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Abstract: Facing energy shortage and severe environmental pollution, manufacturing companies
need to urgently energy consumption, make rational use of resources and improve economic benefits.
This paper formulates a multi-objective optimization model for lathe turning operations which aims
to simultaneously minimize energy consumption, machining cost and cutting time. A dynamic
multi-swarm particle swarm optimizer (DMS-PSO) is proposed to solve the formulation. A case
study is provided to illustrate the effectiveness of the proposed algorithm. The results show that the
DMS-PSO approach can ensure good convergence and diversity of the solution set. Additionally,
the optimal machining parameters are identified by fuzzy comprehensive evaluation (FCE) and
compared with empirical parameters. It is discovered that the optimal parameters obtained from
the proposed algorithm outperform the empirical parameters in all three objectives. The research
findings shed new light on energy conservation of machining operations.

Keywords: energy efficiency; machining operation; multi-objective optimization; fuzzy
comprehensive evaluation; particle swarm optimizer

1. Introduction

With the soaring demand of energy and the worsening of the environment, modern manufacturing
enterprises are faced with new challenges to improve energy efficiency and reduce pollution
emissions [1–3]. As a result, they have adopted various measures with respect to equipment,
technology, materials and other aspects to achieve the purpose of energy conservation, emission
reduction, and green manufacturing [4–6]. Machine tools are the basic equipment for production and
the leading energy consumer in the manufacturing industry [7–10]. Globally, machining operations
consume about 75% of the energy used in manufacturing, but the energy efficiency of the machining
systems is below 30% [11]. The enormous energy consumption of machine tools, coupled with their
poor energy efficiency, has intensified the concerns of environmental pollution and carbon emissions.
To address these concerns, it is imperative to reduce the energy consumption of machine tools for
the modern manufacturing industry. The reduction of energy consumption will in turn improve the
efficiency of manufacturing enterprises, reduce the production cost, alleviate environmental pollution,
and move towards greener and more sustainable manufacturing [12].
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It is well known that the machining parameters directly affect product quality, machining
cost, production efficiency and energy consumption. Therefore, the optimization of machining
parameters has become a key research objective for both industry and academia [13]. For brevity,
the representative works in the literature are cited in the following. Arriaza et al. [14] relied on multiple
response optimization to analyze the relationship between feed rate and energy consumption in rough
machining, and considered feed rate the key to balancing energy and time. Öztürk et al. [15] adopted a
Taguchi L9 design and compiled a multi-parameter test table (including tool diameter, cutting depth,
cutting speed and feed rate) to minimize the surface roughness and energy consumption of a machining
center. The results revealed that the specific energy consumption (SEC) was significantly affected
by the maximum cutting depth. Additionally, Hu et al. [16] modelled the machining optimization
problem in terms of sequence-related machining time, deviation, and energy consumption, and
introduced a multi-objective feature sequencing model that makes a trade-off among the three
objectives. Jang et al. [17] considered four machining parameters in the cutting energy model, and the
particle swarm optimization approach was adopted to obtain the cutting condition that minimizes
the cutting energy. Based on grey relational analysis and the surface response method, Yan et al. [18]
obtained the optimal plane milling parameters under the objectives of minimizing cutting energy
consumption and surface roughness.

Meanwhile, Subramanian et al. [19] constructed a mathematical model between cutting parameters
and cutting force through milling experiments and multivariate regression, and optimized the
cutting parameters using the genetic algorithm (GA). He et al. [20] developed a multi-objective
optimization model to optimize the energy consumption, cutting force and cutting time of a milling
machine, and explored the effects of three solution algorithms (i.e., vector evaluated genetic algorithm,
non-dominated sorting genetic algorithm, and multi-objective evolutionary algorithm) on the Pareto
frontier. D’Addona and Teti [21] created a multi-objective optimization model for turning operations
that considers machining cost, cutting time and machining quality, and proposed a GA-based algorithm
to solve the model. To minimize the energy consumption in machining, Velchev et al. [22] formulated
an optimization model for process parameters, investigated the impact of lathe cutting parameters
(e.g., feed rate and cutting depth) on energy consumption, and concluded that the energy consumption
is negatively correlated with feed rate and cutting speed.

Similarly, Xu et al. [23] investigated the cutter path optimization problem and its influencing
factors, introduced a cutter path optimization model for maximum machining efficiency and minimum
energy consumption, and developed an adaptive simulated annealing genetic algorithm to obtain the
optimal cutter path. Based on the design of experiment (DOE) approach, Camposeco-Negrete [24]
investigated the effects of depth of cut, feed rate, and cutting speed on machining energy consumption
and surface roughness in turning an aluminum alloy. It was claimed that the effect of feed rate is most
significant in minimizing the power consumption and surface roughness. To simplify the computation
of traditional empirical formula and reduce energy consumption, Kant and Sangwan [25] modelled
energy consumption of computer numerical control (CNC) machine tools based on backpropagation
neural network (BPNN), and optimized the cutting parameters by the GA. In addition, Shi et al. [26]
created an improved energy consumption model for normal vertical milling based on cutting force.
The model was applied to study the energy efficiency of normal vertical milling, and thus reveal the
relationship between energy consumption and various cutting parameters. To optimize the machining
parameters of milling operations, Li et al. [27] developed an optimization model with two objectives,
namely, maximizing the energy efficiency and minimizing the production time. A Tabu-search heuristic
algorithm was proposed to solve the model. It was found that the depth and width of the cut are the
two most influential factors.

Nevertheless, the majority of existing studies on energy consumption of machine tools focus on a
single objective, namely, reducing energy consumption or improving energy efficiency [28]. For the
limited studies that address the multi-objective issues [29], the algorithms developed to find the optimal
solution are usually not flexible. Some studies use the weighting method to transform multiple subjects
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into a single-subject problem [30]. Nevertheless, this method is often too subjective, and the selection
of weights depends on personal experience, which is difficult to determine reasonably. As a result,
the results often cannot meet the actual needs. Because optimization objectives are often in conflict
with each other for multi-objective optimization problems (MOPs), there could be no single solution
that optimizes all objectives simultaneously. More studies have adopted optimization algorithms
to obtain the Pareto optimal set instead of a single solution to solve MOPs in recent years [31,32].
The purpose of these multi-objective optimization algorithms is to obtain a set of representative
Pareto optimal solutions, and to make the distribution of these Pareto optimal solutions on the
target space Pareto Front (PF) as good as possible in terms of approximation, width and uniformity.
These optimization algorithms include multi-objective evolutionary algorithm, multi-objective particle
swarm optimization (PSO), ant colony optimization, artificial neural network optimization and so on.
In particular, PSO features a simple structure and fast convergence speed, and it has been successfully
applied to solve single-objective and multi-objective optimization problems [33]. However, PSO often
suffers from the loss of population diversity due to its fast convergence rate, and then falls into the
local optimal solution, failing to achieve satisfactory results [34].

To overcome these challenges, this paper proposes a multi-objective optimization model for
minimizing energy consumption, machining cost, and time in turning operations. A dynamic multi-swarm
particle swarm optimizer (DMS-PSO) is conceptualized to converge to a set of diverse solutions, such
as selecting suitable process parameters for specific machining requirements and multiple objectives.
The DMS-PSO approach divides the swarm into several sub-swarms, and regroups the sub-swarms
frequently to exchange information. In the DMS-PSO, the neighborhood topology is adopted, which is
random and may dynamically change. The neighborhood topology is suitable for solving complex
multi-modal problems and to ensure the diversity of solutions [35]. Please note that in the literature,
the general concept of DMS-PSO has been studied to improve the ability of PSO to jump out of the
local optimal solution [36,37]. For instance, Chen et al. [38] proposed a novel method to merge the
differential evolution operator into each sub-swarm of the DMS-PSO so as to improve the performance
of PSO. Meanwhile, DMS-PSO has started to find applications in real-world scenarios. For instance,
Xia et al. [39] developed a multiple-swarm framework in combination with the dynamic sub-swarm
number strategy. The approach was found to be effective in multiple real-world applications such
as in the design of a gear train. Chen et al. [40] applied DMS-PSO to develop optimal strategies for
two-variable energy management and gear-shifting in hybrid electric vehicles. It was verified that the
DMS-PSO approach generates superior performance compared with the traditional method. On the
other hand, the concept of DMS-PSO has rarely (if ever) been applied to optimizing machining energy
and efficiency, to the best of our knowledge.

2. Multi-Objective Optimization Model for Machining

Lathe turning is an important machining operation. The market size of CNC lathe had already
reached 25.01 billion USD in 2018, and is expected to grow to 40.22 billion USD by 2026 [41]. Additionally,
the tool–material interaction in lathe turning represents the fundamentals of material removal for other
more complex machining operations such as milling and grinding. As such, lathe turning is adopted
as the research problem in this paper. In actual machining, the selection of cutting parameters for CNC
machine tools is affected by various factors. For turning operation, the three key process parameters
are cutting speed vc, depth of cut ap, and feed rate f [42,43]. The specific energy consumption (SEC) and
the cutting time of machining are mainly determined by these three process parameters. Other factors
such as work material, tool material, tool nose radius, and rake angles will also affect the turning
operation and the SEC value, but they are fixed for simplicity in this study. Additionally, note that for
a more complex machining process such as milling, additional process parameters such as width of cut
need to be considered.
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2.1. Energy Consumption

The plastic deformation in the cutting layer of the workpiece is under the combined effects of
the following factors and their interactions: cutting force, cutting heat, cutting temperature, cutter
angle, and workpiece material. Among them, the cutting force, Fc (N), determines the heat generation,
and affects cutter abrasion and quality of the machined surface [44]. In many cases, the complex
relationship among the influencing factors can be generally described by an empirical exponential
formula [45,46],

Fc = CFca
xFc
p f yFcvzFc

c KFc (1)

where vc (mm/s), ap (mm) and f (mm/min) are cutting speed, depth of cut and feed rate, respectively;
CFC is a coefficient determined by workpiece material and cutting condition; xFC, yFC and zFC are
exponential constants; KFC is a correction coefficient.

Based on Equation (1), the cutting power Pc (N·m/s) can be estimated,

Pc =
Fcvc

1000
(2)

In machining, the excess material is removed from the workpiece through the relative motion
between the workpiece and the cutter. The machining efficiency can be improved by increasing the
material removal rate per unit time and reducing the energy consumption [47]. Hence, SEC, i.e.,
the ratio of the total energy consumption E to the material removal volume MRV (mm3), is selected
as the evaluation index for energy consumption of machining. MRV and SEC can be respectively
defined as:

MRV =

∫ TC

0
MRR · dt =

vc · f · ap · Tc

N
(3)

SEC =
E

MRV
=

PcTc

MRV
(4)

where MRR is the material removal rate, N is the spindle RPM, and Tc is the cutting time.

2.2. Machining Cost

For a manufacturer, the following costs may be incurred: labor cost, transport cost, inventory cost,
depreciation cost of the machine tool, electric energy cost, and cutter depletion cost. Among them,
some costs (e.g., transport cost) are not directly related to machining operations. Therefore, this paper
mainly considers the depreciation cost of the machine CM, the cutter depletion cost CT, the electrical
energy cost CE, and the labor cost CO.

(1) Depreciation cost CM

In machining, the depreciation cost of the machine CM ($/hour) is the product of the cutting time
Tc (in seconds) of the workpiece and the depreciation rate R ($/hour) of the machine:

CM =
R · Tc

3600
(5)

(2) Cutter depletion cost CT

The depletion of cutters, CT, is the ratio of the unit price, UP, to the service life, Tl, of the cutter:

CT =
UP · Tc

Tl
(6)
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The tool life Tl of the cutter is related to the parameters of cutting speed vc, feed rate f, and depth
of cut ap. In many cases, the influence of depth of cut is the least, the influence of feed rate is larger than
that of depth of cut, and the cutting speed has the greatest effect on tool life. Tl can be computed by:

Tl =

KT
CT

vca
xT
p f yT

1/m

(7)

where m, xT, yT, CT and KT are the coefficients related to the service life of workpiece and cutters.

(3) Energy cost CE

For a machine tool, the electric energy cost CE can be measured by the industrial electricity charge
of the machining process:

CE = ER · E (8)

where ER is the industrial electricity rate.

(4) Labor cost CO

The labor cost CO is the salary paid to operators, which can be estimated based on the cutting time:

CO =
HL · TC

3600
(9)

where HL is the hourly rate of an operator.
To sum up, the machining cost Ct can be calculated:

Ct = CM + CT + CE + CO (10)

2.3. Cutting Time

The total machining time can be broken down into standby time, idling time, tool change time
and cutting time. However, since this research only tackles the actual cutting process, other machining
time components are not considered. The cutting time Tc can be computed in terms of feed rate f and
cutting length L,

Tc =
L
f

(11)

2.4. Constraints

The cutting parameters of machine tools must satisfy various constraints on machine tool
performance and machining conditions, including cutting speed, surface roughness, machine tool
power and the maximum cutting force.

(1) Machining parameters

For a machine tool, the three machining parameters (i.e., cutting speed, feed rate, and depth of cut)
must fall into an interval for any machining condition,

vmin ≤ v ≤ vmax (12)

fmin ≤ f ≤ fmax (13)

apmin ≤ ap ≤ apmax (14)

(2) Power of machine tool
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In real-world conditions, the maximum cutting power is limited by the power of the spindle
motor in the machine tool. Hence, the power of machine tool should not exceed the spindle motor
power Pc max:

Pc =
CFca

xFc
p f yFc vzFc+1

c KFc

1000ηm
≤ Pcmax (15)

where ηm is the transmission efficiency of the machine tool.

(3) Cutting force [45]

Generally, the force of the main cutter is taken as the cutting force of the entire machine tool.
The magnitude of the force must be within the scope of the maximum cutting force provided by the
machine tool:

Fc = CFca
xFc
p f yFcvzFc

c KFc ≤ Fmax (16)

(4) Surface roughness [48]

In machining, the surface roughness of the workpiece is related to the process requirements,
workpiece material and the required workpiece performance. Here, the surface roughness should
satisfy the following constraint,

Ra = rc −

√
rc −

(
f

2N

)2

≤ Rmax (17)

where rc is the corner radius of the cutter.
In summary, the multi-objective optimization model of the machining parameters for machine

tools can be established as:

min


SEC = E

MRV
Tc =

L
f

Ct= CM+CT+CE+Co

s.t.



vmin ≤ v ≤ vmax

fmin ≤ f ≤ fmax

ap min ≤ ap ≤ ap max

Pc =
CFc a

xFc
p f yFc v

zFc+1
c KFc

1000ηm
≤ Pc max

Fc= CFca
xFc
p f yFc v

zFc
c KFc ≤ Fmax

Ra= rc −

√
rc −

(
f

2N

)2
≤ Rmax

3. Solution Approach

3.1. Concept of DMS-PSO Algorithm

The particle swarm optimization (PSO) [49,50] is an evolutionary algorithm mimicking the
behavior of individuals in a swarm to maximize the survival of the species. With simple concepts
and few adjustable parameters, the PSO is easy to program, implement, and combine with other
algorithms. More importantly, the algorithm can adapt to various conditions and converge to the
optimal solution rapidly. Considering these advantages, this paper selects the PSO to solve our
multi-objective optimization model.

The PSO is an iteration-based optimization algorithm. In each iteration, every particle determines
its velocity and position for the next step according to its current position and velocity, its best-known
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position and velocity and the global best-known position and velocity. The position and velocity
update formulas are as follows: v(k+1)

id = ω·v(k)id +c1·r1·

(
p(k)id −x(k)id

)
+c2·r2x·

(
g(k)id −x(k)id

)
x(k+1)

id = x(k)id +v(k+1)
id

(18)

Any new particle velocity produced by the neighborhood function must fall below the
maximum velocity: ∣∣∣∣v(k)id

∣∣∣∣ ≤ Vmax (19)

The selection function of the PSO can be defined as:

D
(
O(x (k)

i ), p(k)id

)
=

 O (x (k)
i ) f (O (x (k)

i )) ≤ f ( p (k)
id

)
p(k)id f (O (x (k)

i )) f ( p (k)
id

) (20)

where p(k)id and g(k)id should be selected by the following criteria:

p(k)id ∈

{
x(k)1d , x(k)2d , · · · , x(k)Nd

∣∣∣ f (x (k)
id

)}
= min

{
f
(
x(k)1d

)
, f

(
x(k)2d

)
, · · · , f

(
x(k)Nd

)}
(21)

g(k)id ∈

{
g(k)1d , g(k)2d , · · · , g(k)Nd

∣∣∣ f (p (k)
id

)}
= min

{
f
(
g(k)1d

)
, f

(
g(k)2d

)
, · · · , f

(
g(k)Nd

)}
(22)

The meanings of symbols in the above equations are explained in Table 1 below.

Table 1. Symbols for PSO parameters

ω. Inertia Weight Vmax Maximum Velocity

g Iteration cycle c1 and c2 Learning factors

x(k)i
Current position r1r2 A random number in interval [0,1]

v(k)
i

Velocity N Quantity of swarm

p(k)
id

Individual best-known position d Dimension of search space

g(k)id
Global best-known position f(·) Fitness function

Because of the fast convergence, the PSO is very likely to undermine swarm diversity and fall into
the local optimum trap [51]. To solve these problems, this paper introduces the DMS strategy to the PSO,
which divides the swarm into several sub-swarms by certain rules. The sub-swarms are reconstructed
through the search process, such that their particles can change dynamically. Thus, the multiple
sub-swarms can exchange information, in the meantime of parallel search and co-evolution.

Suppose the original swarm has nine particles and is divided into three sub-swarms. In the
DMS-PSO, the sub-swarms are reconstructed by the following rules: Each sub-swarm searches for
better solutions with their particles. During the search, the sub-swarm may converge to the local
optimum solutions. Next, the nine particles were regrouped into three new sub-swarms every other R
iterations. The new sub-swarms will start to search for the optimal solution again. The above process is
repeated until the termination condition is satisfied [37,52]. By the reconstruction strategy, the particles
from different sub-swarms are repeatedly regrouped into new sub-swarms. Thus, the search space
of each sub-swarm is expanded, enabling it to find the better solution. This strategy also helps to
diversify the particles. Compared with the traditional swarm structure, the new swarm structure has
greater degree of freedom and performs better in complex multi-modal problems.
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3.2. Multi-Objective Consideration

Multi-objective optimization problems have essential differences with single objective optimization
problems [53] in that multi-objective optimization needs to coordinate or make a trade-off between the
multiple objectives under the specified constraints, aiming to achieve the best overall performance.
Therefore, the key to solve a constrained multi-objective optimization problem lies in the processing of
the objectives and constraints.

In the multi-objective optimization model, energy consumption, machining cost and cutting
time place restriction against each other. The three objectives differ greatly in meaning and
dimensions, making it difficult to compare or weigh them directly. To provide accurate information for
decision-makers, this paper adopts the Pareto optimal set to solve the multi-objective optimization
problem. The separation index method, which does not directly discard the non-feasible particles,
is selected to process the multiple objectives and constraints, and ensure the solution diversity and
convergence. By this method, the total deviation of each non-feasible particle from all constraints is
considered the distance measure of the feasible region. Then, all particle positions are ranked by the
sum of the target fitness and the deviation. To reflect the optimization difficulties of each particle under
different constraints, the deviation Φi of a particle from a constraint can be defined as [54],

Oi =

∑N
j−1 Gi

(
x j

)
∑N

j−1
∑N

j−1 Gi
(
x j

) , i = 1, 2, · · · , n (23)

Gi(x) =

 max
{
gi(x), 0

}
, i = 1, 2, · · · , p

max
{∣∣∣hi(x)

∣∣∣− ε, 0
}
, i = p + 1, p + 2, · · · , n

(24)

where Gi(x) is the deviation of particle x in the swarm from the i-th constraint; n is the number of
constraints; xj is the j-th particle of the swarm; ε is the tolerance coefficient of the deviation; N is the
swarm size.

Then, the fitness of each particle can be defined as:

F(x) =


fi(x) Feasible particle

N∑
j−1

O j(x) Non− f easible particle (25)

The particles need to select between solutions that both optimize the objectives and satisfy the
constraints. Thus, the solution quality is judged by the following criteria rather than fitness alone:

(1) If both solutions are feasible, the one with the higher fitness should be selected;
(2) If one solution is feasible and the other is non-feasible, the feasible one should be selected;
(3) If both solutions are non-feasible, the one with the smaller deviation should be selected.

3.3. Procedure of the DMS-PSO Approach

Based on the multi-objective optimization strategy in literature [55], we refine the procedure of
the DMS-PSO approach to solve the multi-objective optimization model for machining parameters of
machine tools. As shown in Figure 1, the steps of the DMS-PSO are as follows:

Step 1. Initialize the swarm under the constraints of the model. Determine the initial position and
velocity of each particle.

Step 2. Judge if the swarm reaches the condition for division.
Step 3. Allocate the optimization tasks to the sub-swarms.
Step 4. Reconstruct the sub-swarms by the strategy in Section 3.1.
Step 5. Select the global best-known solution gbest from the external file by tournament selection.
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Step 6. Compare pbest and gbest, and retain the better one.
Step 7. Update the particle position and velocity by self-learning strategy, while ensuring the flight in

the search space.
Step 8. Compute the fitness of each particle.
Step 9. Add the new non-inferior solutions to the external file Np.
Step 10. Judge if the termination condition is met.
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4. Numerical Case

4.1. Machining Scenario

The turning scenario employs an AD-35 CNC lathe, as shown in Figure 2, whose spindle speed
range is 25~2500 rpm, peak feed rate is 1260 mm/min, and spindle power is 30 kW. Hard alloy cutters
are employed, with the rake angle, clearance angle, cutting edge angle, cutting edge inclination angle
and corner radius of 15◦, 8◦, 75◦ 6◦ and 1 mm, respectively. As shown in Figure 3, the Φ 89 workpieces
to be machined are made of 40Cr steel. The goal of turning is to semi-finish them to the diameter of
Φ86 mm for the length of 70 mm, and the surface roughness Ra should be below 6.3 µm.
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In the course of machining, the depreciation cost of the machine tool CM is 29 $/h, the industrial
electricity rate is 0.78 $/kWh, the labor cost is 20 $/h, and the cutter cost is 17 $/each. According to
literature, the coefficients related to the service life of cutters m, xT, yT and CT are set to 0.2, 0.15, 0.35
and 241, respectively [56].

4.2. Simulation Conditions

The model is solved by the DMS-PSO approach coded in Matlab 2016b, on a PC (Intel CPU,
2.6GHz, 4GB RAM) running on Windows 10. Based on the existing research related to DMS-PSO [57,58]
and the satisfactory results from pilot tests, the number of iterations is set to 1000. To ensure the
solution diversity, the recombination interval, self-learning threshold and swarm size are set to 50, 0.5
and 200 respectively based on a pilot test. The parameter settings, simulation results and part of the set
of optimal solutions are presented in Tables 2 and 3 and Figure 4, respectively. It can be seen from
Figure 4 that the solution set of the DMS-PSO is not clustered in a small area but distributed across a
curved surface.

Table 2. DMS-PSO parameter settings.

Parameters Value

Swarm size p 200
Maximum number of iterations g 1000

Inertia weight ω 0.4
Learning factors c1 and c2 2
Capacity of external file N 100
Reconstruction interval R 50
Self-learning threshold P1 0.5
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Table 3. Part of the optimal solution set.

Serial Number vc m/min f mm/r ap mm SEC j/mm3 Tc S Ct $

1 140.33 0.35 0.92 6.554 23.898 0.492
2 107.39 0.33 0.69 8.490 32.852 0.510
3 150.00 0.35 0.90 6.526 22.357 0.511
4 129.40 0.35 0.84 7.028 25.915 0.474
5 129.19 0.35 0.67 8.078 26.174 0.459
6 119.74 0.35 0.94 6.692 28.006 0.485
7 150.00 0.25 2.00 5.035 31.433 0.726
8 131.22 0.34 0.50 9.619 26.234 0.445
9 122.79 0.35 0.50 9.621 27.311 0.445
10 106.29 0.35 1.92 4.558 31.549 0.547
11 150.00 0.33 1.53 5.006 24.003 0.615
12 109.67 0.35 1.20 5.953 30.577 0.511
13 107.89 0.35 0.65 8.556 31.084 0.485
14 150.00 0.35 1.42 4.998 22.357 0.591
15 140.46 0.30 2.00 4.546 27.586 0.642
16 134.28 0.31 1.37 5.639 28.180 0.562
17 116.05 0.33 2.00 4.554 31.024 0.573
18 147.43 0.35 0.70 7.575 22.746 0.473
19 139.79 0.33 1.33 5.522 25.755 0.556
20 138.66 0.35 0.82 7.011 24.185 0.477
21 128.93 0.35 2.00 4.285 26.307 0.573
22 124.99 0.28 2.00 4.857 33.033 0.627
23 124.89 0.35 1.54 5.025 27.168 0.532
24 106.29 0.35 0.50 9.971 31.604 0.481
25 150.00 0.30 1.19 6.157 26.523 0.589
26 141.23 0.35 1.04 6.068 23.745 0.510
27 128.93 0.35 0.50 9.509 26.009 0.438
28 129.30 0.31 1.19 6.150 28.920 0.538
29 119.04 0.30 0.83 7.961 33.141 0.539
30 113.77 0.35 2.00 4.385 29.475 0.547
... . . . . . . . . . . . . . . . . . .

Then, the feed rate, depth of cut and cutting speed are analyzed to disclose their impacts on the
three objectives and the convergence of the DMS-PSO. As shown in Table 3, the feed rates are mostly
close to the upper limit of 0.35 mm/r. This is because the increase of feed rate can reduce the SEC,
the cutting time and the machining cost. In actual production, the feed rate should be rationalized to
lower the cost and energy consumption, and improve the machining efficiency. Taking the feed rate
of 0.35 mm/r, machining scenarios are developed at the depth of cut of 2 mm or the cutting speed of
150 m/min. The results are displayed in Figures 5 and 6.
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As shown in Figures 5 and 6, the Pareto frontier gradually stabilizes with the increase in the
number of iterations, and the final solution set obeys a linear distribution, when the depth of cut
and cutting speed are taken as the decision variables, respectively. Thus, the Pareto frontiers of the
DMS-PSO have good diversity and convergence. In addition, Figure 5 shows that the cutting time
has little to do with depth of cut. This seems to be counter intuitive because depth of cut usually
significantly affects the machining efficiency—the larger the depth of cut, the shorter the process time
to remove the desired amount of material. However, the particular case adopted in this paper is
for the semi-finishing process in lathe turning, mainly to ensure that the finishing step has a more
uniform machining margin. The semi-finishing turning only needs one pass (or to be cut once),
so the cutting time is only related to the workpiece length and the feed rate, but not the depth of cut.
Without considering this objective, the greater the depth of cut, the smaller the SEC, and the higher the
machining cost. This is attributable to the following factors: with a high depth of cut, the cutters are
worn rapidly, pushing up the MRR and energy consumption; but the increment of energy consumption
is smaller than that of the MRR. Therefore, the selection of depth of cut directly bears on the machining
cost and energy consumption.

From Figure 6, it can be seen that without considering the machining cost, the increase in cutting
speed shortens the cutting time and reduces the energy consumption. Without considering the cutting
time, the machining cost first declines and then increases, while the SEC reduces with the growth of
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cutting speed. Without considering the SEC, the machining cost still decreases and then rebounds,
while the cutting time is shortened with the increase of cutting speed. The main reason is that while the
increasing cutting speed does reduce the cutting time, it intensifies energy consumption and cutter wear.

The above analysis shows that the Pareto frontier obtained by the DMS-PSO boasts good diversity
and convergence, providing a suitable way to select the suitable cutting parameters for optimizing
multiple objectives in enterprises.

4.3. Discussion

After the optimal solution set is obtained by the DMS-PSO algorithm, one can further
comprehensively evaluate the solution set of Pareto from the perspectives of representativeness,
systematicness and applicability according to the actual situation of the evaluation system. The methods
commonly used for this type of comprehensive evaluation include qualitative method and quantitative
methods such as analytic hierarchy process, fuzzy comprehensive evaluation (FCE) and others.
In actual production, the equipment, requirements and methods of machining may vary with the
types of products and technical levels of operators. Therefore, the weights of the three objectives in
machining should be adjusted based on the specific type of products and technical skill of operators.
It is difficult to determine or quantify the fuzzy attributes, features and weights of the multi-objective
optimization problem. To further evaluate the solution set of Pareto in the turning operations,
the fuzzy comprehensive evaluation (FCE) method is introduced in this paper. Based on fuzzy
mathematics, the FCE can quantify some fuzzy factors that are unclear in boundaries and difficult to
determine or quantify. Firstly, the qualification problem is turned into a quantification problem. Then,
the membership of each fuzzy factor is obtained according to the influencing factors, and the quality of
that factor is evaluated in a comprehensive manner [59]. The specific steps are as follows:

(1) Determination of evaluation factors

The factor set that influences the selection of Pareto solution set in the multi-objective optimization
model of machining parameters is expressed as U.

U = {u1, u2, · · · , um} (26)

(2) Establishment of evaluation set

An evaluation set is a set of possible evaluation results made by the evaluator. Let V denote the
symbol of the set.

V = {v1, v2, · · · , vm} (27)

where vi represents the ith evaluation result and m is the total evaluation result. To select reasonable
solutions from the Pareto solution set, four evaluation results will be selected to establish the evaluation
set, V = {very important, important, general, not important}.

(3) Judgment matrix construction and weight determination

The single factor evaluation vector is determined by investigation and statistics combined with
the research problem. It can be obtained through selecting the membership degree rij for the rating vi.

ri = (ri1, ri2, · · · , rim) (28)

The total evaluation matrix can be obtained after the comprehensive evaluation of all the factors.

R = (ri j)n×m =


R1

R2
...

Rn

 =


r11r12 · · · r1m
r21r22 · · · r2m

...
...

...
...

rn1rn2 · · · rnm

 (29)
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It is not enough to evaluate each solution of the Pareto solution set to obtain the above fuzzy
relation matrix. In the actual manufacturing process, evaluation factors have different emphases and
functions related to products, technical level of workers, machine tools and equipment. This means
that each evaluation index occupies a different proportion in the comprehensive evaluation. As such,
a weight distribution set is used, A = (a1, a2, . . . , an), where ai ≥ 0 and

∑
ai = 1.

(4) Fuzzy synthesis and decision making

There are two kinds of fuzzy synthesis algorithms: the weighted average model and the dominant
factor model. Compared with the dominant factor model, the weighted average model has the
advantages of making each factor contribute to the evaluation, reflecting and evaluating the whole
project objectively, and avoiding the loss of information. Therefore, this paper selects the weighted
average fuzzy synthesis algorithm. A fuzzy subset B = (b1, b2, . . . , bm) that belongs to V is introduced
as the decision set, and the evaluation model can be obtained as follows:

B = A ∗R = (a1, a2, · · · , an) ∗R (30)

If the evaluation result
∑

bi , 1, the fuzzy distribution method is adopted to normalize the
evaluation index. Then, the index weights of pareto solution set for different products, processing
requirements, machine tools and workers can be obtained.

The importance of energy consumption, machining cost and cutting time for machining depends
on many factors such as the equipment condition, products to be produced, technical level of operators,
and priority of a company. Thus, the weights of the three objectives could vary with the batches
of products. As a result, each type of machine tool has a unique set of weights for the objectives.
In light of the actual situation, the weights and judgment matrix are first established, and the optimal
combination for the three objectives is then obtained as B = [0.37, 0.21, 0.42] through the FCE. Thereafter,
the optimal results are evaluated by the linearly weighted sum method. The greater the evaluation
score, the better the parameter combination. Based on the serial number of machining parameters in
Table 3 and the evaluation scores, the results are plotted as Figure 7. Obviously, the 56th parameter
combination achieves the optimal score of 0.171, in which the cutting speed is 125.14 m/min, the feed
rate is 0.35 mm/r and the depth of cut is 1.68 mm.
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To further verify the optimization effect of the DMS-PSO, the empirical machining parameters
are imported to our model, and the obtained results are compared with the optimal results in Table 4.
It can be seen that the optimal results of the DMS-PSO are 15.49%, 17.81% and 6.42% lower than the
empirical results, respectively, for the SEC, cutting time, and machining cost. Additionally, the optimal
results are in line with the empirical criteria for selecting machining parameters, indicating that the
optimal parameters fall in the empirical range of machining parameters. In addition, the DMS-PSO



Energies 2020, 13, 2616 15 of 18

strikes a balance between the three optimization objectives. The above results show that our algorithm
can effectively identify the optimal combination of machining parameters.

Table 4. Comparison between empirical and optimal results.

Items vc
m/min f mm/r ap mm SEC j/mm3 T s Ct $ Score

Empirical value 120 0.3 1.5 5.611 32.604 0.576 0.296
Optimized value 125.14 0.35 1.68 4.742 26.797 0.539 0.171

5. Conclusions

For the common machining operation of turning, this paper establishes a multi-objective
optimization model by minimizing three objectives: machining cost, cutting time and energy
consumption. Then, a solution approach based on a dynamic multi-swarm particle swarm optimizer
(DMS-PSO) is proposed to solve the established model. In the light of the actual production requirements
of a turning operation, the model is applied, and the optimal set of machining parameters is obtained.
Considering the variability in products, machines, production requirements and technical levels
of operators, the optimal machining parameters are identified by fuzzy comprehensive evaluation,
and then compared with the empirical parameters. The comparison shows that the optimal results
outperform the empirical results in terms of specific energy consumption, cutting time and machining
cost. Therefore, the proposed DMS-PSO algorithm can effectively solve the multi-objective optimization
model for optimal machining parameters, and is expected to enjoy broader applications.

Based on the results, extension studies can be considered in the future. One direction could be a
comprehensive sensitivity analysis. This will help to understand a broad spectrum of solutions under
various cases of lathe turning. Another direction could be the extension of the methodology for other
machining operations such as milling. In this case, the model should be expanded to include more
process parameters such as width of cut. Similarly, the expansion can also be made to include other
factors such as tool geometry in machining.
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