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Abstract: Harmonic simulations play a key role in studying and predicting the impact of nonlinear
devices on the power quality level of distribution grids. A frequency-domain approach allows higher
computational efficiency, which has key importance as long as complex networks have to be studied.
However, this requires proper frequency-domain behavioral models able to represent the nonlinear
voltage—current relationship characterizing these devices. The Frequency Transfer Matrix (FTM)
method is one of the most widespread frequency domain modeling approaches for power system
applications. However, others suitable techniques have been developed in the last years, in particular
the X-parameters approach, which comes from radiofrequency and microwave applications, and the
simplified Volterra models under quasi-sinusoidal conditions, that have been specifically tailored
for power system devices. In this paper FTM, X-parameters and simplified Volterra approaches are
compared in representing the nonlinear voltage —current relationship of a bridge rectifier feeding an
ohmic-capacitive dc load. Results show that the X-parameters model reaches good accuracy, which is
slightly better than that achieved by the FTM and simplified Volterra models, but with a considerably
larger set of coefficients. Simplified Volterra models under quasi-sinusoidal conditions allows an
effective trade-off between accuracy and complexity.

Keywords: nonlinearity; modelling; power systems; harmonic analysis; harmonic balance

1. Introduction

Power electronics devices are widespread in electrical grids, thanks to the impressive advancement
of high-power semiconductor devices. Furthermore, the increasing penetration of renewable energy
sources we have recently experienced has boosted the amount of power electronics converters in
distribution grids; this trend is expected to be reinforced by the diffusion of plug-in electric vehicles.
However, power electronics based devices, together with other nonlinear components with magnetic
cores, fluorescent lamps, etc. [1,2] may trigger power quality issues. One of the most severe is harmonic
pollution: voltage and currents may significantly differ from the purely sinusoidal waveform, because
of the nonlinear behavior of some power system devices. In this scenario, analyzing the impact of
these nonlinear devices on harmonic pollution has key importance. This task requires performing
harmonic simulations of the grid, and thus the availability of proper models that are able to capture
the nonlinear behavior of the devices [3,4].

When harmonic simulations have to be performed, different time and frequency domain methods
have been proposed in the literature. The IEEE Task Force on Harmonics Modeling and Simulation
has made many efforts in this direction [5-7]. A time-domain approach is inefficient as long as the
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purpose is obtaining the steady-state solution of the system, in particular when long time constants are
involved. One of the most widespread approach in harmonic power flow is a hybrid time-frequency
domain method. It tries to exploit the advantages of time and frequency domain approaches:
linear components are modeled in the frequency-domain, while nonlinear components are represented
in the time-domain [8-10]. However, for every considered nonlinear component, an iterative solver
(for example using harmonic balance) is required, and inputs and outputs have to be shifted from
frequency- to time-domain and vice versa for each iteration.

Harmonic simulations are steady-state by definition, and, in this respect, a purely frequency-
domain approach is surely the most effective from a computational point of view. For this reason,
in the last few decades, the scientific community committed to developing, adapting and solving
nonlinear frequency-domain models for power system components. The drawback is that it is rarely
possible to use physically based models: a behavioral approach is typically adopted.

One of the first examples of behavioral frequency-domain models specifically developed
for nonlinear power systems components is represented by the frequency transfer matrix (FTM)
method [11-16]. Adopting this approach, the behavior of the device is linearized around an operating
point in the frequency domain, set by an arbitrary reference input. The output is then modeled as a
linear combination of the variations of all the input harmonics, with respect to their reference values.

In the last years, a modelling technique which was initially developed for radiofrequency and
microwave devices have been applied also to represent the behavior of nonlinear power system
devices: the X-parameters approach [17-22]. In this case, the spectrum of the input signal is split into
“large” and “small” components. Large components are assumed to drive the nonlinearity, and, thus,
the corresponding system response is given by a nonlinear function of them. The system response with
respect to the small components is modeled by using the so-called spectral linearization approximation
around the large signal components, thus exploiting the amplitude ratio between them.

Finally, frequency-domain Volterra models represent the straightforward extension of the
conventional frequency response function (FRF) to nonlinear time invariant (NTI) systems.
This approach can be employed to model power electronics converters [23], but the main drawback
is that its complexity rapidly increases with the number of input harmonics and the considered
nonlinearity degree. The models can be effectively adapted to power systems applications by
introducing the so-called quasi-sinusoidal simplification, thus exploiting the fact that electrical signals
are made of a strong fundamental component and harmonics that are much smaller in magnitude.
In particular, only harmonic distortion and intermodulation between the fundamental component and
a single harmonic at once is considered [24-28].

Bridge diode rectifiers are commonly used for widespread applications, such as battery chargers
for electric vehicles [14], home appliances [13], LED and fluorescent lamps [15,29], wireless power
transfer systems [30], thanks to their simplicity, efficiency and robustness. On the other hand, they are
highly nonlinear, which produces strong harmonic distortion, thus resulting in severe power quality
degradation. In this work, the three different frequency-domain nonlinear modeling approaches that
have been previously introduced will be briefly recalled and applied to represent the current-voltage
relationship of a diode rectifier feeding an ohmic-capacitive dc load. These models can be integrated
into a harmonic solver, for example, in order to study the power quality issues in a distribution grid.
Performance reached by the three different nonlinear models are compared under realistic scenarios
(random harmonics and off-nominal frequency conditions) and a detailed discussion is carried out.

2. Nonlinear Frequency-Domain Models

Black box or behavioral models are widespread tools in multifold engineering applications,
thanks to their flexibility. In fact, the knowledge of the physical insight is not required: instead,
they provide a mapping between input and output signals, thanks to basic relationships. On the other
hand, black box models often result in a higher number of coefficients with respect to a physical model,
which is the price to pay for their generality.
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In power system applications, these behavioral models can be used to express a relationship
between voltages and currents in a network. When these models have to be used for studying the
propagation of harmonics, a frequency domain approach is generally preferable. In this respect,
three different frequency domain nonlinear behavioral models developed for power systems
applications will be considered in the study and briefly recalled:

1.  Frequency Transfer Matrix;
2. X-Parameters;
3. Simplified Volterra models.

The formulation of each model will be presented considering generic input u(t) and output y(t)
quantities, which can be a voltage and a current in power systems applications. The procedure for
identifying their parameters will be also explained. Signals are assumed to be periodic; let us introduce
the two-sided input signal spectrum U containing harmonics up to order N. Thanks to the Hermitian
property of the spectrum (real-valued input and output), the one-sided output spectrum Y completely
defines the output signal.

2.1. Frequency Transfer Matrix

Let us assume that the frequency-domain behavior of the considered system can be described by
a generic complex-valued, continuous vector function F():

Y = F(U) )

Having considered the two-sided spectrum U, the function F(-) is differentiable (it obeys to the
Cauchy-Riemann condition). Therefore, the function F(-) can be approximated by a Taylor series
truncated at the first order in the neighborhood of a base point Ug. By considering a generic input
spectrum U = Up + AU, the corresponding output spectrum Y can be approximated as:

Y ~ F(Ug) + JAU = Yg + AY )

where the Jacobian matrix J is usually called Frequency Transfer Matrix (FTM), while Yg represents
the function F(-) evaluated in the base point Ug, namely the reference input spectrum. Therefore, the
variation of each output harmonic is linearly dependent on the variations of each input harmonic;
in other terms, the FTM represents the nonlinear behavior of the system as a cross-coupling among the
variation of the different harmonics. For this reason, the FTM is often known as frequency coupling
matrix (FCM).

A tensor approach is usually adopted [12,16]: it allows considering the one-sided input spectrum
by decomposing input and output components in real and imaginary parts. Then, each term of the
FTM can be defined as a 2 X 2 real-valued tensor, so that J is a real-valued tensor matrix:

Y =Yy +](U-Uy) 3)
where
].[m,n] ].[m,n]
J(m,n) :[ AR } )
- i T2
and
| Yre | YBRre | Uge _ | UpRre
X_[Ylm ]XB_[YB,Im ]g_[UIm ]QB_[UB,Im ] ©)

From Equation (3), it is trivial to define the number of complex coefficients defining the model
behavior at the generic mth output harmonic, that is:
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cerMm = (14 2N) (6)

Identification Procedure

In order to identify the FTM model of a given device, a procedure to estimate the tensor elements
of J and Y has to be defined. Firstly, a reference input spectrum Ug has to be selected. Generally, it may

contain an arbitrary number of harmonics, and it should be reasonably near to the typical working
condition of the device under test, so that AU is rather small during regular operation. First of all,
the signal Up is applied to the device under test, and the corresponding output Yp is measured:
it defines the reference output spectrum.

After that, the tensor matrix J has to be identified by applying a generic periodic input U, which is
composed by the previously defined reference spectrum Ug(n), plus a given perturbation AU(n) for
each input harmonic. In order to model the dependency to the relative phase displacement between the
reference spectrum and the perturbation, the relative angle between Ug(n) and AU(rn) has to assume R
values covering the full angle; for this reason, an even number of R input signals evenly spaced have
to be considered.

Therefore, let us introduce the generic rth perturbation on nth order input harmonic:

Uy’ = Up(n) + AU (n) @
The system response to the previous input perturbation is:
Y, =Yg+ (maull(n) ®)

where JI"I(n) is the nth column of the complex matrix J, which is the Jacobian matrix that has to be
estimated. The relation can be inverted so that each column of J can be estimated by considering each
rth stimulus:

Y, - Yg

() = Xn —YB

9
Once having computed ][’] (n) for each harmonic #, J can be easily obtained, as shown in [16].

2.2. X-Parameters

Similarly to the FTM method, the X-parameters approach also starts defining each output harmonic
Y(m) as a function of the whole input spectrum (1). Without additional hypothesis, it is troublesome to
find the mapping function F for an extended solution space region.

The X-parameters approach divides the input spectrum into two different subsets. The first one,
O is the set of the harmonic orders of the input spectral components, which are considerably larger
than the others, and, thus, drive the nonlinearity. All the other harmonic orders, having much smaller
amplitudes, compose the small signal set Qgy.

Once having defined the two subsets, it is possible to apply the so-called Spectral Linearization
Approximation. Each output harmonic Y(m) can be decomposed into two contributions:

Y(m) = Yic(m) + Ysp(m) (10)

Y1 c(m) is a nonlinear function of the large tones in the input spectrum U(n), ne QO g; while Ygp(m)
is a linear combination of the smaller input spectral components, namely of U(n), n € (0gps. The harmonic
tones belonging to (); ¢ define the large signal operating point (LSOP). Once having fixed the LSOP
and chosen an output harmonic m, the model is defined by the contribution of the LSOP, plus the
corresponding linear sensitivity coefficients with respect to the small signal input harmonics. Definitely,
once the LSOP changes, different sensitivity coefficients have to be employed.
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The Spectral Linearization Approximation can be perfectly suited to model power system devices.
In particular, the input quantity is represented by an electrical signal (typically a voltage), which is
made of a strong fundamental term at the rated frequency fy and small harmonics up to a generic order
N. It is easy to define the set ()1 as composed by only the fundamental component U(1), while the
other N—1 spectral components represent the small signal.

Remembering Equation (10), for a given output harmonic order m, the large signal contribution
Y1 (m) is a nonlinear function of U(1):

Yig(m) = Yn(U(1))

Y (11)
Xy (m) = Lg3
where X is the large signal X-parameter and P is:
p = ¢//u) (12)

Once defined, the LSOP and all the other small-signal harmonics are supposed to produce a linear
perturbation of the output:

N
Yom(m) = Y (Xs(m,m)U(n)P"™" + X (m, n)U" (n) P"*") (13)
n=2

where * denotes the complex conjugate operator. Xg(m,n) and Xt(m,n) represent the sensitivities of
the small signal contribution of the mth order output harmonic with respect to the nth order input
harmonic and its negative frequency image.

All the X and X7 are (nonlinear) functions of the LSOP: in general, for each LSOP, N-1 couples
of small signal X-parameters Xg, Xt affect the output Ysps(). Adding the LSOP term X and, if it is
present, the sensitivity to the dc component, the total number of parameters for each output harmonic
and LSOP is:

cxm = 2N (14)

In general, defining Q as the number of the considered LSOP, the total number of coefficients is
obtained by multiplying Equation (14) by Q.

In most applications, the LSOP continuously changes during operation. Therefore, the Spectral
Linearization Approximation has to be applied to different LSOPs covering at least the whole range of
interest. When the operating point is different from the estimated ones, the corresponding X-parameter
values can be obtained by interpolation [17].

Identification Procedure

Identifying the model consists in defining a procedure to estimate the X-parameters X; g, Xg, Xr.
Similarly to the identification of the reference output spectrum in the FTM approach, the large signal
contribution X; can be computed at every output harmonic by applying only the large signal input,
that is the fundamental component as long as power system applications are considered: from Equation
(11), it is trivial to find Xjc(m) as the corresponding response at the mth order harmonic component.

Conversely, different techniques have been synthesized in the literature for obtaining Xg and
Xr. In this work, the offset-phase method has been adopted. Two different input signals—U; and
Uj,——characterized by the same LSOP (U(1) in our case) have to be injected: one containing the nth
harmonic with a known phase shift (Ug1(1)), the other having the same amplitude and frequency,
but shifted by a phase angle of 1/2 (Ugy(n)). Y1 and Y; are the system responses to the previously
defined input spectra, respectively. Then, by subtracting the bias due to the large signal, Y51 and Yg»
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are obtained. Finally, for each input harmonic order n and output harmonic order m, the following
linear system of equations can be written:

Ysi(m) | | Usi(n)  (Usi(n)) |[ Xs(m,n)
[ Ys2(m) ]_[ (Usa(n))”  Usa(n) ][ Xt (m,n) ] (19

By inverting Equation (15), Xs(m,n) and X7(m,n) can be computed.

2.3. Simplified Volterra Model

The frequency-domain Volterra approach sets a polynomial relationship between input and output
harmonics. They derive from the most straightforward generalization to the nonlinear case of the
well-known LTI systems theory, thus extending the concept of frequency response. In particular, the
generic mth order harmonic component of the output signal spectrum Y (m) results:

I i
Y(m) = Z Z Hi(ny, ..., ni)H U(nj) (16)
=1 _N<mny,.,n <N =1
m = i n i
j=1

Each output harmonicis given by the sum of I contributions of nonlinear homogeneous subsystems,
each one characterized by its degree i. Since the Volterra approach can be seen as an extension of
the usual LTI systems theory, H' is usually defined as the ith degree generalized frequency response
function (GFRF).

The main drawback of Volterra models is related to the large number of coefficients which are
required to define the GFRFs: they grow more than exponentially with the nonlinearity degree and
with the number of input harmonics. For this reason, in practical applications, only very low orders of
nonlinearity (usually two and three) are employed: otherwise, the identification procedure and the
computational burden could become troublesome.

The authors of this paper have proposed a pruning technique able to dramatically reduce the
complexity of Volterra models, which has been specifically designed for power system applications.
It exploits a priori knowledge about the typical spectral content of electrical signals in ac power systems:
a strong component at the rated frequency, and harmonics which are much smaller in amplitude [24,25].
Under this assumption (quasi-sinusoidal operation), interactions between harmonics different from
the fundamental one are neglected.

Thus, Equation (16) can be modified by exploiting the previously introduced quasi-sinusoidal
condition:

1 . . I .
Y(m) = Z Y. Hi(ip, i, n)U(1)7U(=1)" U () = Z Y H(iy, im, n)W(ip, i, n) (17)
=l _N<n<N =l _N<n<N

m=ip—iy+n m =iy —iy+n

where i, and iy, are, respectively, the occurrences of the fundamental tone and its negative-frequency
image, while 7 is the harmonic order of a generic input spectral component. For a given output
harmonic and nonlinearity degree I, the maximum number of coefficients defining the Quasi-Sinusoidal

Volterra model is given by:

II+1
cQsm = (2 ) (18)
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Identification Procedure

When the GFRFs coefficients H' have to be estimated, it is convenient to rearrange Equation (17)
using the vector notation:

W (m) '] H(m)

Y(m) =W(m)H(m) =| : (19)

W (m) H!(m)

where Wi(m) is a column vector containing all the products between i input components whose sum of
the harmonic orders is equal to m; then, the column vector Hi(m) contains the coefficients of the ith
degree GFRE.

Estimating the model coefficients in Equation (19) means inverting the linear matrix equation.
If one signal is considered, this is a heavily undetermined inverse problem. Conversely, the model can
be inverted in the least squares sense only by measuring the system responses to a proper set of P > L
linearly independent signals, where L is the maximum length of H(mm). By concatenating the P input
and output signals:

W () Yy ()
Wig(m) = : ;Yig(m) = : (20)
W (m) Yy m)

Assuming that Wj; has full column rank, H(m) can be estimated in the least squares sense by
using the Moore-Penrose inverse Wi (m):

H,(m) = W, (m)Y(m) (21)

3. Case Study: Diode Bridge Rectifier

The target of this work is performing a comparison in terms of accuracy and complexity among
X-parameters, FTM and simplified Volterra modeling approaches in representing the frequency-domain
behavior of a strongly nonlinear device. The comparison will be carried out through numerical
simulations, in order to avoid the impact of measurement uncertainty, which may mask the
differences between different models. The selected case study consists of a diode rectifier feeding
an ohmic-capacitive load, as shown in Figure 1: this architecture may represent the input stage of
many devices connected to the distribution grid, such as battery chargers (including those for electric
vehicles), PCs, household appliances and many others. The target is predicting current harmonics for a
given input voltage spectrum. The resulting models, in conjunction with a proper frequency-domain
solver, can be employed in order to study the propagation of harmonics in distribution grids.

R, L io(?)
—AMA—
Vao(?)

Ct) V() R C

Figure 1. Circuit model of the considered case study.

Equivalent circuit parameters are listed in Table 1 (Vs , represents the rated fundamental rms
voltage) and diodes are represented with 0.8 V forward voltage drop and 1 m() resistance (no reverse
conduction has been considered). The equivalent circuit has been implemented in MatLab/Simulink
by using Simscape Power Systems library blocks. As aforementioned, the input u(t) is represented
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by the ac supply voltage v;(t), while the resulting current i (t) corresponds to the model output y(t).
Time-domain waveforms have been sampled with a sampling frequency f; = 200 kS/s, which is a
multiple of 50 Hz, in order to avoid the effect of leakage when spectra have to be computed through
DFT, and high enough so that aliasing artifacts are negligible.

Table 1. Parameters of the equivalent circuit.

Ven (V) R(Q) L;mH) R(Q) C (mF)
53 0.4 4 50 1.41

4. Model Identification

The three considered models have been identified according to the procedures explained in
Section 2.

4.1. Frequency Transfer Matrix

Firstly, for estimating the FTM parameters, the reference condition has to be set: a pure sinewave
voltage having a rated rms amplitude of V5 = 53 V and 50 Hz frequency. From the resulting steady-state
current, the vector Yg has been obtained. In order to estimate the tensor matrix, a set of voltage
perturbations around the reference spectrum have been applied: R = 30 phase angles have been
considered, while the amplitude of the perturbation has been set to AV(n) = 0.025 V¢ for all the N
input harmonics. This allows computing of the FTM model, whose parameters are obtained from
Equation (9) and the procedure is reported in [12] and [16].

4.2. X-Parameters

Spectral linearization approximation has been applied by considering Q different LSOPs: Q has
been varied from 1 to 5, in order to evaluate the accuracy improvement that can be reached by
progressively increasing complexity. The Q LSOPs have been selected by dividing a supposed range of
variation for the fundamental voltage (from 80% to 120% of the rated voltage in this case) into equal
intervals. Once having defined all the LSOPs, the identification process explained in Section 2.2 has
been carried out. Firstly, the response to the large signal components has been evaluated. Then 2(N-1)
small-signal excitations have been generated, that is, two quadrature perturbations for each harmonic
component; harmonic amplitude has been set to 2.5% of the fundamental. Then, Equation (15) has
been applied to obtain Xs and Xr. Finally, in order to employ the identified model between different
LSOPs, complex splines have been adopted to interpolate all the X-parameters values.

4.3. Simplified Volterra Model

Simplified Volterra models characterized by I = 1 (linear model) to I = 11 have been estimated.
In order to perform the identification, a set of P = 2000 test voltages resulting in full column rank matrix
Wiq(m) has been injected. Each pth voltage is characterized by a random fundamental amplitude
(varying between 80% and 120% of the rated grid voltage), and N harmonics with both random
amplitude (from 2% to 3% of the fundamental) and phases (between —7t and 7). Uniform independent
pdfs have been considered.

The corresponding set of P steady-state currents waveforms ig(t) has been obtained. The coefficient
vectors H(m) have been estimated according to Equation (21).

5. Model Comparison

5.1. Random Fundamental Amplitude

A comparison of between the accuracy achieved by the different nonlinear approaches has been
performed. This has been carried out by applying a proper set of realistic voltages (albeit different with
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respect to those adopted to estimate the model parameters), while comparing the currents predicted by
the different behavioral models with those obtained by the reference circuit model.

A possible class of validation signals can be defined starting from the limits for harmonic voltages
in public electricity networks prescribed by [31]. In particular, the 10 min rms value of each voltage
harmonic has to be lower than the corresponding limit for 95% of the time over a one-week observation
interval. Therefore, these limits can be reasonably considered as the 95th percentile bounds for
harmonic amplitudes. However, no information about the shape of the probability density functions
is provided in the standard; additional assumptions have to be introduced. Harmonic components
are assumed to follow circular symmetric complex normal distributions, that amplitudes follow
Rayleigh distributions (parameters are obtained from the respective limits), while phases are uniformly
distributed in the range [—7; 7]. A normally distributed fundamental amplitude has been supposed;
its expectation is assumed to be equal to the rated voltage V ;. Ref. [31] states that the 10 min root
mean square value of the voltage amplitude should be within 90% and 110% of the rated value for 95%
of the time, considering a one-week observation time. Hence, these values have been employed as the
2.5th and 97.5th percentile values for the fundamental amplitude, so that the standard deviation of
its distribution can be easily obtained. In order to perform the comparison, a set of P = 2000 random
signals sampled from the previous defined pdfs has been applied to the behavioral models, and to the
circuit model of the bridge rectifier.

An overall performance indicator is represented by the Normalized Root Mean Square Error
(NMRSE). For the generic pth validation signal and model *, the NMRSE?! is defined as

M 2
X (18 (kts) - 2 er))
NRMSEY! = |2 (22)

% (1@ (kTs))2

where ig[P] is the current evaluated by the circuit model when the pth validation signal is applied,
while ig 7] is the corresponding prediction obtained with the validation signal. T; is the sampling
interval, and M = f,/f is the number of samples per period. An equivalent frequency-domain expression
can be also derived. In Figure 2 the mean values and the 95th percentile bounds over the P test signals
have been reported for each considered nonlinear model.

70 T T T T T T T T T T T T T T T T T

60
50

40

SE [%]

B B e

L QS2 QS3 QS4 QS5 Qsﬁ QS7 QS?< Qs, Qsll) QS]1 FTM XPI

Figure 2. Normalized Root Mean Square Error (NRMSE) mean value and 95th percentile values for
each considered model.

Considering a linear model (L in Figure 2), the achieved accuracy is clearly not acceptable:
the average NRMSE reaches 55%, while the 95th percentile value is equal to 65%. On the contrary,
the simplified Volterra models (QS;, I =1 ... 11 in Figure 2) allows dramatically reducing these errors
as long the degree is increased; as an example, the 11th degree model achieves a mean and a 95th
percentile NRMSE of 9% and 15%, respectively. However, it is worth highlighting that passing from an
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odd-order degree model to the next even-order one has no impact on the NRMSE. The reason is clear
since, because of its structure, the bridge rectifier can introduce purely odd-order nonlinearity.

When analyzing the performance of the FTM approach, it can be seen that its accuracy is worse
with respect to the 11th degree Volterra model: in this case, the NRMSE is characterized by a mean
value of 12% and a 95th percentile value of 20%. Finally, let us consider the X-parameters models with
LSOPs varying from 1 to 5: when Q = 1, the model achieves a mean value and a 95th percentile of
NRMSE, which are 9% and 16.6%, respectively, thus, slightly lower than FTM approach. Two LSOPs
X-parameter model results in a minor accuracy improvement, with a mean NRMSE of 7.27% and a
95th percentile NRMSE of 14.6%. Increasing the number of LSOPs up to five does not significantly
reduce these values.

In order to find the best trade-off between accuracy and complexity among all the presented
nonlinear models, the total number of complex coefficients defining the considered models is shown in
Figure 3.

6000 T T T T T T T T T T T T T T

5000

T

w N
S =)
S S
S S
T T

[ )
=1
S
S

T

Number of coefficients

m; -

|
L QS2 QS3 Q34 QS5 Qsﬁ QS7 st Qs, QS](J QS FTM XPI

XP3 XP4 XPS

11

Figure 3. NRMSE mean value and 95th percentile values for each considered model.

Let us consider the simplified Volterra model: the number of coefficients grows with the square
of nonlinearity degree, thus reaching 1470 when I = 11. The number of coefficients defining the
X-parameters model is proportional to the number of the LSOPs, and each model is characterized by
1177 coeftficients for each LSOP. Finally, the FTM model requires 1275 coefficients.

Now, let us focus on the 11th degree simplified Volterra model (defined by cgs = 1470 coefficients),
on the FTM approach (crrp = 1275) and on X-Parameters models with Q =1, 3, 5 (cx = 1177Q).
First of all, the corresponding time-domain reconstructions of the current waveform have been
obtained and compared with that of the reference circuit model. A random signal among the P
tests have been randomly selected, and the result is depicted in Figure 4. It can be clearly noticed
that the reconstruction provided by the FTM model shows a high deviation from the true value,
especially outside the peaks. In fact, it is also the considered behavioral model resulting in the highest
NRMSE values. The X-parameter model with Q = 1 provides a significantly better current waveform
reconstruction, but errors near the peak are noticeable. On the other hand, the simplified Volterra
model and the X-parameters approach with Q) > 2 are more accurate over the entire period.

6 T T T T T T | ]T:rT“;[ M
——T o
4 \(\ XP] _|
& - =X,
—_ 2 r, —
= G \ -
EO P F3 =%, . s~ o — R
o ~
: N /
Cat R / T
Q
Q
l 1 L I l l ;\'F'//I l
-6
0 0.002 0.004 0.006 0.008 0.01 0.012 0014 0016 0.018 0.0:

Time [s]

Figure 4. Time-domain reconstruction of ig for the different models.
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After that, the accuracy of the models in predicting current harmonics has been quantified. To this
purpose, the Total Vector Error (TVE) has been computed for each mth order output harmonic and pth
test signal. It corresponds to the distance in the complex plane between each current harmonic phasor
obtained with the reference circuit model, and the corresponding prediction obtained by using the
different behavioral models. It has been expressed in relative value with respect to the amplitude of
the fundamental component:

17 () — 17 (3
TVEY (1) = . [)p] ¢ )
g

In Figure 5, the 95th percentiles of the TVE; values evaluated over the P test signals for the
different models (TVE;%°) have been reported.
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Figure 5. Total Vector Error (TVE); 95th percentile values for the different behavioral models.

Figure 4 shows that the FTM model (green line) is generally the least accurate behavioral
representation, especially for low order harmonics: the 95th percentile value of TVE; is always higher
than 1.5% in this case. However, at the fundamental component the X-parameters approach with a
single LSOP achieves the highest error, with TVE;*> exceeding 10%: this result is somewhat expected,
since it is not capable to consider the variation of the fundamental component. Conversely, for the
other harmonics it reaches a good accuracy, significantly better than that obtained with the FTM
approach: TVE;* is lower than 2% for harmonic orders greater than three. When increasing the
number of LSOPs to three, the X-parameter model significantly improves the accuracy in predicting
low-order current components. As far as the fundamental, TVE;* drops from above 10% to about
3%. As already noticed when the NRMSEs have been compared, further increasing the number of
LSOPs does not increase accuracy. The simplified Volterra model is able to perform similarly as the
X-parameters approach with Q = 3 at low-order and high-order harmonics (albeit with a considerably
smaller number of coefficients), but not in the middle part of the spectrum.

5.2. Random Fundamental Amplitude and Frequency

The previous validation has been performed considering rated fundamental frequency. Actually,
grid voltages and currents are characterized by a fundamental frequency that may slightly deviate
from nominal conditions. For this reason, it is interesting to evaluate the performances of the different
methods when a class of signals having random but realistic fundamental frequency is considered.
Standard EN 50160 [31] not only provides limits on harmonic amplitudes, but also states that the
fundamental frequency must be within the range 49.5-50.5 Hz.

Therefore, P = 2000 signals have been randomly extracted with the same amplitude and phase
distribution as in the previous case, but in this case also the fundamental frequency has been considered
as a random variable having uniform distribution in the range prescribed by [31]. The sampling rate
has been adjusted in order to have M = 4000 samples per fundamental period, thus guaranteeing
synchronous sampling. As for the previous class of validation signals, the TVE; has been computed
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for each pth test signal and mth harmonic component. Its 95th percentile value has been computed
(continuous lines) and compared with that obtained with the previous class of validation signals
having fixed fundamental frequency (dotted lines). Results are reported in Figure 6.

FTM
= FTM, 50 Hz

S—a p\ E Xpy

XPI’SO Hz

T T T T

1175
e X, 50 Hz

7 1%]

TVE

- XPS
e X g, 50 Hz
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Q8,50 Hz

T

1 3 5 7 9 1 13 15 17 19 21 23 25
Harmonic Index
Figure 6. TVE; 95th percentile bands for the different behavioral models, random fundamental
frequency.

From Figure 6, it can be concluded that all the models are robust with respect to small but realistic
variations of the fundamental frequency. TVE;% values obtained considering FTM, Volterra and
X-parameter model with Q =1 are completely overlapped to the results achieved with fixed fundamental
frequency. A rather small variation is present when X-parameters models with Q =3 and Q =5
are considered. In this case, the highest variation occurs at the 20th order harmonic component,
whose TVE;”° value increases from 0.5% to 0.6%, but it remains still lower with respect to that reached
by the other models. For all the other harmonics, the differences in terms of TVE;%° are below 0.1%.

6. Conclusions

Harmonic simulations are extremely important in order to study and predict the impact of
nonlinear devices on power quality. However, they require computationally effective models able to
represent the nonlinear behavior of power system devices with adequate accuracy level. The target of
this paper is comparing different behavioral, frequency-domain approaches that can be adopted for the
purpose: X-parameters, FTM models and simplified Volterra models under quasi-sinusoidal conditions.
A bridge rectifier feeding an ohmic-capacitive dc load have selected as case study, since it may represent
the input stage of a wide class of devices connected to the distribution grid. The current voltage
relationship defined by its circuit model has been represented by the considered behavioral approaches.
After identification, their performances have been quantified by applying a class of realistic random
voltages, while evaluating the quality of the current reconstructions. Results clearly show that the
FTM approach is significantly affected by the variation of the fundamental component, while the
X-parameters approach allows exemplary performance when different LSOPs are considered, but the
number of coefficients increases noticeably. The 11th degree simplified Volterra model guarantees an
accuracy which is close to that can be achieved by with the X-Parameters approach, but complexity
is considerably lower. In fact, the 11th degree simplified Volterra model is defined by less than half
of the coefficients required by X-Parameters models. Finally, accuracy under off-nominal frequency
conditions have been evaluated; the achieved results highlights that the investigated models can be
employed also in this case with marginal performance degradation.
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