) to 4
(for obstacles below the ideal path). Taking this into account, when i = 0, this represents the value of
the ideal path (Figure 5).

The k values are important when establishing repulsion parameter sign, since, as stated in the
formula, these k values are accompanied by a sign. Repulsion parameter sign defines if trajectory will
pass above or below the obstacle; it is defined that obstacles above the ideal trajectory are assigned
a negative repulsion parameter value (k from −1 to −4 in (18)) forcing the path to continue below
these obstacles. Reciprocally, if those are below the ideal route, a positive repulsion parameter value
will be assigned (k from 1 to 4 in (18)) causing the path to pass above these obstacles. For both cases,
the purpose is to calculate a trajectory that approaches the ideal path as much as possible (see Figure 6).

Then, initial minimum values are established for different obstacles. Circular obstacles
predetermined value p0c is set to 0.0001. As for rectangular obstacles, p0r value is 0.1. These values
have been obtained in heuristic form, analyzing different paths and obstacle quantities and therefore
are defined as the optima for automatic assignment. This is described as

pi,c = k · p0c,

pi,r = k · p0r, (19)

where i indicates the number of obstacles and k is the weight associated to the auxiliary line closest to
the obstacle, as already explained.

Energies 2020, 13, 2623 12 of 31

(a) (b)

Figure 6. Relationship between k sign value and the resulting path. (a) Obstacle avoidance due to a
positive k value; (b) Obstacle avoidance due to a negative k value.

3.2. Obstacle Grouping by Vicinity

Due to the proximity between obstacles, repulsion parameters may cause conflicts on the path;
this may lead to finishing at indefinite trajectories or dead-ends (Figure 7a,b). Therefore, it is necessary
to group sets of contiguous or close obstacles that the path may encounter or pass nearby to try to
avoid these problems.

The way to determine how obstacles can be considered a problem is through the comparison of
two distances; the first, distance between centers

dcij =
√
(xi − xj)2 + (yi − yj)2, (20)

where position (xi,yi) is the center of the i-th obstacle and point (xj,yj) is the center of the j-th obstacle.
The second distance to compare relates to the minimum required distance for the robot to cross between
two obstacles, any value below the set requirement will be considered as an obstructing object; it is
obtained by

diij = g · dr + max(ri, hi) + max(rj, hj), (21)

where dr is the diameter of the robot; g = 1.1 is an empirical parameter that represents a safety radius
of 10% of the robot size, thus avoiding collisions, especially when sharp turning points are found; ri is
the radius of the i-th obstacle for circular; hi is the hypotenuse resulting from analyzing the baseline
(2α) and height (2β) values of rectangular obstacles, and max is a function that determines the biggest
value between ri and hi, and between rj and hj.

If distance between centers (20) of a pair of ij obstacles is less than the obstruction distance (21),
it is said that a “neighbourhood” exists between them and an adjustment of their repulsion parameters
should be considered because it is not possible to pass between them if the path planning requires it.
This concept is explained in the next subsection.

Energies 2020, 13, 2623 13 of 31

(a) Impossible trajectory. (b) Dead-end trajectory.

Figure 7. Initial problem representation.

3.3. Correction of the Repulsion Parameter

Once neighbourhoods are defined, the next step in this methodology is to standardize the sign of
all obstacles found in each neighbourhood to avoid a dead-end.

Correction of the repulsion parameter allows one to consider the set of obstacles within the
neighbourhood as one big object; thus, the resulting path will surround it on one side or the other
depending on the nearest group sign. The sign is obtained by an iterative comparison of all the
obstacles grouped in each neighbourhood, setting the obstacle sign with the largest area within the
vicinity. If all obstacles have the same dimensions, the sign is set randomly.

As can be seen in Figure 8a, there is a neighbourhood with sign conflict; obstacles located above
the ideal trajectory show a negative repulsion parameter while obstacles located below the ideal
trajectory have a positive repulsion parameter assigned to them. In order to avoid a path planning
issue, the obstacle with the largest area provides its sign (positive or negative) as the dominant sign
of the neighbourhood; this means that every obstacle within this neighbourhood has the same sign;
forcing the path planning method to surround them all as if they were a single obstacle (Figure 8b).

(a) Original repulsion parameters. (b) Adjustment of repulsion parameters.

Figure 8. Correction of repulsion parameters.

Energies 2020, 13, 2623 14 of 31

4. FPGA Implementation

The FPGA implementation in this work, and other implementations on PC or embedded
devices [31], is designed to allow the user to select different initial and goal points within the
normalized space (that is, between 0 and 1) and also to modify the quantity and position of obstacles
present in this normalized space. Algorithm 1 presents the general algorithm programmed in the FPGA.

Algorithm 1 General algorithm

1: procedure GENERAL(x, y, λ)
2: Set initial conditions
3: Automatic assignment of repulsion parameters
4: Obstacle grouping by vicinity
5: Correction of repulsion parameters
6: Homotopy formulation
7: Homotopy Path Planning Method
8: if λ < 1 then . Stop path tracking condition
9: Return to Homotopy Path Planning Method

10: end if
11: Path transmission
12: end procedure

The implemented program in the FPGA consists of an arithmetic floating-point unit (FPU), a set of
ROM memories that store obstacle position data, a set of RAM memories to store intermediate results
of calculations from the homotopic system, and the (x, y) values of the resulting homotopic path;
all these elements are controlled using a finite state machine (FSM) that synchronizes the application
of every methodology step described in this work (Figure 9).

At the first stage of the program (Algorithm 2), obstacles present in the environment have to
be declared, as well as some other parameters needed by the homotopic simulation (step size, error
criterion, among others). FSM coordinates the sequence in which routines will be executed and
provides memory management. It is important to note that the dotted-line box in Figure 10 encloses
the three new blocks (algorithms) proposed in this work. The rest of the diagram belongs to the
original HPPM algorithm [8].

Figure 9. Block diagram of the FPGA program.

Algorithm 2 Initial conditions

1: procedure SET INITIAL CONDITIONS(x, y, λ)
2: RAM← initial (xi, yi, λi = 0) and final position (x f , y f , λ f = 1)
3: Set number and position of Cn and Rn obstacles . Stored at ROM
4: RAM← stablish hyperspherical standard size
5: end procedure

Energies 2020, 13, 2623 15 of 31

When the automatic assignment of repulsion parameter starts (Algorithm 3), a comparative cycle
is established between every obstacle center and the auxiliary straight lines (li). To accomplish this,
the state machine sends, one by one, the address corresponding to the center of every obstacle from
the ROM memories; the data from these locations are compared to the auxiliary straight lines (17) and
the resulting values are stored in RAM at specific locations addressed from the FSM.

Algorithm 3 Assignment of repulsion parameters

1: procedure AUTOMATIC ASSIGNMENT OF REPULSION PARAMETERS(pi, finish1)
2: RAM← Calculate slope with initial and final position
3: RAM← Set auxiliary lines for assignment of repulsion parameters (l−4. . . l4)
4: for i = 1 to number of obstacles do
5: RAM← Calculate distance between i-obstacle and each auxiliary line
6: case distance is
7: when closer to l−4 ⇒ pi = −4 ∗ p0 . pi is i−obstacle repulsion parameter
8: when closer to l−3 ⇒ pi = −3 ∗ p0
9: when closer to l−2 ⇒ pi = −2 ∗ p0

10: when closer to l−1 ⇒ pi = −p0
11: when closer to l1 ⇒ pi = p0
12: when closer to l2 ⇒ pi = 2 ∗ p0
13: when closer to l3 ⇒ pi = 3 ∗ p0
14: when others⇒ pi = 4 ∗ p0
15: end case
16: RAM← pi
17: end for
18: set flag finish1 on
19: end procedure

Once the repulsion parameters have been determined for all obstacles, neighbourhoods are
analyzed (Algorithm 4) calculating distances between obstacles and generating indicators that find
contiguous or overlapping elements that may cause issues when calculating the resulting trajectory.
Similarly, the state machine will indicate sequences, addresses, modules, and operations to be employed
when grouping obstacles by vicinity. In case of detecting neighboring obstacles, it adjusts the group
repulsion parameter with the sign of the largest obstacle prevailing (Algorithm 5).

Algorithm 4 Obstacle grouping

1: procedure OBSTACLE GROUPING BY VICINITY(finish2)
2: Read robot security radius from ROM
3: for i = 1 to number of obstacles do
4: RAM← Calculate space between i-obstacle and i+1-obstacle
5: if space between obstacles < robot security radius then
6: obstacle vicinity marker on
7: RAM← vicinity takes i+1-obstacle number as i-group number
8: else
9: obstacle vicinity marker off

10: end if
11: end for
12: set flag finish2 on
13: end procedure

Energies 2020, 13, 2623 16 of 31

Algorithm 5 Correction of repulsion parameters

1: procedure CORRECTION OF REPULSION PARAMETERS(finish3)
2: for i = 1 to number of obstacles do
3: if i-obstacle number = i-group number then
4: RAM← pi keeps original value . pi is i−obstacle repulsion parameter
5: else
6: pi sign = i-group number sign
7: end if
8: end for
9: set flag finish3 on

10: end procedure

Figure 10. Flowchart of the Finite State Machine.

The next set of states establishes the system homotopic equations to be solved (Algorithm 6);
the representative functions already include the obstacles present in the environment (14). Once this
system is obtained, the hyperspherical path tracking process begins; obtaining the resulting path as a
collection of points and storing them in RAM (Algorithm 7). Once the entire path is established, data
transmission to the robot begins.

Energies 2020, 13, 2623 17 of 31

Algorithm 6 Homotopy formulation

1: procedure HOMOTOPY FORMULATION(Homotopy equations)
2: Set auxiliary goal position lines
3: Call repulsion parameter values from RAM
4: Set obstacles equations
5: Set Newton Homotopy equations
6: Set Jacobian equations
7: Evaluate previous equations at initial position
8: end procedure

Algorithm 7 Homotopy Path Planning Method

1: procedure HOMOTOPY PATH PLANNING METHOD(xi, yi, λi)
2: for i = 1 to maximum advance steps number do
3: RAM← Adjust variable radius in hypersphere calculation
4: RAM← Calculate Euler’s predictor position (xp, yp, λp) in FSM
5: Call Euler’s predictor position form RAM and evaluate Homotopy System
6: xi, yi, λi ← Euler’s predictor position (xp, yp, λp)
7: for j = 1 to maximum iterations do
8: RAM← Calculate Newton-Raphson’s corrector position (xc, yc, λc) in FSM
9: if xc, yc, λc satisfies Homotopy System then

10: break
11: else if xc, yc, λc approximates Homotopy System below permissible error then
12: break
13: else
14: Call Newton - Raphson’s corrector position form RAM and evaluate Homotopy

System
15: xj, yj, λj ← Newton-Raphson’s corrector position (xc, yc, λc)
16: end if
17: end for
18: xi+1, yi+1, λi+1 ← xj, yj, λj
19: if λi+1 ≥ 1 then
20: break
21: end if
22: end for
23: end procedure

The FPU (SoftFloat reported in [41,42]) module is a free-code 32-bit floating-point arithmetic unit
applied to this design because it requires a reduced number of cycles for the arithmetic operations.
In addition, the Selector module is a set of switching units that, according to the options established
by the state machine, defines whether the data to be sent to the FPU unit comes from a specific RAM
or ROM and indicates the storage location of all data obtained from the FPU unit. RAM memory
module allows storing results obtained from assignment of repulsion parameters and homotopic
path method operations, resulting points of the homotopic path (x, y), and the data conversion for
the transmission of results. Otherwise, the ROM memory module stores the obstacle position data,
diameters, height, and width. The transmission module (Tx) is an 8-bit serial transmission module
that allows the communication with the robot, for this work, the Parallax’s Scribbler 2.

5. Study Cases

To show the performance of the proposed methodology (HPPM), implemented in PC and FPGA,
it is compared to the sampling-based path planning algorithms EST, KPIECE, PRM (including its
modification PRM Star), and RRT (including its modifications RRT Star and RRT Connect); it is also
compared to the low DoF planners: Bug algorithm and the APF method.

In the following cases, all methodologies are implemented in PC attempting a fair comparison
between them. The sampling-based methods were executed from an OMPL tool [43,44], which allowed

Energies 2020, 13, 2623 18 of 31

us to perform a statistical analysis. The low DoF algorithms were executed using MATLAB Robotics
System Toolbox since the OMPL tool does not have the designs of these algorithms. Table 1 provides
technical specifications of the hardware where all processes were run.

Nevertheless, to guarantee the results obtained from these tools are as similar as possible, all are
bounded to the same conditions: for sampling-based algorithms, the searching method step size is the
same as the HPPM hyperspheres; in addition, the same grid size is used for the low DoF algorithms.
In the same way, all algorithms are working under the condition of movement in two dimensions only.

It is known that each methodology has certain advantages and complications according to
the type of environment where it is implemented; the intention of this study is to deploy them in
environments that have some conditions, both favorable and unfavorable, and thus contrast results to
the proposed methodology.

All the methods on PC were implemented with 64-bit word width calculations. FPGA
implementation was executed with a 32-bit word width, this due to the use of the Floating Point Unit
Core [41] and certainty that the difference between results obtained in PC and FPGA are insignificant,
as demonstrated in [45].

It is important to note that there is a big difference between the capabilities of a PC against an
FPGA; a PC has 26,936 times more memory, its speed is 18.79 times faster, and it also consumes
2.73 times more power than an FPGA. Nevertheless, as it can be appreciated for the presentation of
this study, the implementation in FPGA is highly competitive in terms of performance (memory, speed,
and distance).

Table 1. PC and FPGA specifications.

PC FPGA
Processor Intel Cyclone X

Intel core i5 7300HQ 10L025

Core/Threads per core 4/1 —
Total Cores 4 —
RAM Memory 16 GB 0.594 MB (M9K)
Logic Elements (LEs) — 25,000
DSP Blocks (18 × 18 multipliers) — 66
Clock Speed 2.5 GHz 133 MHz
Typical Power Consumption 27.34 W 10 W
Maximum Power Consumption 45 W 15W

5.1. Case 1

As a didactic example, an environment is generated containing 20 randomly placed obstacles. In the
first instance, the development of HPPM algorithm will be presented in detail; later, results will be obtained
by its implementation in the FPGA, to finally show results comparison between the HPPM and other path
planning methods. It is worth mentioning that all the sampling-based algorithms were run 100 times,
while the BUG, APF, and HPPM algorithms were run only once; this is because, like all deterministic
methods, they will always provide the same result no matter how many times they are executed.

Once initial position A = (xinitial , yinitial) = (0, 0) and target position B = (xgoal , ygoal) = (1, 1)
are set, obstacles are enumerated (Figure 11a). Afterwards, auxiliary straight lines (17) are generated
to define the repulsion parameter (Figure 11b). As can be seen for this case, circular obstacles Obj1,2,
Obj1,3, and Obj2,3 along with the rectangular obstacles Obj3,2 and Obj3,4 are in a vicinity; this shaded
neighbourhood will be surrounded by the resulting path as a consequence of detecting this grouping
and correcting the group repulsion parameter.

In Table 2 the calculated repulsion parameters using (19) are shown. Next, by applying the
algorithm of obstacles grouping by vicinity, some repulsion parameters are updated resulting in Table 3.

It is important to note that repulsion parameter of obstacle Obj1,2 (marked with an asterisk
in Table 3) has changed because is closer to obstacles Obj1,3, Obj2,3, Obj3,2, and Obj3,4, definitive

Energies 2020, 13, 2623 19 of 31

parameters used in the HPPM are those obtained in Table 3. Notice that (20) and (21) generate
the neighbourhood through signs homogenization within the group, guaranteeing the adequate
performance of the system during homotopic path calculation. Continuing the HPPM process
execution, as expected, the homotopic path crossed below the group of gray-shaded neighboring
obstacles in Figure 12.

(a) Obstacles with identifiers.

(b) Auxiliary straight lines.

Figure 11. Initial problem set-up.

Energies 2020, 13, 2623 20 of 31

Table 2. Automatic Assignment of Repulsion Parameters.

Repulsion Parameters for Circular
and Rectangular Obstacles (Obji,j)

j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.0006 0.0002 −0.0004 −0.0008 −0.0004
i = 2 −0.0006 0.0004 −0.0002 0.0004 −0.0008
i = 3 −0.2 0.2 0.8 −0.2 −0.2
i = 4 0.8 −0.2 0.2 −0.4 0.6

Table 3. Correction of Repulsion Parameters.

Repulsion Parameters for Circular
and Rectangular Obstacles (Obji,j)

j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.0006 −0.0002 * −0.0004 −0.0008 −0.0004
i = 2 -0.0006 0.0004 −0.0002 0.0004 −0.0008
i = 3 −0.2 0.2 0.8 −0.2 −0.2
i = 4 0.8 −0.2 0.2 −0.4 0.6

* Repulsion Parameter corrected by vicinity.

Figure 12. Homotopic path calculated in FPGA.

In order to show the use of our implementation in FPGA, the obtained trajectory in Figure 12 was
transferred to a physical experiment (Figure 13a) testing the path calculated by the HPPM, which is
provided to the Scribbler 2 robot (Figure 13b).

Energies 2020, 13, 2623 21 of 31

(a) Real-life environment. (b) Robot S2

Figure 13. Controlled device.

Information transmission to the robot is performed using an XBee 2 mW Wire Antenna device.
Data transfer speed and coordinates reception by the robot are set using the Propeller Tool software.
Figure 14 shows the real-life environment execution of the proposed methodology. The simulation
was divided into four frames: t0, t1, t2, and t3; showing the path followed by the robot.

(a) Start position t0 (b) Robot position at t1

(c) Robot position at t2 (d) Robot position at t3

Figure 14. Proposed methodology real-life environment execution.

By including the obstacle values present in the environment and executing the algorithms
described in Section 4, the FPGA shows a low resource consumption, as can be seen in Figure 15.

In Figure 16, results of the descriptive statistical analysis for this case are presented using box plots,
where the red line represents the median value obtained by executing each sampling-based method
100 times; it can also be noticed that, for some cases, outliers were obtained which are represented by
the + signs.

Energies 2020, 13, 2623 22 of 31

Figure 15. FPGA resource consumption.

For the case of deterministic methods, only the red line is represented, which is equivalent to the
method median and must be compared to other methods’ medians. The proposed implementations in
PC and FPGA were compared in terms of path length, simulation time, and memory consumption.
Therefore, from Figure 16a, we can conclude that the average distance for compared methods, including
the HPPM, is almost similar but EST, KPIECE, and the low DoF Bug algorithm provided longer paths;
nevertheless, PRM and RRT_Star methods require, on average, ten times more computation time to
solve the same problem (Figure 16b). For this case, the algorithm that provides the best results overall
is the HPPM method in both implementations.

As can be seen in Figure 16c, the difference in memory consumption is considerable, whereas
the RRT algorithms (including Star and Connect variants) have high memory consumption (close to
10 MB), the HPPM algorithm occupies about 3.7578 kB in PC and just 1.8789 kB in FPGA, turning
it into the best option for embedded systems. It is important to notice that APF algorithm needs
plenty of memory (close to 30 MB) to get its job done; it requires 8125 times more memory than the
implementation in PC and 16,251 times more in FPGA. In addition, 243 times more computation time
in PC and 6.67 times in FPGA is needed, which allows us to conclude that HPPM is more robust,
efficient, and suitable for low cost embedded systems.

5.2. Case 2

Noticing the advantage in memory usage and reasonable execution time for our implementation in
FPGA, an example containing 50 randomly placed obstacles is generated. This time, the configuration
scheme that compares the HPPM method to others found in the literature is provided in Figure 17,
showing a greater concentration of obstacles and the presence of ellipsoidal obstacles with random
rotations, as well as the resulting trajectory of the proposed algorithm.

Again, the comparison of results between the HPPM and other path planning methods is
presented. It is worth emphasizing that all the sampling-based algorithms were run 100 times, while
the BUG, APF, and HPPM algorithms were run only once; this is because, as already mentioned, they
are deterministic methods.

Energies 2020, 13, 2623 23 of 31

S
o

lu
ti

o
n

 l
e

n
g

th

EST

KPIECE1
PRM

RRTconnect
RRT

PRMstar

RRTstar
BUG

APF

HPPM_FPGA

HPPM_PC

3

2

4

5

6

7

1

(a) Path length in normalized space.

T
im

e
 (

s
)

EST

KPIECE1
PRM

RRTconnect
RRT

PRMstar

RRTstar
BUG

APF

HPPM_FPGA

HPPM_PC

10

5

15

20

25

0

5
.2

5
3
 m

s

1
8
2
.6

8
m

s

(b) Solution time in seconds.

EST

KPIECE1
PRM

RRTconnect
RRT

PRMstar

RRTstar
BUG

APF

HPPM_FPGA

HPPM_PC

M
e
m

o
ry

 (
M

B
)

3
.7

5
7
8
 k

B

1
.8

7
8
9
 k

B

(c) Memory consumption in MB.

Figure 16. 20 obstacles simulation.

Figure 17. Example containing 50 obstacles.

Energies 2020, 13, 2623 24 of 31

In Figure 18 the results of descriptive statistical analysis of this case are presented using box plots,
where the red line represents the median value obtained by executing each sampling-based method
100 times; it can also be observed that, for some cases, outliers were obtained, which are represented
by the + signs. For deterministic methods, only the red line is represented, which is equivalent to the
method median and must be compared to other methods’ medians.

For this case, EST and KPIECE1 show a good use of resources in terms of memory; nevertheless,
they have an inefficient behavior caused by the high variability of the calculated path distance.
Furthermore, PRM, PRM Star, and RRT Star algorithms offer optimal distances and reasonable memory
usage; the problem is that, to achieve this, they required high runtime, which is not ideal for a real-time
execution robot.

Comparing HPPM to the low DoF algorithms, the APF algorithm has acceptable times and path
distances but requires too much memory usage to achieve it, while the Bug algorithm maintains a
reasonable use of time and memory but obtained paths are not optimal on distance.

In Figure 18c, it can be seen that, despite having reduced memory consumption, the RRT
algorithms (original, Star, and Connect versions) are around 10 MB, while PRM algorithms (original
and Star) are close to 3 or 4 MB. The results of EST and KPIECE1 methods are close to 1 MB, still
superior to the HPPM consumption, which for this case are 33.75 kB in PC and 16.8789 kB in FPGA;
therefore, the HPPM algorithm is maintained as the best option for embedded systems.

S
o

lu
ti

o
n

 l
e

n
g

th

EST

KPIECE1
PRM

RRTconnect
RRT

PRMstar

RRTstar
BUG

APF

HPPM_FPGA

HPPM_PC

3

2

4

5

6

7

1

(a) Path length in normalized space.

T
im

e
 (

s
)

EST

KPIECE1
PRM

RRTconnect
RRT

PRMstar

RRTstar
BUG

APF

HPPM_FPGA

HPPM_PC

10

5

15

20

25

0

1
3
4
.7

8
2
 m

s

5
1
9
.5

9
 m

s

(b) Solution time in seconds.

EST

KPIECE1
PRM

RRTconnect
RRT

PRMstar

RRTstar
BUG

APF

HPPM_FPGA

HPPM_PC

M
e
m

o
ry

 (
M

B
)

3
3
.7

5
 k

B

1
6
.8

7
8
9
 k

B

(c) Memory consumption in MB.

Figure 18. 50 obstacles simulation.

Energies 2020, 13, 2623 25 of 31

5.3. Case 3

For this case we increase the number of obstacles to 200, aiming to highlight the feasibility of
using this methodology in an FPGA given the low memory consumption during the solution process.
Obstacles map and the resulting path are depicted in Figure 19.

For this particular example, all the sampling-based algorithms were run 200 times, because some
of the methods could not converge to a solution. It is remarked that the BUG, APF, and HPPM
algorithms were executed only once, knowing that their deterministic condition forces them to obtain
the same result regardless of the number of times they are executed.

Finally, in Figure 20 results of the descriptive statistical analysis of this last case are presented using
box plots, where the red line represents the median value obtained by executing each sampling-based
method 200 times; it can also be observed that, for some cases, outliers were obtained, which are
represented by the + signs. For deterministic methods, only the red line is represented, since it is
equivalent to the method median and must be compared to other methods’ medians.

Figure 19. Example containing 200 obstacles.

As the number of obstacles increase, low DoF algorithms tend to find solutions with paths that
are too long (Figure 20a). Otherwise, the EST and KPIECE1 algorithms practically double the path size
with respect to the other algorithms.

Taking into account execution time, most methods need a large amount of time to ensure an
adequate response, as can be seen in Figure 20b; methods with the shortest execution times were the
RRT Connect, the APF method, and the HPPM where it can be highlighted that the HPPM algorithm
uses less than a second in PC.

Regarding the use of memory, the APF method needed a large amount of memory for its execution,
about 30.685 MB (Figure 20c), the RRT algorithms exceed 5 MB, and the rest required, at least, 1 MB.
Therefore, HPPM implementation (PC and FPGA) remains as the best option for embedded systems
using 71.6 kB and 408 kB, respectively.

Energies 2020, 13, 2623 26 of 31

S
o

lu
ti

o
n

 l
e
n

g
th

EST

KPIECE1
PRM

RRTconnect
RRT

PRMstar

RRTstar
BUG

APF

HPPM_FPGA

HPPM_PC

2

4

6

8

10

0

(a) Path length in normalized space.

T
im

e
 (

s
)

EST

KPIECE1
PRM

RRTconnect
RRT

PRMstar

RRTstar
BUG

APF

HPPM_FPGA

HPPM_PC

10

5

15

20

25

0

5
7
6
.6

0
5
 m

s

1
7
5
4
.6

3
 m

s

(b) Solution time in seconds.

EST

KPIECE1
PRM

RRTconnect
RRT

PRMstar

RRTstar
BUG

APF

HPPM_FPGA

HPPM_PC

M
e
m

o
ry

 (
M

B
)

3
9
.5

 k
B

1
9
.7

5
 k

B

(c) Memory consumption in MB.

Figure 20. 200 obstacles simulation.

6. Discussion

From literature [31], we know that users should have deep knowledge for the repulsion parameter
assignment process. Nevertheless, our proposal aims to circumvent such a cumbersome manual
process. What is more, during the repulsion parameter assignment process, there exists a relationship
between the number of auxiliary lines and execution time that depends on the available hardware.
In fact, we found in Section 3.1 that four auxiliary lines per side of the ideal path are enough to
provide an optimized collision-free path. We found that more than four auxiliary lines increases the
computation time and the memory requirements without noticeably improving the collision-free path.
Results from the methods described above are summarized in Table 4.

As can be observed, FPGA implementation of HPPM remains as the best option for a path
planning method in terms of memory consumption, while keeping itself as a competitive method
in terms of distance and solution time. In general terms, the methods that obtain slightly smaller
distances than HPPM face the problem of requiring noticeable higher execution times and memory
consumption. Therefore, HPPM is an ideal algorithm for embedded systems.

Low DoF algorithms tend to use simple criteria to achieve their goal, which makes them efficient
when the number of obstacles is minimal or there is a wide free space. Nevertheless, if numerous
obstacles are found within the environment, having different dimensions, map resolution tends to be
increased generating large consumption of memory and time to find the solution. In addition, since
they do not have an optimization adjustment, they may find solutions that are too long or complex.
In general, APF method requires high memory consumption for its execution and the Bug algorithm
maintains a stable consumption, although higher than HPPM.

Energies 2020, 13, 2623 27 of 31

Table 4. Comparative median results of Execution Time (ET), Normalized Path Length (NPD),
and Median Memory Consumption (MMC).

20 Obstacles 50 Obstacles 200 Obstacles

Method ET NPD MMC ET NPD MMC ET NPD MMC
(s) (MB) (s) (MB) (s) (MB)

EST 0.519 2.863 0.332 3.214 2.210 0.404 4.388 2.533 0.498
KPIECE 0.331 3.634 0.710 0.368 3.360 0.597 5.199 3.727 0.597
PRM 10.132 1.607 2.837 20.114 1.494 2.031 20.226 1.554 1.775
PRM_Star 10.117 1.586 5.695 20.130 1.480 4.017 20.125 1.598 2.646
RRT 1.211 1.936 7.443 2.858 1.702 8.289 13.399 1.727 6.560
RRT_Connect 1.286 1.898 8.074 0.402 1.584 10.654 4.499 1.669 8.355
RRT_Star 10.157 1.584 9.062 20.133 1.452 8.996 20.167 1.236 6.753
BUG 1.468 6.955 3.861 1.4 3.179 3.837 6.64 5.294 3.849
APF 1.215 1.505 30.535 1.642 1.819 30.541 1.273 9.992 30.685
HPPM_PC 0.005 1.428 0.003 0.134 1.548 0.032 0.576 1.530 0.038
HPPM_FPGA 0.182 1.430 0.002 0.519 1.549 0.016 1.754 1.530 0.019

For some methods, like EST and KPIECE, despite having consumed relatively low memory,
they tend to produce longer trajectories. On the other hand, RRT method and its variants provide
acceptable trajectories but memory consumption tends to be high during its execution. In contrast,
HPPM (which executes only once) generates acceptable trajectories with reasonably low memory
consumption. Besides, since the probabilistic methods produce a great variation in the results every
time they are executed, it was necessary to run 200 simulations to obtain the median values, thus
eliminating the influence generated by atypical values of low performance or failed simulations.

In fact, when free space is limited, a certain percentage of these simulations find no solution;
therefore, the use of such algorithms is impractical in embedded systems where low computing
resources do not allow their real-time execution, or simply cannot be implemented. Proof of this is the
case of 200 obstacles, where PRM methods (original and Star) fail to find the solution at 30% because
they run out of time, while RRT methods (original and Star) find an approximate solution 10% of the
time, instead of the exact solution.

According to the HPPM algorithm itself, in PC and FPGA, the generated trajectory is almost
identical. There is a slight difference in PC because its processor architecture works using 64 bits, while
FPGA architecture is 32 bits. Architecture difference is reflected in memory consumption since the
PC consumes 3.76 kB for 20 obstacles, 33.75 kB for 50 obstacles, and 39.5 kB for 200 obstacles, while
the FPGA consumes 1.88 kB, 16.88 kB, and 19.75 kB, respectively. In addition, while working in PC,
calculations can be obtained with higher precision; this means that the number of iterations achieved
by the calculations of predictive and corrective values during path generation are greater than the
amount reached in calculations with 32 bits.

Another relevant aspect is the execution time; the HPPM developed in the PC shows greater
advantage over the other methods. Even more, applying this methodology in an embedded system
(FPGA), the execution time of the HPPM is only comparable to KPIECE method in PC; nevertheless,
KPIECE obtains, as a recurring result, a longer path.

Although the FPGA computation time in the implementation for 20 obstacles is similar to the
different methods, it is important to emphasize that for 50 and 200 obstacles computation times are
surprisingly competitive compared to the random tree techniques simulations; besides, it must be
considered that the FPGA power consumption is considerably lower (below 50% with respect to the
use of PCs, see Table 1). The importance of this research lies in the fact that other techniques reported
in the literature, to the author’s best knowledge, do not have the implementation of these conditions
using an FPGA, probably because of the notable high power demand, execution time, and memory
consumption required by these methods.

Energies 2020, 13, 2623 28 of 31

An advantage lies in the fact that obstacle representation in HPPM influences a single equation
within the system. If obstacle number increases, the number of equations to be solved remains the
same; only one of the terms for this system of equations becomes extensive (with a linear relationship to
the number of obstacles). In addition, the equation does not present alterations due to the obstacle size,
a circumstance that affects the low DoF algorithms. When small obstacles increase, these algorithms
are forced to reduce the cell size, increasing the resolution of the map to be solved.

Another advantage is the fact that it is a deterministic method, reducing the number of calculations
because it focuses on a single solution in terms of trajectory, which is contrary to what happens with
the sampling-based algorithms. All expansion trees depend on the calculation of a set of possible
expansion points, combined with an optimization criterion in the selection of the next trajectory step.

Random tree methods increase their memory and computation time exponentially due to two
fundamental aspects: each random point during the process must be stored to be employed later on
the path generation phase which implies a notable memory consumption and the collision checking
process that consumes most of the CPU time.

On the other hand, memory and computation time of the homotopy continuation methods increase
linearly with respect to the number of obstacles as depicted in [31]. In fact, homotopy continuation
method is deterministic, providing a single collision-free path using a numerical continuation process.
What is more, the proposed scheme based on homotopy does not require any collision checking stage
because it ensures zero-collision probability due to its mathematical formulation.

7. Concluding Remarks and Future Work

An improvement to the standard HPPM methodology was presented, which consists of a
new method for calculating the repulsion parameter, aiming to achieve the shortest distance path.
In addition, an analysis of neighbourhoods was included, which ensures that the trajectory moves
around spaces that may compromise its continuity, avoiding any dead-end issue.

The implementation was tested in a very low resource FPGA, which demonstrated competitive
computing times in relation to implementations of PC sampling techniques, allowing one to conclude
that the proposed methodology is viable to solve practical cases in real time on embedded systems,
therefore offering the possibility of generating implementations at a very low cost.

Moreover, it will be worthwhile to apply this methodology in closed environments and under
the existence of narrow corridors since they are usually the most complicated environments for the
methods based on random sampling techniques. In addition, this opens the possibility to perform
experimental tests with differential type robots, not holonomic or omnidirectional and with multiple
degrees of freedom.

In this investigation, all the calculations were carried out sequentially; nevertheless, we believe
that, as future work, we can take advantage of parallel implementation of homotopy methods as
those reported in [46,47] to reduce computation time. In addition, we can evaluate in parallel the
symbolic expressions found during application of the Newton-Raphson algorithm (corrective step) of
the numerical continuation.

As future work, the algorithm will be tested in real-time situations with dynamic obstacles.
In addition, this methodology will be applied in multiagent schemes, allowing collaborative work
without risks of mutual collision. Furthermore, algorithm implementation in applications to real-life
problems is desired, like car automatic driving control system. Finally, future work will aim
to implement and compare this methodology in three-dimensional environments, as presented in [6,19].

Author Contributions: Conceptualization and supervision: L.H.-M. and H.V.-L.; methodology: H.E.D.C.-C.;
software, validation, formal analysis, data curation and investigation: H.E.D.C.-C. and G.U.D.-A.; resources and
visualization: A.S.-R., M.T.S.-P., A.L.H.-M., and R.C.-S.; writing—original draft preparation: H.E.D.C.-C. and
G.U.D.-A.; writing—review and editing: L.H.-M. and H.V.-L.; All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Energies 2020, 13, 2623 29 of 31

Acknowledgments: Héctor Eduardo De Cos Cholula gratefully acknowledges the financial support provided by
the National Council for Science and Technology of Mexico (CONACyT) through an academic scholarship under
contract 332667.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

HPPM Homotopic Path Planning Method
DoF Degrees of Freedom
FPGA Field-Programmable Gate Array
APF Artificial Potential Fields
EST Expansive-Configuration Space Trees
KPIECE Kinodynamic Planning by Interior-Exterior Cell Exploration
PRM Probabilistic RoadMap
RRT Rapidly-exploring Random Tree
HCM Homotopic Continuation Method
NAEs Non-linear Algebraic Equations
FPU Floating-Point Unit
FSM Finite State Machine
ET Execution Time
NPD Normalized Path Length
MMC Median Memory Consumption

References

1. Hinds, P.J.; Roberts, T.L.; Jones, H. Whose job is it anyway? A study of Human-Robot interaction in a
collaborative task. Hum.-Comput. Interact. 2004, 19, 151–181. [CrossRef]

2. Siegwart, R.; Nourbakhsh, I. Introduction to Autonomous Mobile Robots; The MIT Press: Cambridge, UK, 2004.
3. Lindemann, S.R.; LaValle, S.M. Current issues in sampling-based motion planning. In Robotics Research.

The Eleventh International Symposium; Springer: Berlin/Heidelberg, Germany, 2005; pp. 36–54.
4. Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings

of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April
2000; Volume 2, pp. 995–1001.

5. Karaman, S.; Frazzoli, E. Incremental sampling-based algorithms for optimal motion planning. Robot. Sci.
Syst. VI 2010, 104, 2.

6. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res.
2011, 30, 846–894. [CrossRef]

7. Hwang Yong, K.; Ahuja, N. A potential field approach to path planning. IEEE Trans. Robot. Autom.
1992, 8, 23–32. [CrossRef]

8. Vazquez-Leal, H.; Marin-Hernandez, A.; Khan, Y.; Yildirim, A.; Filobello-Nino, U.; Castaneda-Sheissa, R.;
Jimenez-Fernandez, V. Exploring collision-free path planning by using homotopy continuation methods.
Appl. Math. Comput. 2013, 219, 7514–7532. [CrossRef]

9. Ng, J.; Bräunl, T. Performance comparison of bug navigation algorithms. J. Intell. Robot. Syst. 2007, 50, 73–84.
[CrossRef]

10. Magid, E.; Rivlin, E. CautiousBug: A competitive algorithm for sensor-based robot navigation.
In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai,
Japan, 28 September–2 October 2004; pp. 2757–2762

11. Kamon, I.; Rivlin, E.; Rimon, E. TangentBug: A range-sensor based navigation algorithm. J. Robot. Res.
1998, 17, 934–953. [CrossRef]

12. Yufka, A.; Parlaktuna, O. Performance comparison of bug algorithms for mobile robots. In Proceedings of
the 5th International Advanced Technologies Symposium, Karabuk, Turkey, 13–15 May 2009; pp. 13–15.

http://dx.doi.org/
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.1109/70.127236
http://dx.doi.org/10.1016/j.amc.2013.01.038
http://dx.doi.org/10.1007/s10846-007-9157-6
http://dx.doi.org/10.1177/027836499801700903

Energies 2020, 13, 2623 30 of 31

13. Bing, H.; Gang, L.; Jiang, G.; Hong, W.; Nan, N.; Yan, L. A route planning method based on improved artificial
potential field algorithm. In Proceedings of the 2011 IEEE 3rd International Conference on Communication
Software and Networks, Xi’an, China, 27–29 May 2011; pp. 550–554.

14. Hu, J.; Cheng, C.; Wang, C.; Zhao, C.; Pan, Q.; Liu, Z. An Improved Artificial Potential Field Method Based
on DWA and Path Optimization. In Proceedings of the 2019 IEEE International Conference on Unmanned
Systems (ICUS), Beijing, China, 17–19 October 2019; pp. 809–814.

15. Hsu, D.; Latombe, J.-C.; Motwani, R. Path planning in expansive configuration spaces. In Proceedings of
the IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 25 April 1997;
pp. 2719–2726.

16. Hsu, D.; Kindel, R.; Latombe, J.-C.; Rock, S. Randomized kinodynamic motion planning with moving
obstacles. Int. J. Robot. Res. 2002, 21, 233–255. [CrossRef]

17. Phillips, J.M.; Bedrossian, N.; Kavraki, L.E. Guided expansive spaces trees: A search strategy for motion-and
cost-constrained state spaces. In Proceedings of the IEEE International Conference on Robotics and
Automation, New Orleans, LA, USA, 26 April–1 May 2004; Volume 4, pp. 3968–3973.

18. Şucan, I.A.; Kavraki, L.E. Kinodynamic motion planning by interior-exterior cell exploration. In Algorithmic
Foundation of Robotics VIII; Springer: Heidelberg, Germany, 2004; pp. 449–464.

19. Şucan, I.A.; Kavraki, L.E. A sampling-based tree planner for systems with complex dynamics.
IEEE Trans. Robot. 2012, 28, 116–131. [CrossRef]

20. Kavraki, L.E.; Kolountzakis, M.N.; Latombe, J.C. Analysis of probabilistic roadmaps for path planning.
IEEE Trans. Robot. Autom. 1998, 14, 166–171. [CrossRef]

21. Kavraki, L.E.; Latombe, J.C. Probabilistic roadmaps for robot path planning. In Practical Motion Planning in
Robotics: Current Approaches and Future Challenges; Gupta, K., del Pobil, A.P., Eds.; John Wiley: West Sussex,
UK, 1998; pp. 33–53.

22. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Lowa state University: Ames, IA,
USA,1998.

23. LaValle, S.M.; Kuffner, J.J. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400.
[CrossRef]

24. LaValle, S.M.; Kuffner, J.J. Rapidly-exploring random trees: Progress and prospects. In New Directions in
Algorithmic and Computational Robotics; Donald, B.R., Lynch, K., Rus, D., Eds.; AK Peters: Natick, MA, USA,
2001; pp. 293–308.

25. Ioannidis, K.; Sirakoulis, G.C.; Andreadis, I. A Path Planning Method Based on Cellular Automata for
Cooperative Robots. Appl. Artif. Intell. Int. J. 2011, 28, 721–745. [CrossRef]

26. Georgoudas, I.G.; Kyriakos, P.; Sirakoulis, G.C.; Andreadis, I.T. An FPGA implemented cellular automaton
crowd evacuation model inspired by the electrostatic-induced potential fields. Microprocess. Microsyst.
2010, 34, 285–300. [CrossRef]

27. Charalampous, K.; Kostavelis, I.; Amanatiadis, A.; Gasteratos, A. Real-Time Robot Path Planning for
Dynamic Obstacle Avoidance. J. Cell. Autom. 2014, 9, 195–208.

28. Diaz-Arango, G.; Sarmiento-Reyes, A.; Hernandez-Martinez, L.; Vazquez-Leal, H.; Lopez-Hernandez, D.D.;
Marin-Hernandez, A. Path optimization for terrestrial robots using Homotopy Path Planning Method.
In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal,
24–27 May 2015; pp. 2824–2827.

29. Diaz-Arango, G.; Hernandez-Martinez, L.; Sarmiento-Reyes, A.; Vazquez-Leal, H. Fast and robust homotopy
path planning method for mobile robotics. In Proceedings of the 2016 IEEE International Symposium on
Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 2579–2582.

30. DeCos-Cholula, H.E.; Díaz-Arango, G.U.; Hernández-Martínez, L.; Sarmiento-Reyes, A. An Homotopy
Path Planning Method with automatic fixed value assignation of repulsion parameter for mobile robotics.
In Proceedings of the 2016 13th International Conference on Electrical Engineering, Computing Science and
Automatic Control (CCE), Mexico City, Mexico, 26–30 September 2016; pp. 1–6.

31. Diaz-Arango, G.; Vázquez-Leal, H.; Hernandez-Martinez, L.; Pascual, M.T.S.; Sandoval-Hernandez, M.
Homotopy Path Planning for Terrestrial Robots Using Spherical Algorithm. IEEE Trans. Autom. Sci. Eng.
2018, 15, 567–585. [CrossRef]

http://dx.doi.org/10.1177/027836402320556421
http://dx.doi.org/10.1109/TRO.2011.2160466
http://dx.doi.org/10.1109/70.660866
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1080/08839514.2011.606767
http://dx.doi.org/10.1016/j.micpro.2010.06.001
http://dx.doi.org/10.1109/TASE.2016.2638208

Energies 2020, 13, 2623 31 of 31

32. Díaz-Arango, G.U.; DeCos-Cholula, H.E.; Hernandez-Martinez, L.; Sarmiento-Reyes, A.; Vazquez-Leal, H.;
Perez-Zenteno, F.J.; Avila-Espinoza, D. Homotopic path validation using non-holonomic differential drive
robot model. In Proceedings of the 14th IEEE International Conference on Electrical Engineering, Computing
Science and Automatic Control (CCE), Mexico City, Mexico, 20–22 October 2016; pp. 1–6.

33. Decarolis, F.; Mayer, R.; Santamaria, M. Homotopy Continuation Methods: An Algorithm for the Fixed Point and
Newton Homotopy Methods with Some Examples; The University of Chicago: Chicago, IL, USA, 2005.

34. Oliveros-Munoz, J.M.; Jiménez-Islas, H. Hyperspherical path tracking methodology as correction step in
homotopic continuation methods. Chem. Eng. Sci. 2013, 97, 413–429. [CrossRef]

35. Torres-Muñoz, D.; Vazquez-Leal, H.; Hernandez-Martinez, L.; Sarmiento-Reyes, A. Improved spherical
continuation algorithm with application to the double-bounded homotopy (DBH). Comput. Appl. Math.
2014, 33, 147–161. [CrossRef]

36. Torres-Muñoz, D.; Hernandez-Martinez, L.; Vazquez-Leal, H. Spherical continuation algorithm with spheres
of variable radius to trace homotopy curves. Int. J. Appl. Comput. Math. 2016, 2, 421–433. [CrossRef]

37. Jiménez-Islas H. SEHPE: Programa para la solución de sistemas de ecuaciones no lineales mediante método
homotópico con seguimiento hiperesférico. Av. En Ing. Química 1996, 6, 174–179.

38. Wayburn, T.L.; Seader, J.D. Homotopy continuation methods for computer-aided process design. Comput.
Chem. Eng. 1987, 11, 7–25. [CrossRef]

39. Jiménez-Islas, H. Paquete Computacional para la Solución de Sistemas de Ecuaciones No Lineales. Master’s
Thesis, Instituto Tecnológico de Celaya, Celaya, Mexico, 1988.

40. Ahuja, K.; Watson, L.T.; Billups, S.C. Probability-one homotopy maps for mixed complementarity problems.
Comput. Optim. Appl. 2008, 41, 363–375. [CrossRef]

41. Al-Eryani, J. Floating Point Unit Core FPU100. 2006. Available Online: https://opencores.org/projects/
fpu100 (accessed on 24 October 2016)

42. Krishna, M.K.S.; Raju, M.G.S. Performance Enhancement of Cisc Microcontroller. Int. J. Future Revolut.
Comput. Sci. Commun. Eng. 2017, 3, 220–225.

43. Şucan, I.A.; Moll, M.; Kavraki, L.E. The Open Motion Planning Library IEEE Robot. Autom. Mag. 2012, 19,
72–82. [CrossRef]

44. Moll, M.; Şucan, I.A.; Kavraki, L.E. Benchmarking Motion Planning Algorithms: An Extensible Infrastructure
for Analysis and Visualization. IEEE Robot. Autom. Mag. 2015, 22, 96–102. [CrossRef]

45. DeCos Cholula, H.E. Métodos Homotópicos: Asignación Automática del Parámetro de Repulsión en el
Trazado de Trayectorias Robóticas Libres de Colisiones Master’s Thesis, Instituto Nacional de Astrofísica,
Óptica y Electrónica, Puebla, Mexico, 2016.

46. Leykin, A.; Verschelde, J.; Zhuang, Y. Parallel homotopy algorithms to solve polynomial systems.
In International Congress on Mathematical Software; Springer: Berlin/Heidelberg, Germany, 2006; pp. 225–234.

47. Su, H.J.; McCarthy, J.M.; Sosonkina, M.; Watson, L.T. Algorithm 857: POLSYS GLP: A parallel general linear
product homotopy code for solving polynomial systems of equations. ACM Trans. Math. Softw. (TOMS)
2006, 32, 561–579. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ces.2013.03.053
http://dx.doi.org/10.1007/s40314-013-0052-4
http://dx.doi.org/10.1007/s40819-015-0067-1
http://dx.doi.org/10.1016/0098-1354(87)80002-9
http://dx.doi.org/10.1007/s10589-007-9107-z
https://opencores.org/projects/fpu100
https://opencores.org/projects/fpu100
http://dx.doi.org/10.1109/MRA.2012.2205651
http://dx.doi.org/10.1109/MRA.2015.2448276
http://dx.doi.org/10.1145/1186785.1186789
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Homotopy Continuation Method as a Collision-Free Path Planning Method
	Automatic Assignment of the Repulsion Parameter
	Assignment of the Repulsion Parameter
	Obstacle Grouping by Vicinity
	Correction of the Repulsion Parameter

	FPGA Implementation
	Study Cases
	Case 1
	Case 2
	Case 3

	Discussion
	Concluding Remarks and Future Work
	References

