
energies

Article

Development and Implementation of Fault-Correction
Algorithms in Fault Detection and Diagnostics Tools

Guanjing Lin, Marco Pritoni , Yimin Chen and Jessica Granderson *

Lawrence Berkeley National Laboratory, Berkeley, CA 94706, USA; gjlin@lbl.gov (G.L.); mpritoni@lbl.gov (M.P.);
yiminchen@lbl.gov (Y.C.)
* Correspondence: JGranderson@lbl.gov; Tel.: +1-510-486-6792

Received: 29 April 2020; Accepted: 19 May 2020; Published: 20 May 2020
����������
�������

Abstract: A fault detection and diagnostics (FDD) tool is a type of energy management and
information system that continuously identifies the presence of faults and efficiency improvement
opportunities through a one-way interface to the building automation system and the application
of automated analytics. Building operators on the leading edge of technology adoption use FDD
tools to enable median whole-building portfolio savings of 8%. Although FDD tools can inform
operators of operational faults, currently an action is always required to correct the faults to generate
energy savings. A subset of faults, however, such as biased sensors, can be addressed automatically,
eliminating the need for staff intervention. Automating this fault “correction” can significantly
increase the savings generated by FDD tools and reduce the reliance on human intervention.
Doing so is expected to advance the usability and technical and economic performance of FDD
technologies. This paper presents the development of nine innovative fault auto-correction algorithms
for Heating, Ventilation, and Air Conditioning pi(HVAC) systems. When the auto-correction routine is
triggered, it overwrites control setpoints or other variables to implement the intended changes. It also
discusses the implementation of the auto-correction algorithms in commercial FDD software products,
the integration of these strategies with building automation systems and their preliminary testing.

Keywords: fault correction; fault detection and diagnostics; building operation; energy efficiency;
field testing

1. Introduction

Commercial buildings constitute 18% of the U.S. primary energy consumption [1] and account for
$149 billion in annual energy expenditures [2]. Much of this consumption is due to operational waste,
representing a tremendous potential for savings. The literature indicates that median whole-building
savings of 16% are achieved by commissioning existing buildings [3] and that 5–30% of commercial
building energy use is wasted due to problems associated with controls [4–9].

Commercially available fault detection and diagnostics (FDD) tools provide a means of
monitoring-based commissioning, through which instances of operational inefficiency can be
continuously identified, isolated, and surfaced for resolution by operations and maintenance staff.
Today’s FDD technology has been documented to enable whole building savings of 8% on average,
across users [10]. These technologies integrate with building automation systems (BASs) or can be
implemented as retrofit add-ons to existing equipment, and continuously analyze operational data
streams across many system types and configurations. This is in contrast to the historically typical
variants of FDD that are delivered as original equipment manufacturer-embedded equipment features
or handheld FDD devices that rely upon temporary field measurements.

Figure 1 represents an idealized architecture of a BAS, adapted from American Society of
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Guideline 13 [11]. Field devices

Energies 2020, 13, 2598; doi:10.3390/en13102598 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-4200-6905
http://dx.doi.org/10.3390/en13102598
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/10/2598?type=check_update&version=2

Energies 2020, 13, 2598 2 of 20

(and controllers) connect to the sensors and actuators in the field. Network controllers typically
provide supervisory control capabilities, scheduling, alarms, trending, local data storage, and user
interfaces, in addition to some security features. Modern versions of these controllers have the ability
to communicate via a BACnet (a data communication protocol for building automation and control
network) IP over an IP network. When such functionality is not available, a common integration
strategy employs “integration gateways” (e.g., Niagara JACE) that translate from proprietary protocols
to standard protocols, such as BACnet IP. For larger installations and campuses, the controllers or
gateways are also connected to a BAS server that provides configuration and management, long-term
data storage (i.e., databases) and visualization tools. FDD tools can be installed in the local IP network,
run from the cloud, or have a combination of cloud and local components. Integration with the BAS is
typically implemented through a one-way interface using one of these three FDD–BAS integration
pathways:

1. The FDD tool collects data from the central server database (common for large campus-wide
installations) via a database application programming interface (API) (e.g., structured query language).

2. The FDD tool collects data from a central server, controller, or gateway using vendor-specific API
(e.g., Automated Logic web services).

3. The FDD tool collects data directly via the BACnet IP network shared with other controllers
and gateways.

Through these interfaces, system-level operational data are made available to the FDD software.
Meter data are often also included. Data are continuously analyzed and detected faults are presented
to operational staff through a graphical user interface. Since the BAS is the primary source of data,
the FDD is most commonly focused on Heating, Ventilation, and Air Conditioning (HVAC) equipment.
However, today’s technologies offer extensive libraries of FDD logic and algorithms, and therefore can
be applied to lighting and other building end-use systems for which data are available [12].

Energies 2020, 13, x FOR PEER REVIEW 2 of 20

Figure 1 represents an idealized architecture of a BAS, adapted from American Society of

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Guideline 13 [11]. Field devices

(and controllers) connect to the sensors and actuators in the field. Network controllers typically

provide supervisory control capabilities, scheduling, alarms, trending, local data storage, and user

interfaces, in addition to some security features. Modern versions of these controllers have the ability

to communicate via a BACnet (a data communication protocol for building automation and control

network) IP over an IP network. When such functionality is not available, a common integration

strategy employs “integration gateways” (e.g., Niagara JACE) that translate from proprietary

protocols to standard protocols, such as BACnet IP. For larger installations and campuses, the

controllers or gateways are also connected to a BAS server that provides configuration and

management, long-term data storage (i.e., databases) and visualization tools. FDD tools can be

installed in the local IP network, run from the cloud, or have a combination of cloud and local

components. Integration with the BAS is typically implemented through a one-way interface using

one of these three FDD–BAS integration pathways:

1. The FDD tool collects data from the central server database (common for large campus-wide

installations) via a database application programming interface (API) (e.g., structured query

language).

2. The FDD tool collects data from a central server, controller, or gateway using vendor-specific API

(e.g., Automated Logic web services).

3. The FDD tool collects data directly via the BACnet IP network shared with other controllers and

gateways.

Through these interfaces, system-level operational data are made available to the FDD software.

Meter data are often also included. Data are continuously analyzed and detected faults are presented

to operational staff through a graphical user interface. Since the BAS is the primary source of data,

the FDD is most commonly focused on Heating, Ventilation, and Air Conditioning (HVAC)

equipment. However, today’s technologies offer extensive libraries of FDD logic and algorithms, and

therefore can be applied to lighting and other building end-use systems for which data are available

[12].

Figure 1. Schematic illustration of the integration of building automation system (BAS) data into fault

detection and diagnostics (FDD) products. (BACnet MS/TP - BACnet Master Slave Token Passing

protocol).

Although FDD tools are being used to enable cost-effective energy savings, there remains an

opportunity to advance the state of the technology. In practice, the need for human intervention to

fix faults once they are identified often results in delay or inaction, resulting in additional operations

Figure 1. Schematic illustration of the integration of building automation system (BAS) data into
fault detection and diagnostics (FDD) products. (BACnet MS/TP - BACnet Master Slave Token
Passing protocol).

Although FDD tools are being used to enable cost-effective energy savings, there remains an
opportunity to advance the state of the technology. In practice, the need for human intervention to
fix faults once they are identified often results in delay or inaction, resulting in additional operations
and maintenance (O&M) costs or lost opportunities. Traditionally, FDD generates recommendations

Energies 2020, 13, 2598 3 of 20

and follow-up actions which are implemented by service technicians or other staff. An emerging
capability comprises the integration of FDD outputs with facility management “work order” or CMMSs
(computerized maintenance management systems). While this makes it possible to automatically
generate work orders from the FDD system, human intervention is still required to implement the
corrective action. Therefore, this work seeks to develop automated fault-correction approaches and
integrate them with commercial FDD technology offerings, thereby closing the loop between the
passive diagnostics and active control. This is possible by converting the one-way BAS interface into a
two-way interface, as is done with supervisory predictive control technologies that are emerging in
the market.

It is not possible to automate the correction of mechanical faults such as failed actuators; however,
there is nonetheless a compelling set of operational problems that are detectable in today’s FDD
offerings and are correctable through the software-based manipulation of the BAS parameters that
can be exposed to external applications via BACnet. For example, Fernandez et al. [6] assessed
control problems in commercial buildings, as well as their prevalence and whole-building energy
impact for key commercial building sectors. Among the most common faults that relate to biased
sensors, improper control parameter settings and inefficient schedules have significant impact and
high prevalence rates. Automating the correction of these types of faults can increase the savings
realized through the use of FDD tools and reduce the extent to which savings are dependent upon
human intervention.

The academic and technical literature has extensively covered the development of automated FDD
applied to HVAC and lighting systems [13,14]; however, very little has been published on the automatic
correction of the identified faults via the actual control system. One set of relevant papers stem from the
vast literature on rule-based FDD algorithms. Fernandez et al. [15,16] developed passive and proactive
fault auto-correction algorithms for various HVAC components and systems. The methods proposed
to correct some faults which include biased air-handler unit (AHU) mixed air (MA), outside air (OA),
and return air (RA) temperature and humidity sensors; damper control hunting; minimum outdoor air
damper too open/closed; and manual overrides in large HVAC systems. Using the same approach,
Brambley et al. [17] extended Fernandez et al. [15,16] by adding correction routines for the biased
AHU supply air (SA) temperature and flow rate sensors and the biased variable-air-volume (VAV)
box discharge air temperature and flow rate sensors. This project implemented and tested a subset of
these algorithms (sensor bias and minimum outdoor air damper position) in a laboratory experiment.
This research stopped short of validating the developed solutions in physical buildings or integrating
them with existing BAS and commercial FDD products.

Related to the concept of fault correction is a body of work in the building control literature
that focuses on fault tolerant control. The purpose of a fault tolerant controller is to the maintain
proper operation of a system despite the presence of faults [18,19]. These approaches have been widely
adopted in other industries for safety-critical systems such as nuclear power plants, spacecraft and
aircraft. In the context of buildings, Padilla et al. [20] developed a model-based strategy which aims to
replace defective sensors in AHUs [20] with “virtual sensors.” The signal generated from these “virtual
sensors” can be used in the AHU control system when the actual physical sensors behave abnormally.
Supply air temperature and pressure sensor faults are effectively corrected by using the proposed
algorithms. Wang et al. [21] developed a supervisory control scheme that adapts to the presence of a
measurement error in an outdoor air flow rate. The method uses neural network models to estimate
the correct behavior of the faulty sensor and to maintain indoor air quality while minimizing energy
use. Hao et al. [22] employed principal component analysis to develop fault-tolerant control and
data recovery in the HVAC monitoring system. Bengea et al. [23] developed a fault-tolerant optimal
control strategy for an HVAC system integrating FDD and model predictive control. The output of the
FDD algorithm is used to continuously update the model’s predictive control algorithm parameters.
The approaches described in these papers offer innovations to the state of the art, yet they are not
readily implemented in today’s buildings control systems. This is because they comprise strategies

Energies 2020, 13, 2598 4 of 20

that are not supported by traditional BAS capabilities. Similarly, while the literature focuses on the
development of these advanced controllers, it does not explore their integration with existing FDD
technologies. An additional practical challenge is that a large volume of non-faulty data under various
operational conditions is typically needed to train the models employed in these solutions.

This paper complemented and extended previous work in three ways. (1) It developed a
comprehensive set of fault auto-correction algorithms designed to be integrated with commercial
FDD tools. These algorithms target incorrectly programmed schedules, manual control “lock out,”
sensor bias, control hunting, rogue zone, and suboptimal setpoints/setpoints setback. Typically,
commercial FDD tools are developed as a software layer on top of the existing BAS. There exists a
natural separation of roles in this arrangement, in which the BAS actively controls the building and the
FDD tool observes its operation and provides insights and recommendations to the building manager.
The new auto-correction algorithms afford the FDD technology a certain degree of control capability.
(2) It conducted preliminary testing and performance validation during which two auto-correction
routines were deployed in a commercial FDD tool and tested on two AHUs in a real building.
The enhanced FDD tool was able to correct faults successfully. (3) It presented the challenges of
the integration of developed auto-correction algorithms into commercial FDD tools along with the
solutions through work with three industry partners. New insights were gained by implementing the
pseudo-code developed by the research team in real systems and real buildings. Sections 2–4 present
the auto-correction algorithms, preliminary testing and the implementation changes and solutions,
respectively. Section 5 concludes the paper and describes future work.

2. Fault Auto-Correction Algorithms

To identify the faults that are auto-correctable, we reviewed the existing literature and discussed
the topic with 10 subject matter experts who had years of experience in FDD research and application.
These experts included a set of FDD technology and service providers from the industry who were
participating in this R&D effort as implementation partners. These providers maintained a large
footprint in the FDD market and have explicitly included fault correction in their product development
roadmaps. It is not possible to automate the correction of mechanical faults such as failed actuators,
valve leakage and damper stuck, as they require physical repair or replacement. However, there is
nonetheless a compelling set of operational problems that are detectable in today’s FDD offerings,
and correctable through a software-based manipulation of the BAS parameters that can be exposed to
external applications via BACnet. Considering both the possibility of the automated correction and
the feasibility of implementation in an FDD platform, a set of nine HVAC system faults were isolated,
as shown in Table 1.

Table 1. Summary of the auto-correctable faults of focus in this study.

Fault Fault Description

1. Schedules are incorrectly programmed
Heating, Ventilation, and Air Conditioning (HVAC) equipment does
not turn on/off according to its intended schedule due to an error in
the control programming.

2. Override manual control

Operator unintentionally neglects to release what was intended to be
a short-term override of setpoints or other control commands
(e.g., fan variable frequency drive (VFD) speed, cooling coil valve
control command).

3. AHU OA or SA temperature sensor bias
Air-handler unit’s (AHU’s) outside air (OA) or supply air (SA)
temperature sensor measurements have constant bias over time,
representing an offset from a correct or true value.

4. Control hunting The damper, valve, pump, or fan hunting fault due to an improper
proportional gain.

5. Rogue zone

A rogue zone continuously sends cooling/heating requests whenever
its schedule is on, due to the zone-level equipment problems like a
leaky reheat valve, a dysfunctional supply air damper, or an
insufficient capacity variable-air-volume (VAV) terminal.

Energies 2020, 13, 2598 5 of 20

Table 1. Cont.

Fault Fault Description

6. Improve economizer high-lockout
temperature setpoint

In the AHU with fixed dry-bulb economizer control, the economizer
shall be disabled whenever the outdoor air conditions exceed the
economizer high-lockout temperature setpoint. If the setpoint is set
too low in the control logic, it will result in missed opportunity to use
outdoor air to reduce the mechanical cooling load in mild conditions.

7. Improve zone temperature setpoint setback

Each zone has separate occupied and unoccupied cooling and
heating setpoints. If the zoom temperature cooling setpoint is too
low or the heating setpoint is too high, the space will be overcooled
or overheated, causing unintended energy consumption.

8. Improve AHU static pressure setpoint reset Non-optimized AHU static air pressure setpoint.

9. Improve AHU SA temperature setpoint reset Non-optimized AHU supply air temperature setpoint.

For each of the faults in Table 1, correction algorithms were developed (for faults 1, 3 and 5–9) or
adapted from the existing literature (for faults 2 and 4). The auto-correctable faults in Table 1 were
divided into two categories: faults 1–5 were in the “Fault” category, which indicated problems that
violated the intended operation of the equipment (e.g., sensor bias); faults 6–9 were in the “Opportunity”
category, which indicated problems that represented potential to improve the current operation of
the equipment (e.g., improve a setpoint reset). This distinction was made to differentiate between the
intent of the restoring operation to what it was originally intended to be and that of optimal control.

As the objective of this study was to develop automated fault-correction algorithms that could be
integrated with commercial FDD and BAS products, the auto-correction algorithms described in this
section were decoupled from the fault detection and diagnostics algorithms embedded in the FDD
tools. This permitted the applicability of the developed correction algorithms across a variety of FDD
technologies that employed different FDD rules and algorithms. Furthermore, it was assumed that
the FDD tools were able to detect the faults of focus, as they represented some of the more commonly
encountered faults in commercial buildings.

Figure 2 shows the flow chart of the general auto-correction process. In this process, after the
FDD algorithm generates a fault flag of a specific fault, the fault auto-correction algorithm is initiated
to correct this fault with the approval from the building operator. Control_variable_being_overwritten
is the key element in the auto-correction process. The algorithm overwrites this variable
(Control_variable_being_ overwritten_current) with a new value (Control_variable_being_overwritten
_new). The control_variable_being_overwritten_current is the one identified in the FDD algorithm
to be associated with the problematic value (fault) or potential to improve (opportunity).
The control_variable_ being_overwritten_new is the same variable that has the correct value (fault) or
optimized value (opportunity). All of the auto-correction algorithms developed in this work followed
this structure, with different control variables overwritten, and different ways to determine the correct
or improved value of the variable.

Each auto-correction algorithm is presented and discussed in the following.
Energies 2020, 13, x FOR PEER REVIEW 6 of 20

Figure 2. Flow chart of the general auto-correction process.

Each auto-correction algorithm is presented and discussed in the following.

2.1. Schedules Are Incorrectly Programmed

In this auto-correction algorithm, the control_variable_being_overridden is Equip_Schedule,

which is the HVAC equipment on/off times that are programmed in the BAS for weekends, weekdays

and holidays. The control_variables_being_overwritten_current are the current schedules read from

BAS, which are concluded to be incorrectly programmed (e.g., the AHU starts at 4 a.m. and stops at

8 p.m. on weekdays). The control_variable_being_overwritten_new is Intended_Schedule, which is

HVAC equipment on/off times as they are supposed to be (e.g., the AHU starts at 6 a.m. and stops at

7 p.m. on weekdays). The auto-correction algorithm overwrites the Equip_Schedule and replaces it

with the Intended_Schedule to enable the system to start and stop as it is supposed to. The

Intended_Schedule is prior knowledge that is specified by the building operator or another resource.

2.2. Override Manual Control

As documented in [15], the control_variable_being_overwritten in the auto-correction algorithm

is Manual_Override. This variable indicates the equipment (e.g., fan speed, valve control command,

damper control command) manual control status or equivalent flag: 1—equipment is in manual

control, 0—equipment is in automatic control. When there is the override fault, Manual_Override =

1 in the faulty case. The correction algorithm changes the manual control variable back to automatic

(Manual_Override = 0).

2.3. AHU Supply Air or Outside Air Temperature Sensor Bias

Two approaches can be used to correct the AHU supply air or outside air temperature sensor

bias fault. In the first approach, the control_variable_being_overwritten is a data point

(TempSensorOffset) in the control loop that controls the offset of the controller’s temperature input.

In the second approach, the control_variable_being_overwritten is the control setpoint associated

with the temperature. These two approaches are presented here in detail for the supply air

temperature (SAT) sensor bias fault. Figure 3a illustrates the auto-correction workflow for the first

method. It is assumed that when the FDD algorithm flags the sensor bias fault it also determines the

bias value, which is the difference between the sensor reading value and the actual value. This bias

value (SAT_bias) is fed into the auto-correction algorithm. After judging the bias direction, the bias

value is directly written to the TempSensorOffset. The adjusted TempSensorOffset is added from the

SAT reading value and the conversion results (SAT+TempSensorOffset) enter the controller as input

(e.g., adjust the incorrect SAT value with a new offset to provide the correct reading which is fed into

the cooling/heating coil valve controller). Figure 3b illustrates the auto-correction workflow for the

second method. In this method, the new SAT setpoint (SAT_spt) value can be calculated by adding

or subtracting the bias value accordingly, and then be written to the BAS. The auto-correction of the

outside air temperature uses the similar two approaches as above. The

control_variables_being_overwritten in the second approach are the AHU economizer high (low)

Figure 2. Flow chart of the general auto-correction process.

Energies 2020, 13, 2598 6 of 20

2.1. Schedules Are Incorrectly Programmed

In this auto-correction algorithm, the control_variable_being_overridden is Equip_Schedule,
which is the HVAC equipment on/off times that are programmed in the BAS for weekends, weekdays
and holidays. The control_variables_being_overwritten_current are the current schedules read from
BAS, which are concluded to be incorrectly programmed (e.g., the AHU starts at 4 a.m. and stops at 8 p.m.
on weekdays). The control_variable_being_overwritten_new is Intended_Schedule, which is HVAC
equipment on/off times as they are supposed to be (e.g., the AHU starts at 6 a.m. and stops at 7 p.m.
on weekdays). The auto-correction algorithm overwrites the Equip_Schedule and replaces it with the
Intended_Schedule to enable the system to start and stop as it is supposed to. The Intended_Schedule
is prior knowledge that is specified by the building operator or another resource.

2.2. Override Manual Control

As documented in [15], the control_variable_being_overwritten in the auto-correction algorithm
is Manual_Override. This variable indicates the equipment (e.g., fan speed, valve control command,
damper control command) manual control status or equivalent flag: 1—equipment is in manual
control, 0—equipment is in automatic control. When there is the override fault, Manual_Override = 1
in the faulty case. The correction algorithm changes the manual control variable back to automatic
(Manual_Override = 0).

2.3. AHU Supply Air or Outside Air Temperature Sensor Bias

Two approaches can be used to correct the AHU supply air or outside air temperature sensor bias
fault. In the first approach, the control_variable_being_overwritten is a data point (TempSensorOffset)
in the control loop that controls the offset of the controller’s temperature input. In the second approach,
the control_variable_being_overwritten is the control setpoint associated with the temperature.
These two approaches are presented here in detail for the supply air temperature (SAT) sensor
bias fault. Figure 3a illustrates the auto-correction workflow for the first method. It is assumed that
when the FDD algorithm flags the sensor bias fault it also determines the bias value, which is the
difference between the sensor reading value and the actual value. This bias value (SAT_bias) is fed into
the auto-correction algorithm. After judging the bias direction, the bias value is directly written to
the TempSensorOffset. The adjusted TempSensorOffset is added from the SAT reading value and the
conversion results (SAT+TempSensorOffset) enter the controller as input (e.g., adjust the incorrect SAT
value with a new offset to provide the correct reading which is fed into the cooling/heating coil valve
controller). Figure 3b illustrates the auto-correction workflow for the second method. In this method,
the new SAT setpoint (SAT_spt) value can be calculated by adding or subtracting the bias value
accordingly, and then be written to the BAS. The auto-correction of the outside air temperature uses the
similar two approaches as above. The control_variables_being_overwritten in the second approach are
the AHU economizer high (low) lockout temperature setpoints, which are the outside air temperatures
above (below) which the outside air damper will return to its minimum position.

Energies 2020, 13, 2598 7 of 20

Energies 2020, 13, x FOR PEER REVIEW 7 of 20

lockout temperature setpoints, which are the outside air temperatures above (below) which the

outside air damper will return to its minimum position.

(a) (b)

Figure 3. Flowchart of the supply ai temperature (SAT) sensor bias fault auto-correction algorithm.

(a) Approach 1: overwrite the SAT temperature value, and (b) Approach 2: overwrite the SAT

setpoint.

2.4. Damper/Valve/Fan/Pump Control Hunting Due to Improper Proportion Gain

In contrast to the other algorithms, the auto-correction of control hunting due to improper

proportion gain employs a trial and error procedure [15]. The control_variable_being_overwritten is

the proportional–integral–derivative (PID) controller parameter proportion gain (Kp). In the auto-

correction process, the Kp is continually adjusted to find out the appropriate value that eliminates

the hunting behavior. When the FDD algorithm flags an improper Kp causing the hunting fault, the

auto-correction algorithm is initiated. First, a maximum auto-correction duration threshold

(T_AC_thresh) is set to avoid an endless auto-correction process. Note that a setting time of an

actuator during the control response may be varied due to different actuator control characteristics.

For example, for a VAV terminal unit damper, the settling time is typically in the order of one or two

minutes, but the settling time for a cooling coil valve may be several minutes. Then, the current value

of the Kp is compared to a Kp_threshold, in this case 0.2. This test is meant to avoid an unacceptably

long settling time under pure integral control. If the Kp value is above the Kp_threshold, the Kp is

decreased by 10% [15]. Then, the algorithm starts a proactive test scenario to see if the hunting issue

still persists, by changing the setpoint (T_set) of the damper/valve/fan/pump to trigger the

component’s movement. If the component is still hunting, the procedure is repeated; otherwise, the

procedure is terminated. If the Kp reaches the Kp_threshold and there is still a hunting fault, then it

is flagged as an error and the Kp is reset to the original value (Figure 4).

Figure 3. Flowchart of the supply ai temperature (SAT) sensor bias fault auto-correction algorithm.
(a) Approach 1: overwrite the SAT temperature value, and (b) Approach 2: overwrite the SAT setpoint.

2.4. Damper/Valve/Fan/Pump Control Hunting Due to Improper Proportion Gain

In contrast to the other algorithms, the auto-correction of control hunting due to improper
proportion gain employs a trial and error procedure [15]. The control_variable_being_overwritten is the
proportional–integral–derivative (PID) controller parameter proportion gain (Kp). In the auto-correction
process, the Kp is continually adjusted to find out the appropriate value that eliminates the hunting
behavior. When the FDD algorithm flags an improper Kp causing the hunting fault, the auto-correction
algorithm is initiated. First, a maximum auto-correction duration threshold (T_AC_thresh) is set to
avoid an endless auto-correction process. Note that a setting time of an actuator during the control
response may be varied due to different actuator control characteristics. For example, for a VAV
terminal unit damper, the settling time is typically in the order of one or two minutes, but the settling
time for a cooling coil valve may be several minutes. Then, the current value of the Kp is compared to
a Kp_threshold, in this case 0.2. This test is meant to avoid an unacceptably long settling time under
pure integral control. If the Kp value is above the Kp_threshold, the Kp is decreased by 10% [15]. Then,
the algorithm starts a proactive test scenario to see if the hunting issue still persists, by changing the
setpoint (T_set) of the damper/valve/fan/pump to trigger the component’s movement. If the component
is still hunting, the procedure is repeated; otherwise, the procedure is terminated. If the Kp reaches the
Kp_threshold and there is still a hunting fault, then it is flagged as an error and the Kp is reset to the
original value (Figure 4).

Energies 2020, 13, 2598 8 of 20
Energies 2020, 13, x FOR PEER REVIEW 8 of 20

Figure 4. Flowchart of Algorithm 2.4: control hunting due to improper proportion gain (T_AC_thresh

- a maximum auto-correction duration threshold, Kp - controller parameter proportion gain).

2.5. Rogue Zone

ASHRAE Guideline 36 [24] defines high-performance control sequences for AHU–VAV systems.

The “Trim and Respond” logic (see sections 2.8 and 2.9) is adopted to reset the supply air temperature

and static pressure setpoints at an AHU. The adjustment of these setpoints depends on the number

of cooling “requests” generated by downstream zones that are served by the same AHU. For each

time step, the change value of setpoint (SPchange) is determined by Equations (1) and (2) below:

SPchange=SPres × (𝑅 − 𝐼) (1)

𝑅 = ∑ 𝐼𝑀𝑖𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑖 (2)

where SPres is a unit respond amount (e.g., 0.06 inches for static pressure setpoint), R is the total

number of cooling requests from the downstream zones, I is the defined number of ignored requests,

i is the indicator of the downstream zone, IM is the importance multiplier that is used in the control

sequence to decide if the cooling requests from the zone level should be used to control the upstream

AHU, and Request is the cooling request from the zone. Therefore, if there is a rogue zone that

continuously sends cooling requests whenever its schedule is on, due to the zone-level equipment

problems, the parameter R will always include this request, and it keeps the setpoints in the control

loop to its high end. Excluding rogue zones from the corresponding reset control strategies improves

operation and increases energy savings. After the zone-level equipment problems that lead to the

rogue zone are fixed, the rogue zone is no longer rogue, and all the control variables that are

overwritten during the auto-correction process change back to their original value.

Two correction strategies were developed to eliminate the rogue zone impacts (i.e., to ignore the

cooling request from the rogue zone). The first is to overwrite I in Equation (1). The auto-correction

algorithm increases I by n for each currently identified rogue zone. The value of n is the same as the

number of cooling requests determined in the control sequence of that rogue zone. The second is to

overwrite the IM of the rogue zone in Equation (2). When the FDD tool flags the rogue zone fault, the

Figure 4. Flowchart of Algorithm 2.4: control hunting due to improper proportion gain (T_AC_thresh -
a maximum auto-correction duration threshold, Kp - controller parameter proportion gain).

2.5. Rogue Zone

ASHRAE Guideline 36 [24] defines high-performance control sequences for AHU–VAV systems.
The “Trim and Respond” logic (see Sections 2.8 and 2.9) is adopted to reset the supply air temperature
and static pressure setpoints at an AHU. The adjustment of these setpoints depends on the number of
cooling “requests” generated by downstream zones that are served by the same AHU. For each time
step, the change value of setpoint (SPchange) is determined by Equations (1) and (2) below:

SPchange= SPres × (R− I) (1)

R =
∑

IMiRequesti (2)

where SPres is a unit respond amount (e.g., 0.06 inches for static pressure setpoint), R is the total
number of cooling requests from the downstream zones, I is the defined number of ignored requests, i
is the indicator of the downstream zone, IM is the importance multiplier that is used in the control
sequence to decide if the cooling requests from the zone level should be used to control the upstream
AHU, and Request is the cooling request from the zone. Therefore, if there is a rogue zone that
continuously sends cooling requests whenever its schedule is on, due to the zone-level equipment
problems, the parameter R will always include this request, and it keeps the setpoints in the control
loop to its high end. Excluding rogue zones from the corresponding reset control strategies improves
operation and increases energy savings. After the zone-level equipment problems that lead to the rogue
zone are fixed, the rogue zone is no longer rogue, and all the control variables that are overwritten
during the auto-correction process change back to their original value.

Two correction strategies were developed to eliminate the rogue zone impacts (i.e., to ignore the
cooling request from the rogue zone). The first is to overwrite I in Equation (1). The auto-correction
algorithm increases I by n for each currently identified rogue zone. The value of n is the same as the
number of cooling requests determined in the control sequence of that rogue zone. The second is to

Energies 2020, 13, 2598 9 of 20

overwrite the IM of the rogue zone in Equation (2). When the FDD tool flags the rogue zone fault,
the IM of the rogue zone is overwritten to be zero. Therefore, the cooling requests from the rogue zone
can be removed.

2.6. Improve Economizer High-Lockout Temperature Setpoint

The previous five algorithms focused on correcting faults to restore the intended operation.
This algorithm and the next three serve to provide more optimal control. They implement improved
control setpoints or sequences when the FDD tool identifies the opportunity to do so.

After the opportunity to improve the economizer lockout temperature setpoint is identified,
the setpoint is overwritten to the recommended value, following the flowchart in Figure 2.
The recommended value can be determined based on the high-lockout limit recommended in the
energy code [25]. For example, the recommended lockout setpoint is 23.9 ◦C, 21.1 ◦C and 18.3 ◦C,
respectively, in the dry climate zone, the cold–humid climate zone, and the hot–humid climate zone.

2.7. Improve Zone Temperature Setpoint Setback

Similar to the algorithm in Section 2.6, this auto-correction algorithm overwrites the zone
temperature cooling or heating setpoint during the occupied or unoccupied hours to the recommended
values wherever there is an opportunity.

2.8. Improve AHU Static Pressure Setpoint Reset

The auto-correction algorithms for this and the next opportunities are most closely related to
optimal controls. Both algorithms correct the fault “continuously” as it continuously adjusts the control
variables to optimize the equipment operation (e.g., resets). They are relevant for AHUs without
sophisticated reset strategies, such as no reset or simple resets based on return air temperature or
outside air temperature.

The auto-correction algorithm uses the ASHRAE Guideline 36 [24] “Trim and Respond” logic for
the static pressure setpoint. To optimize the operation of the AHU and minimize discomfort, the static
pressure setpoint (SSP_spt) is continually reset using the Trim and Respond logic between a minimum
and maximum setpoint (SPmin and SPmax). When the supply air fan is off, the setpoint is the initial
setpoint (SP0). The reset logic is active while the supply air fan is proven on, starting a delay timer (Td)
after the initial device start command. When active, for every time step T, when the cooling request
from the downstream zones (R) is less than or equal to a defined number of ignored requests (I), the
setpoint is trimmed by a trim amount (SPtrim), but no less than SPmin. If R is more than I, the setpoint
changes by a respond amount, (i.e., SPres * (R − I)), but no more than the maximum response per time
interval (SPres-max).

2.9. Improve AHU SAT Setpoint Reset

Similar to the algorithm to improve the static pressure setpoint reset, this auto-correction
algorithm uses the ASHRAE Guideline 36 [24] “Trim and Respond” logic to reset the SAT setpoint
continuously between a minimum and maximum setpoint. The control_variable_being_overwritten is
the SAT setpoint.

3. Results: Preliminary Testing

Three commercial FDD providers participating in this research selected a subset of the algorithms
that were created by the authors and integrated them into their development product environments
for field testing. The partners chose the relevant algorithms for a variety of reasons, including: the
expected ease of implementation, the reduction of operational cost, savings potential, and the ability to
solve problems common to their customers. The implementation process varied depending on the
platform, but generally consisted of the following phases: (1) confirm/add two-way communication

Energies 2020, 13, 2598 10 of 20

functionality between the FDD and the BAS, (2) build an auto-correction interface to communicate with
the building operator, (3) translate the algorithms into the FDD programming environment, (4) modify
the BAS programming of the specific building to integrate the new control actions sent by the FDD
tool, and (5) commission and test the new system. Further details are presented in Lin et al. [26].
This section illustrates the test results of two auto-correction algorithms: “Rogue zone” and “Improve
AHU supply air temperature setpoint reset” for one implementation partner. Section 4 summarizes
the challenges that were faced by three partners during the implementation process, as well as the
solutions that were used by one or more project partners to mitigate them.

In the preliminary testing, the two routines were deployed in a commercial FDD product
(SkySpark® by SkyFoundry) and tested on two AHUs in a building in Berkeley, California, US. between
March 3 and April 5, 2020. The goal of this preliminary test was to determine whether the enhanced
FDD solutions were able to correct faults without adverse operational effects.

3.1. Description of the Testing Site and Equipment

Table 2 summarizes the test site and equipment information. AHU01 and AHU02 are structurally
identical. Figure 5 shows the BAS graphics (i.e., native dashboard) for one of the two AHUs.

Table 2. Test site information.

Building Type Size (m2) Building Schedule HVAC Configuration BAS Brand and Model

Mixed laboratory
and office space 8919

Labs: 24/7
operation,
Offices:
4 a.m.–9 p.m.,
Monday–Sunday

3 chillers and 2 AHUs (AHU01
and AHU02), covering about
90% of the floor area, and the
connected zones (n = 83 and
n = 80, respectively)

Johnson Controls (JCI)
Metasys

Energies 2020, 13, x FOR PEER REVIEW 10 of 20

actions sent by the FDD tool, and (5) commission and test the new system. Further details are

presented in Lin et al. [26]. This section illustrates the test results of two auto-correction algorithms:

“Rogue zone” and “Improve AHU supply air temperature setpoint reset” for one implementation

partner. Section 4 summarizes the challenges that were faced by three partners during the

implementation process, as well as the solutions that were used by one or more project partners to

mitigate them.

In the preliminary testing, the two routines were deployed in a commercial FDD product

(SkySpark® by SkyFoundry) and tested on two AHUs in a building in Berkeley, California, US.

between March 3 and April 5, 2020. The goal of this preliminary test was to determine whether the

enhanced FDD solutions were able to correct faults without adverse operational effects.

3.1. Description of the Testing Site and Equipment

Table 2 summarizes the test site and equipment information. AHU01 and AHU02 are

structurally identical. Figure 5 shows the BAS graphics (i.e., native dashboard) for one of the two

AHUs.

Table 2. Test site information.

Building Type
Size

(m2)

Building

Schedule
HVAC Configuration

BAS Brand

and Model

Mixed

laboratory and

office space

8919

Labs: 24/7

operation,

Offices:

4 a.m.–9 p.m.,

Monday–

Sunday

3 chillers and 2 AHUs (AHU01 and

AHU02), covering about 90% of the

floor area, and the connected zones

(n = 83 and n = 80, respectively)

Johnson

Controls

(JCI)

Metasys

Figure 5. BAS graphics for the AHU02 at the test site. AHU01 has a similar structure.

Both AHU01 and AHU02 were controlled by a control sequence implemented in the native BAS

control language and hosted on local controllers. Each AHU was controlled independently. The

supply air temperature cooling and heating setpoint was reset based on the algorithm highlighted

below in plain English:

 If the AHU is enabled (based on schedules, normally 24/7):

Figure 5. BAS graphics for the AHU02 at the test site. AHU01 has a similar structure.

Both AHU01 and AHU02 were controlled by a control sequence implemented in the native BAS
control language and hosted on local controllers. Each AHU was controlled independently. The supply
air temperature cooling and heating setpoint was reset based on the algorithm highlighted below in
plain English:

Energies 2020, 13, 2598 11 of 20

• If the AHU is enabled (based on schedules, normally 24/7):

◦ Calculate the average cooling demand output for all the zones served by the AHU (cooling
demand output is the output calculated by the PI[D] loop based on the proportional, integral
[and derivative] component of the difference between zone cooling setpoint and zone
temperature).;

◦ Constrain the results between min = 3% and max = 12%;
◦ Linearly map the average output to a calculated cooling setpoint between 18.3 ◦C and 12.8 ◦C.

The value of 3% average cooling output is mapped to 18.3 ◦C, 12% is mapped to 12.8 ◦C,
and all the values in between are calculated linearly;

◦ The heating setpoint is fixed to 12.8 ◦C, except for when the cooling setpoint reaches 12.8 ◦C.
In that case, the heating setpoint becomes 12.2 ◦C.

• The economizer damper and the chilled water valve are controlled to maintain the cooling supply
air temperature setpoint. The heating hot water valve is controlled to maintain the heating supply
air temperature setpoint. As a result, when the outside air temperature is between the heating
and the cooling setpoints, the air handling unit typically does not cool or heat the air.

The existing SAT control strategy is relatively efficient, compared to common practice in the
industry (fixed setpoint or resets based on outdoor temperature or return temperature alone and no
deadband). However, the current strategy presents two limitations: (1) it responds to outlier zones or
rogue zones, although minimally, as the reset is based on an average cooling demand outputs from
all the zones; and (2) its calibration parameters (e.g., min and max average zone feedback of 3% and
12%, respectively) were established via trial and error and personal judgement. Given the limited
capabilities of the BAS zone controllers (i.e., field devices in Figure 1), the reset strategy was entirely
calculated within the AHU controllers.

The FDD tool connected to the BAS is a commercial product managed by a consultant and the
facility manager of the site. The tool allows for custom programming and bi-directional communication
to the BAS via the BACnet network. In contrast to the BAS, the FDD tool coding language is a modern
scripting language with the ability to use high-level functions that allow the portability of the code
between the buildings and equipment. The two auto-correction algorithms were coded using this
platform and tested on the two AHUs. In the FDD tool, a zone was identified as a rogue zone when
one or more disqualifying conditions were detected for that zone and the zone was sending a request
to the AHU. The zone requests are calculated based on zone PID loop output >95%. Disqualifying
conditions for cooling requests include:

• Leaky reheat valve (VAV box discharge air temperature (DAT) > AHU SAT + 2.8 ◦C);
• Supply airflow setpoint not met (<90% or >110% of setpoint and delta > 1.4 cubic meter per minute);
• Zone cooling setpoint too low (lower than 22.2 ◦C unless exempt).

3.2. Auto-Correction Code in the FDD Tool

3.2.1. Code for “Rogue Zones”

The code adopts the first correction strategy in Section 2.5 and overwrites the number of ignored
cooling requests from the identified rogue zones. The number of requests and ignored requests are
calculated as in Equations (3)–(5):

R′ = max(R− Itotal, 0) (3)

Itotal = Ide f ault + Irogue_zones (4)

Irouge_zones =
∑

i

Irouge_zone_i (5)

Energies 2020, 13, 2598 12 of 20

where R′ is the number of net cooling requests from the downstream zones of an AHU; R is the number
of total cooling requests from the downstream zones; Ide f ault is the default number of ignored cooling
requests (set by the user); Irouge_zones is the number of ignored cooling requests from the all rogue zones;
Itotal is the sum of the previous two variables; and Irouge_zone_i is the number of cooling requests from
the ith identified rogue zone. R′ is calculated by subtracting the sum of all the rogue zones ignored
based on the conditions described above (Irogue_zones) and a default minimum of the ignored zones
(Ide f ault) from all the requests (R). If the equation leads to a negative result, R′ becomes zero. R′ is used
in the SAT reset calculation below.

3.2.2. Code for “Improve AHU Supply Air Temperature Setpoint Reset”

The supply air temperature cooling setpoint (SAT_spt) is continually reset using “Trim and
Respond” logic between a minimum and maximum setpoint (SATmin = 12.8 ◦C and SATmax = 18.3 ◦C).
When the supply air fan is turned on, the initial setpoint is set to SAT0 = 18.3 ◦C and the reset logic
is active immediately. When active, for every time step t = 5 min, the net cooling request from the
downstream zones (R’) is calculated using Equations (3)–(5) above. If the R′ is above zero, SAT_spt is
decreased by a defined respond amount (SATres = 0.06 ◦C for each request) until the SAT_spt reaches
SATmin; if R′ is equal to zero, the SAT_spt is increased by a fixed amount (SATtrim= 0.12 ◦C) until the
SAT_spt reaches SATmax.

3.3. Test Results

3.3.1. Test Results of “Rogue Zone” Algorithm

The “rogue zone” auto-correction algorithm worked as expected on AHU01 and AHU02 during
the testing period. Figure 6 shows the results of the values for the requests and ignored requests
calculated on 4 March. The two heat maps in Figure 6 depict each zone (in the vertical axis) plotted
against the time of the day, for a single day. For each zone, the darker areas show when the requests
(red) and ignored requests (blue) happened during the day. R, Irouge_zones, and R′ were reevaluated
every five minutes. Taking 11:00 a.m. as an example, the vertical line marks the values of Ri, Irogue_zone_i,
R, Itotal, and R′ at 11:00 a.m.: eight zones (i.e., Rm 4107, Rm 411, Rm 4113, Rm 4203B, Rm 5113, Rm
5115, Rm 5116, and Rm 5204A) sent requests (R = 8), three zones (i.e., Rm 4107, Rm 5113, and Rm
5116) were identified as rogue zones (Irogue_zones = 3), and two additional zones were ignored by
default (Ide f ault = 2), summing up to a total of five zones ignored (Itotal = 5). R′ is therefore equal to 3,
based on Equation (3). This test confirmed that the system correctly calculated and implemented the
modified requests, ignoring the rogue zones.

Energies 2020, 13, 2598 13 of 20Energies 2020, 13, x FOR PEER REVIEW 13 of 20

Figure 6. Zone requests per zone (upper left), the ignored requests per zone (upper right), the sum of

the requests, the total of ignored requests and the net requests for all the zones of AHU01 on 4 March

2020. The vertical line marks 11 a.m. on all the plots.

3.3.2. Test Results of “Improve AHU SAT Setpoint Reset” Algorithm

The auto-correction algorithm “Improve AHU SAT setpoint reset” successfully changed the SAT

setpoint of AHU01 and AHU02 in the BAS. As shown in Figure 7, the SAT setpoint changes followed

the routine described in Section 3.2. The supply fan was on for the whole time, since this AHU serves

laboratory areas. When R’ was larger than zero starting at 10:05 a.m., the algorithm slowly reduced

the SAT setpoint by 0.06 °C for each request every five minutes. Starting at 11:50 a.m., the R’ remained

at zero and the routine slowly increased the SAT setpoint by 0.12 °C every five minutes until it

reached SATmax (18.3 °C). The SAT setpoint remained at SATmax until R’ was larger than zero at 14:50

p.m. Then, the SAT setpoint again slowly decreased when R’ was larger than zero and slowly

increased when R’ was zero.

Figure 6. Zone requests per zone (upper left), the ignored requests per zone (upper right), the sum of the
requests, the total of ignored requests and the net requests for all the zones of AHU01 on 4 March 2020.
The vertical line marks 11 a.m. on all the plots.

3.3.2. Test Results of “Improve AHU SAT Setpoint Reset” Algorithm

The auto-correction algorithm “Improve AHU SAT setpoint reset” successfully changed the SAT
setpoint of AHU01 and AHU02 in the BAS. As shown in Figure 7, the SAT setpoint changes followed
the routine described in Section 3.2. The supply fan was on for the whole time, since this AHU serves
laboratory areas. When R’ was larger than zero starting at 10:05 a.m., the algorithm slowly reduced the
SAT setpoint by 0.06 ◦C for each request every five minutes. Starting at 11:50 a.m., the R’ remained at
zero and the routine slowly increased the SAT setpoint by 0.12 ◦C every five minutes until it reached
SATmax (18.3 ◦C). The SAT setpoint remained at SATmax until R’ was larger than zero at 14:50 p.m.
Then, the SAT setpoint again slowly decreased when R’ was larger than zero and slowly increased
when R’ was zero.

Because both the original and corrected logic used feedback loops, a direct comparison of the
two was not possible without modeling the dynamic behavior of the system or collecting enough
data to perform a system-level evaluation. However, since the original controller was still active
(for backup purposes) we could qualitatively compare the time at which each algorithm would start
reducing the SAT setpoint in the morning. Figure 8 shows this comparison for two consecutive days
in AHU01. The red line represents the corrected setpoint that was calculated by the algorithm and
the blue line was the actual temperature that tracked the setpoint. The green line depicts the original
logic. As highlighted by the text, the original logic would try to reduce the temperature much earlier
than the corrective algorithm. This behavior was consistent across the testing period for both AHUs.
For AHU01, during 14 days out of the 34 days, the old logic started earlier, while during the other
20 days the system did not require cooling. Conversely, for AHU02, during 13 days the old logic

Energies 2020, 13, 2598 14 of 20

started earlier, during one day it started later, and the other days it did not require cooling (the test
was conducted during a mild spring). Overall, the preliminary test was successful. It showed the
uninterrupted operation of the two algorithms in two AHUs for more than a month. The SAT tracked
the new setpoint throughout the whole testing period. The new control sequence did not cause any
occupant complaints, and it worked more efficiently than the previous one, although a precise savings
estimate was beyond the scope of the test.Energies 2020, 13, x FOR PEER REVIEW 14 of 20

Figure 7. The SAT setpoint of AHU01 after the execution of the auto-correction algorithm (4 March

2020).

Because both the original and corrected logic used feedback loops, a direct comparison of the

two was not possible without modeling the dynamic behavior of the system or collecting enough

data to perform a system-level evaluation. However, since the original controller was still active (for

backup purposes) we could qualitatively compare the time at which each algorithm would start

reducing the SAT setpoint in the morning. Figure 8 shows this comparison for two consecutive days

in AHU01. The red line represents the corrected setpoint that was calculated by the algorithm and

the blue line was the actual temperature that tracked the setpoint. The green line depicts the original

logic. As highlighted by the text, the original logic would try to reduce the temperature much earlier

than the corrective algorithm. This behavior was consistent across the testing period for both AHUs.

For AHU01, during 14 days out of the 34 days, the old logic started earlier, while during the other 20

days the system did not require cooling. Conversely, for AHU02, during 13 days the old logic started

earlier, during one day it started later, and the other days it did not require cooling (the test was

conducted during a mild spring). Overall, the preliminary test was successful. It showed the

uninterrupted operation of the two algorithms in two AHUs for more than a month. The SAT tracked

the new setpoint throughout the whole testing period. The new control sequence did not cause any

occupant complaints, and it worked more efficiently than the previous one, although a precise

savings estimate was beyond the scope of the test.

Figure 7. The SAT setpoint of AHU01 after the execution of the auto-correction algorithm (4 March 2020).

Energies 2020, 13, x FOR PEER REVIEW 15 of 20

Figure 8. Comparison of the new and the old setpoint control strategies in AHU01 during March 3

and 4 2020.

4. Discussion: Implementation Challenges and Solutions

The commercial partners faced a number of challenges when implementing the auto-correction

algorithms into the FDD tools. We organized these issues under four areas: (1) developing a secure

two-way communication between the FDD tool and the BAS; (2) incorporating operator approval; (3)

managing the customizations necessary to the specific BAS/site installation; and (4) managing the

potential conflict between the auto-correction and the BAS control actions. This section describes

these challenges, as well as the solutions that the partners came up with to mitigate them.

The differences in the solutions described below also stemmed from different FDD software

architectures, as well as different BAS network setups across the implementation partners. The FDD

products developed by the two partners were based on software platforms that ran from the cloud

with centralized fault libraries and analytics engines. These companies used additional hardware and

software installed on site to collect data and send it to the cloud. A third implementation partner was

the distributor of a third-party software and developed custom algorithms for various customers.

This software ran on the local BAS network and had direct access to it, allowing access to external

users via a virtual private network connection.

4.1. Develop a Secure Two-Way Communication Between the FDD and the BAS

Opening a two-way communication between the FDD system and the BAS was a challenge seen

across all project partners implementing fault auto-correction into their FDD product environment.

FDD tools typically read operational data from the BAS, run analytics and flag faults on the software

interface. Often, they do not have capabilities to write commands directly onto the BAS. As indicated

in Figure 1, the FDD tool commonly collects operational data using three pathways: (1) from the BAS

server database, (2) from a central BAS server via API and (3) directly via the BACnet IP network.

The first pathway prevents the FDD tool from writing back to the control system, therefore it cannot

be used to implement auto-correction procedures. The second one requires BAS-specific interfaces;

thus, implementers tend to avoid it. For this reason, when expanding the one-way interface to two-

way communication, all the partners selected the third pathway to write back directly via the BACnet

IP network.

Figure 8. Comparison of the new and the old setpoint control strategies in AHU01 during
3–4 March 2020.

Energies 2020, 13, 2598 15 of 20

4. Discussion: Implementation Challenges and Solutions

The commercial partners faced a number of challenges when implementing the auto-correction
algorithms into the FDD tools. We organized these issues under four areas: (1) developing a secure
two-way communication between the FDD tool and the BAS; (2) incorporating operator approval;
(3) managing the customizations necessary to the specific BAS/site installation; and (4) managing the
potential conflict between the auto-correction and the BAS control actions. This section describes these
challenges, as well as the solutions that the partners came up with to mitigate them.

The differences in the solutions described below also stemmed from different FDD software
architectures, as well as different BAS network setups across the implementation partners. The FDD
products developed by the two partners were based on software platforms that ran from the cloud
with centralized fault libraries and analytics engines. These companies used additional hardware and
software installed on site to collect data and send it to the cloud. A third implementation partner
was the distributor of a third-party software and developed custom algorithms for various customers.
This software ran on the local BAS network and had direct access to it, allowing access to external
users via a virtual private network connection.

4.1. Develop a Secure Two-Way Communication Between the FDD and the BAS

Opening a two-way communication between the FDD system and the BAS was a challenge seen
across all project partners implementing fault auto-correction into their FDD product environment.
FDD tools typically read operational data from the BAS, run analytics and flag faults on the software
interface. Often, they do not have capabilities to write commands directly onto the BAS. As indicated
in Figure 1, the FDD tool commonly collects operational data using three pathways: (1) from the BAS
server database, (2) from a central BAS server via API and (3) directly via the BACnet IP network.
The first pathway prevents the FDD tool from writing back to the control system, therefore it cannot be
used to implement auto-correction procedures. The second one requires BAS-specific interfaces; thus,
implementers tend to avoid it. For this reason, when expanding the one-way interface to two-way
communication, all the partners selected the third pathway to write back directly via the BACnet
IP network.

The project partners mitigated the two-way communication challenge by upgrading their FDD
system infrastructure. Figure 9 illustrates the solutions for the two cloud-based FDD systems. The solid
line shows the original infrastructure, and the red dashed line shows the upgrade. In the first
cloud-based FDD case (Figure 9a), the BACnet stack (a software library allows users to add a native
BACnet interface to talk to the devices or applications in the BACnet network) of the FDD data
acquisition device was updated to include a “write” function. The local data acquisition device was
also updated to make API requests to the cloud FDD platform to retrieve the auto-correction command
information. This enabled the FDD system to send the auto-corrective command to the local device
and then to the writable properties used to control the BAS. In a cloud-based FDD system of another
partner (Figure 9b), the current BACnet library already had writing capabilities. To enable secure
communication with the cloud, the system architecture was changed. The standard data acquisition
device was paired with a new field device (an auto-correction execution device) specifically designed
to execute the new routines and log the interaction with the BAS. The cloud FDD engine initiated the
auto-corrective command onto the auto-correction execution device. The device then executed the
commands onto the BAS BACnet network and reported back the results to the cloud FDD engine.
The BAS data were still acquired by the existing FDD data acquisition field device and delivered to the
cloud FDD engine. The third on-premise FDD system was already capable of writing commands via
BACnet. It only needed to change a setting in the BAS to authorize the changes.

Energies 2020, 13, 2598 16 of 20

Energies 2020, 13, x FOR PEER REVIEW 16 of 20

The project partners mitigated the two-way communication challenge by upgrading their FDD

system infrastructure. Figure 9 illustrates the solutions for the two cloud-based FDD systems. The

solid line shows the original infrastructure, and the red dashed line shows the upgrade. In the first

cloud-based FDD case (Figure 9a), the BACnet stack (a software library allows users to add a native

BACnet interface to talk to the devices or applications in the BACnet network) of the FDD data

acquisition device was updated to include a “write” function. The local data acquisition device was

also updated to make API requests to the cloud FDD platform to retrieve the auto-correction

command information. This enabled the FDD system to send the auto-corrective command to the

local device and then to the writable properties used to control the BAS. In a cloud-based FDD system

of another partner (Figure 9b), the current BACnet library already had writing capabilities. To enable

secure communication with the cloud, the system architecture was changed. The standard data

acquisition device was paired with a new field device (an auto-correction execution device)

specifically designed to execute the new routines and log the interaction with the BAS. The cloud

FDD engine initiated the auto-corrective command onto the auto-correction execution device. The

device then executed the commands onto the BAS BACnet network and reported back the results to

the cloud FDD engine. The BAS data were still acquired by the existing FDD data acquisition field

device and delivered to the cloud FDD engine. The third on-premise FDD system was already capable

of writing commands via BACnet. It only needed to change a setting in the BAS to authorize the

changes.

(a) (b)

Figure 9. Two-way communication infrastructure for (a) the cloud-based FDD system 1, and (b) the

cloud-based FDD system 2.

4.2. Incorporate Operator Approval

The second challenge faced by the partners was incorporating operator approval. The new auto-

correction feature affords the FDD technology a certain degree of control capability. The building

operators may be hesitant to trust this new capability and feel a lack of control. To mitigate this

challenge, one project partner updated the existing interface to make sure the users were allowed to

actively start, interrupt and track the auto-correction activities. Auto-correction enable and disable

functionality was added to the user interface (UI), and the name of the control variables, their current

value, and the new proposed values were provided to increase the operators’ awareness. All the user

and system activities of auto-correction are stored in a history log that is available to the user. Figure

10 shows a simplified mockup of the new UI displaying the auto-correction enable/disable

functionality, action history and other details. Another partner also developed new interfaces for

auto-correction authentication and acknowledgement.

Figure 9. Two-way communication infrastructure for (a) the cloud-based FDD system 1, and (b) the
cloud-based FDD system 2.

4.2. Incorporate Operator Approval

The second challenge faced by the partners was incorporating operator approval. The new
auto-correction feature affords the FDD technology a certain degree of control capability. The building
operators may be hesitant to trust this new capability and feel a lack of control. To mitigate this
challenge, one project partner updated the existing interface to make sure the users were allowed to
actively start, interrupt and track the auto-correction activities. Auto-correction enable and disable
functionality was added to the user interface (UI), and the name of the control variables, their current
value, and the new proposed values were provided to increase the operators’ awareness. All the user
and system activities of auto-correction are stored in a history log that is available to the user. Figure 10
shows a simplified mockup of the new UI displaying the auto-correction enable/disable functionality,
action history and other details. Another partner also developed new interfaces for auto-correction
authentication and acknowledgement.Energies 2020, 13, x FOR PEER REVIEW 17 of 20

Figure 10. Mockup of the new user interface (UI) developed by one partner, displaying the auto-

correction enable/disable functionality, the action history and other details (ASO – Automatic System

Optimization).

4.3. Manage BAS and Site-Specific Customizations

The traditional separation of the roles between the FDD and the BAS allowed the FDD tools to

develop general algorithms that were independent from some of the details about BAS and the

implementation of specific control programs. For instance, an algorithm that detects opportunities to

save energy by shortening the AHU schedules did not need to know how these schedules were

implemented in the BAS, it just needs to analyze the data produced by them. However, auto-

correcting the same schedule meant overriding the operation of the BAS, therefore the developers

must know many more details about the specific implementation of the control logic to avoid

unintended consequences. The third challenge confronted was the lack of standardization in the BAS

control logic, variables and interfaces. The implementation partners reported issues in (1) deciphering

the BAS control sequences and identifying the exact control variables to override, (2) gaining access

to these variables and (3) gathering data with frequency and timeliness appropriate to the application.

An example of the first issue is the implementation of the “override manual control” algorithm

described in Section 2.2. Depending upon the BAS, the override can be accomplished via an

“override” variable Manual_override (whose value is 1—equipment is in manual control, 0—

equipment is in automatic control) or by the setting of the priority level of the BACnet points (e.g.,

8—manual operator override, 16—default automatically operation) [27].

Accessing the proper control variable was another part of the challenge. The auto-correction

algorithms may require the FDD tools to be able to access the control variables that are not commonly

exposed to the outside by the BAS. An example is the PID-tuning parameters required by the “control

hunting” algorithm. One implementation partner reported being unable to retrieve these points via

BACnet for a site, since the BAS vendor used a proprietary solution.-The third issue emerged when a

partner implemented the algorithms described in Section 3. These routines need real-time data

updated every few minutes, since the algorithms are reevaluated continuously, while the existing

BAS was storing it at 15-minute intervals and transmitting it to the FDD tool once a day (to save

memory and bandwidth).

To address the challenges, all the partners had to spend significant time to understand and

modify the BAS programming and setup, in addition to its interface with the FDD tool. The

parameters of the BAS controller, gateway or server were changed to expose the necessary variables,

making sure they could be modified when needed. Sampling frequency and data transfer rate were

increased to implement some of the algorithms. A partner created a virtual point in the actual codes

to accommodate the settings of override in various BASs. The virtual point is a string semicolon

delimited list of point IDs that are mapped to any points that need to be changed from override in

the BAS. A partner reported that particular care had to be put into matching appropriate data types

(e.g., binary, analog with different precisions, arrays) used by the BACnet protocol, to avoid

communication errors. All these customizations varied by BAS vendor, hardware vintage and site

configuration.

Figure 10. Mockup of the new user interface (UI) developed by one partner, displaying the
auto-correction enable/disable functionality, the action history and other details (ASO – Automatic
System Optimization).

4.3. Manage BAS and Site-Specific Customizations

The traditional separation of the roles between the FDD and the BAS allowed the FDD tools
to develop general algorithms that were independent from some of the details about BAS and the
implementation of specific control programs. For instance, an algorithm that detects opportunities

Energies 2020, 13, 2598 17 of 20

to save energy by shortening the AHU schedules did not need to know how these schedules were
implemented in the BAS, it just needs to analyze the data produced by them. However, auto-correcting
the same schedule meant overriding the operation of the BAS, therefore the developers must know many
more details about the specific implementation of the control logic to avoid unintended consequences.
The third challenge confronted was the lack of standardization in the BAS control logic, variables
and interfaces. The implementation partners reported issues in (1) deciphering the BAS control
sequences and identifying the exact control variables to override, (2) gaining access to these variables
and (3) gathering data with frequency and timeliness appropriate to the application. An example
of the first issue is the implementation of the “override manual control” algorithm described in
Section 2.2. Depending upon the BAS, the override can be accomplished via an “override” variable
Manual_override (whose value is 1—equipment is in manual control, 0—equipment is in automatic
control) or by the setting of the priority level of the BACnet points (e.g., 8—manual operator override,
16—default automatically operation) [27].

Accessing the proper control variable was another part of the challenge. The auto-correction
algorithms may require the FDD tools to be able to access the control variables that are not commonly
exposed to the outside by the BAS. An example is the PID-tuning parameters required by the “control
hunting” algorithm. One implementation partner reported being unable to retrieve these points via
BACnet for a site, since the BAS vendor used a proprietary solution. -The third issue emerged when
a partner implemented the algorithms described in Section 3. These routines need real-time data
updated every few minutes, since the algorithms are reevaluated continuously, while the existing BAS
was storing it at 15-minute intervals and transmitting it to the FDD tool once a day (to save memory
and bandwidth).

To address the challenges, all the partners had to spend significant time to understand and modify
the BAS programming and setup, in addition to its interface with the FDD tool. The parameters of
the BAS controller, gateway or server were changed to expose the necessary variables, making sure
they could be modified when needed. Sampling frequency and data transfer rate were increased to
implement some of the algorithms. A partner created a virtual point in the actual codes to accommodate
the settings of override in various BASs. The virtual point is a string semicolon delimited list of point
IDs that are mapped to any points that need to be changed from override in the BAS. A partner reported
that particular care had to be put into matching appropriate data types (e.g., binary, analog with
different precisions, arrays) used by the BACnet protocol, to avoid communication errors. All these
customizations varied by BAS vendor, hardware vintage and site configuration.

4.4. Manage Control Conflicts between the BAS and the FDD Tool

The last challenge reported pertained to the conflicts between the BAS and the FDD control actions.
Algorithms that make one-time changes to the BAS operation (e.g., the incorrectly programmed
schedule in Section 2.1) may be overridden by operators or the BAS logic at a later date. It is unclear
whether or not the auto-correction procedure should periodically update these variables. Moreover,
algorithms that continuously change variables may also conflict with the existing BAS sequence of
operation. An example is improving the AHU static pressure setpoint reset (Section 2.8) on a BAS
that already has a reset strategy. There is a need to understand which one takes precedence and if the
existing control sequences should be turned off.

To address the first issue, one implementation partner used an existing feature of the FDD platform
to separately track the active schedule and the most efficient schedule and let the operator decide
which one to activate. In addition, it logged all the changes to that schedule to offer more information
to the user. For the second issue, another partner set up a fallback mechanism in the BAS, for use with
the new FDD auto-correction algorithm that continuously modified the control setpoint. A watchdog
was added in the BAS programming to make sure the FDD tool was online. If the FDD tool went
offline, the BAS reverted back to the setpoint generated by the original control logic in the case of loss
of communication with the FDD tool.

Energies 2020, 13, 2598 18 of 20

4.5. Other Considerations

The development and deployment of these algorithms stimulated an interesting discussion
among the partners and advisors of the project about the role of the FDD and the BAS. Typically,
the commercial FDD tools are developed as a software layer on top of the existing BAS. There exists
a natural separation of roles in this arrangement, in which the BAS actively controls the building
and the FDD tool observes its operation and provides insights and recommendations to the building
manager. However, some consider FDD tools as a new generation of BAS that can take over some of
its functionalities when it is necessary. At the beginning of the project, one facility manager expressed
the desire to implement Guideline 36 sequences [24] on a building being controlled by an obsolete
control system. To implement the sequences on that system, significant hardware upgrades and BAS
programming labor would be required. The code cannot be easily reused between controllers due to
the limitations of the control language, therefore this operation was not scalable and its implementation
on multiple systems was hampered. As an alternative, he suggested to host the sequences in the
significantly more modern FDD tool (algorithms 2.5, 2.8 and 2.9) and use the existing BAS as a simple
tool to collect data and provide direct control over the lower-level hardware. This strategy was
eventually implemented and was described in Section 3. Other partners disagreed, objecting that
extensive real-time control of the building is outside the scope of FDD tools. Business models of the
companies developing the tools may play a role in the way these new functions will be eventually
incorporated in the FDD products at the end of this project.

5. Conclusions and Future Work

This paper presented nine algorithms for HVAC systems that were designed to automatically
correct faults or improve operations relative to incorrectly programmed schedules, overriding manual
control, sensor bias, control hunting, rogue zones and less aggressive setpoints or setpoints setback.
It also showed preliminary tests confirming the efficacy of a subset of these algorithms, as tested in
a large commercial building. Finally, it discussed challenges faced during the integration of these
auto-correction algorithms into three commercial FDD tools and the solutions to these challenges
that were adopted by the project partners. The main challenges included: (1) developing a secure
two-way communication between the FDD tool and the BAS; (2) incorporating operator approval;
(3) managing the customizations necessary to the specific BAS/site installation; and (4) managing the
potential conflict between the auto-correction and the BAS control actions. The suggested solutions
will help future auto-correction developers address similar challenges.

With respect to automated fault auto-correction, future work will focus on more field testing
of the FDD integrated correction algorithms in a cohort of existing buildings. This will include the
evaluation of the technical efficacy and the performance of each correction routine, the evaluation of the
operations and maintenance benefits for each site in cohort and the characterization of challenges and
best practices. A second area of future work will entail the design and execution of a techno-economic
analysis to quantify the broader market opportunity to inform ongoing commercialization efforts.

The state of today’s FDD technology can be advanced through research focused on enhanced
diagnostic (as opposed to detection) approaches and methods for fault prioritization. Complementary
work to characterize fault prevalence based on empirical data from the field could also prove valuable in
guiding future FDD technology development and implementation efforts. There is also an overarching
need to navigate issues related to data management, integration, cybersecurity, and interoperability.

Author Contributions: Conceptualization, J.G., Formal analysis, G.L., M.P. and Y.C.; Methodology, G.L., M.P., Y.C.
and J.G.; Writing—original draft, G.L., M.P., Y.C. and J.G.; Writing Review & Editing, G.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Assistant Secretary for Energy Efficiency and Renewable Energy,
Building Technologies Office, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Acknowledgments: This work was supported by the Assistant Secretary for Energy Efficiency and Renewable
Energy, Building Technologies Office, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Energies 2020, 13, 2598 19 of 20

The authors wish to acknowledge Harry Bergmann for his guidance and support of the research. We also thank
the fault detection and diagnostics technology and service providers who participated in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Energy Information Administration. Monthly Energy Review April 2019; EIA: Washington, DC, USA, 2019.
2. Energy Information Administration. Commercial Buildings Energy Consumption Survey (CBECS);

EIA: Washington, DC, USA, 2016.
3. Mills, E. Building commissioning: A golden opportunity for reducing energy costs and greenhouse gas

emissions in the United States. Energy Effic. 2011, 4, 145–173. [CrossRef]
4. Katipamula, S.; Brambley, M.R. Methods for fault detection, diagnostics, and prognostics for building

systems—A review, part I. Hvac R Res. 2005, 11, 3–25. [CrossRef]
5. Roth, K.W.; Westphalen, D.; Feng, M.Y.; Llana, P.; Quartararo, L. Energy Impact of Commercial Building

Controls and Performance Diagnostics: Market Characterization, Energy Impact of Building Faults and Energy
Savings Potential; US Department of Energy: Washington, DC, USA, 2005.

6. Fernandez, N.E.; Katipamula, S.; Wang, W.; Xie, Y.; Zhao, M.; Corbin, C.D. Impacts of Commercial Building
Controls on Energy Savings and Peak Load Reduction; Pacific Northwest National Lab: Richland, WA, USA, 2017.

7. Deshmukh, S.; Glicksman, L.; Norford, L. Case study results: Fault detection in air-handling units in
buildings. Adv. Build. Energy Res. 2018, 1–17. [CrossRef]

8. Fernandes, S.; Granderson, J.; Singla, R.; Touzani, S. Corporate delivery of a global smart buildings program.
Energy Eng. 2018, 115, 7–25. [CrossRef]

9. Wall, J.; Ying, G. Evaluation of Next-Generation Automated Fault Detection & Diagnostics (FDD) Tools for
Commercial Building Energy Efficiency—Final Report Part. I: FDD Case Studies in Australia, RP1026; Low Carbon
Living CRC: Boca Raton, FL, USA, 2018.

10. Lin, G.; Kramer, H.; Granderson, J. Building fault detection and diagnostics: Achieved savings, and methods
to evaluate algorithm performance. Build. Environ. 2020, 168, 106505. [CrossRef]

11. ASHRAE. Guideline 13–2015—Specifying Building Automation Systems; ASHRAE: Akron, OH, USA, 2015.
12. Granderson, J.; Singla, R.; Mayhorn, E.; Ehrlich, P.; Vrabie, D.; Frank, S. Characterization and Survey of

Automated Fault Detection and Diagnostics Tools; Report Number LBNL-2001075; Lawrence Berkeley National
Laboratory: Washington, DC, USA, 2017.

13. Kim, K.; Rao, P.; Burnworth, J.A. Self-tuning of the PID controller for a digital excitation control system.
IEEE Trans. Ind. Appl. 2010, 46, 1518–1524.

14. Shi, Z.; O’Brien, W. Development and implementation of automated fault detection and diagnostics for
building systems: A review. Autom. Constr. 2019, 104, 215–229. [CrossRef]

15. Fernandez, N.; Brambley, M.; Katipamula, S. Self-Correcting HVAC Controls: Algorithms for Sensors and Dampers
in Air-Handling Units, PNNL-19104; Pacific Northwest National Laboratory: Richland, WA, USA, 2009.

16. Fernandez, N.; Brambley, M.; Katipamula, S.; Cho, H.; Goddard, J.; Dinh, L. Self Correcting HVAC Controls
Project Final Report PNNL-19074; Pacific Northwest National Laboratory: Richland, WA, USA, 2009.

17. Brambley, M.; Fernandez, N.; Wang, W.; Cort, K.A.; Cho, H.; Ngo, H.; Goddard, J.K. Fial Project Report:
Self-Correcting Controls for VAV System Faults Filter/Fan/Coil and VAV Box Sections. No. PNNL-20452;
Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2011; Volume 20.

18. Isermann, R. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance; Springer Science
& Business Media: New York, NY, USA, 2006.

19. Zhang, Y.; Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control
2008, 32, 229–252. [CrossRef]

20. Padilla, M.; Choinière, D.; Candanedo, J.A. A model-based strategy for self-correction of sensor faults in
variable air volume air handling units. Sci. Technol. Built Environ. 2015, 21, 1018–1032. [CrossRef]

21. Wang, S.; Chen, Y. Fault-tolerant control for outdoor ventilation air flow rate in buildings based on neural
network. Build. Environ. 2002, 37, 691–704. [CrossRef]

22. Hao, X.; Zhang, G.; Chen, Y. Fault-tolerant control and data recovery in HVAC monitoring system.
Energy Build. 2005, 37, 175–180. [CrossRef]

http://dx.doi.org/10.1007/s12053-011-9116-8
http://dx.doi.org/10.1080/10789669.2005.10391123
http://dx.doi.org/10.1080/17512549.2018.1545143
http://dx.doi.org/10.1080/01998595.2018.11950815
http://dx.doi.org/10.1016/j.buildenv.2019.106505
http://dx.doi.org/10.1016/j.autcon.2019.04.002
http://dx.doi.org/10.1016/j.arcontrol.2008.03.008
http://dx.doi.org/10.1080/23744731.2015.1025682
http://dx.doi.org/10.1016/S0360-1323(01)00076-2
http://dx.doi.org/10.1016/j.enbuild.2004.06.023

Energies 2020, 13, 2598 20 of 20

23. Bengea, S.C.; Li, P.; Sarkar, S.; Vichik, S.; Adetola, V.; Kang, K.; Lovett, T.; Leonardi, F.; Kelman, A.D.
Fault-tolerant optimal control of a building HVAC system. Sci. Technol. Built Environ. 2015, 21, 734–751.
[CrossRef]

24. ASHRAE. Guideline 36–2018. High. Performance Sequences of Operation for HVAC Systems; ASHRAE: Akron,
OH, USA, 2018.

25. ASHRAE. ASHRAE/IES Standard 90.1–2016. Energy Standard for Buildings Except Low-Rise Residential Buildings;
ASHRAE: Akron, OH, USA, 2016.

26. Lin, G.; Pritoni, M.; Chen, Y.; Granderson, J. Can We Fix It Automatically? Development of Fault
Auto-Correction Algorithms for HVAC and Lighting Systems. ACEEE 2020, in press.

27. BACnet®Primer. What is BACnet? Phoenix Controls: Acton, MA, USA. 2009. Available
online: https://www.phoenixcontrols.com/CatalogDocuments/Products/Network%20Integration/BACnet%
20Primer%20(MKT-0233).pdf (accessed on 19 May 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/23744731.2015.1057085
https://www.phoenixcontrols.com/CatalogDocuments/Products/Network%20Integration/BACnet%20Primer%20(MKT-0233).pdf
https://www.phoenixcontrols.com/CatalogDocuments/Products/Network%20Integration/BACnet%20Primer%20(MKT-0233).pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Fault Auto-Correction Algorithms
	Schedules Are Incorrectly Programmed
	Override Manual Control
	AHU Supply Air or Outside Air Temperature Sensor Bias
	Damper/Valve/Fan/Pump Control Hunting Due to Improper Proportion Gain
	Rogue Zone
	Improve Economizer High-Lockout Temperature Setpoint
	Improve Zone Temperature Setpoint Setback
	Improve AHU Static Pressure Setpoint Reset
	Improve AHU SAT Setpoint Reset

	Results: Preliminary Testing
	Description of the Testing Site and Equipment
	Auto-Correction Code in the FDD Tool
	Code for “Rogue Zones”
	Code for “Improve AHU Supply Air Temperature Setpoint Reset”

	Test Results
	Test Results of “Rogue Zone” Algorithm
	Test Results of “Improve AHU SAT Setpoint Reset” Algorithm

	Discussion: Implementation Challenges and Solutions
	Develop a Secure Two-Way Communication Between the FDD and the BAS
	Incorporate Operator Approval
	Manage BAS and Site-Specific Customizations
	Manage Control Conflicts between the BAS and the FDD Tool
	Other Considerations

	Conclusions and Future Work
	References

