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Abstract: This paper aims to present the significance of predicting stochastic loads to improve the 
performance of a low voltage (LV) network with an energy storage system (ESS) by employing 
several optimal energy controllers. Considering the highly stochastic behaviour that rubber tyre 
gantry (RTG) cranes demand, this study develops and compares optimal energy controllers based 
on a model predictive controller (MPC) with a rolling point forecast model and a stochastic model 
predictive controller (SMPC) based on a stochastic prediction demand model as potentially suitable 
approaches to minimise the impact of the demand uncertainty. The proposed MPC and SMPC 
control models are compared to an optimal energy controller with perfect and fixed load forecast 
profiles and a standard set-point controller. The results show that the optimal controllers, which 
utilise a load forecast, improve peak reduction and cost savings of the storage device compared to 
the traditional control algorithm. Further improvements are presented for the receding horizon 
controllers, MPC and SMPC, which better handle the volatility of the crane demand. Furthermore, 
a computational cost analysis for optimal controllers is presented to evaluate the complexity for a 
practical implementation of the predictive optimal control systems. 

Keywords: energy storage system; stochastic loads; load forecasting; model predictive controller 
 

1. Introduction 

In order to reduce gas emissions in seaports and increase energy saving, ports are dramatically 
moving towards electrify rubber tyre gantry (RTG) cranes which will increase the electricity load on 
the ports’ network. To manage the increased peak demand, port operators are required to reinforce 
the electrical network. Traditional reinforcement solutions are effective but commercially expensive 
because they focus on upgrading existing infrastructure such as cables and transformers [1,2]. 
Reducing the peak demand on the port network would help to minimise the electrical infrastructure 
reinforcement costs and greenhouse gas emissions at the electricity supplier side. Electrified cranes 
represent the largest demand at the port and provide the biggest opportunity for peak demand 
reduction and energy saving [1,3]. 

The electric demand of an RTG crane is nonsmooth and stochastic [3] compared to other 
aggregated low voltage demands such as domestic customers or medium voltage loads. Therefore, 
smarter solutions are required in order to reduce the peak demand, decrease electricity costs and 
increase energy efficiency. One practical technology is an energy storage system (ESS), which are 
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becoming increasingly important tools for generating an energy efficient network model and to help 
reduce gas emissions and environmental concerns. Generally, the main application for an ESS in a 
low voltage (LV) network is to minimise the electrical energy cost and decrease the need for 
upgrading the network by shifting energy consumption from peak to valley periods [4]. Typically, 
the energy storage devices are designed and controlled dependent on the main target of the energy 
storage such as peak demand reduction or cost saving. Therefore, it is important to explore and 
investigate how an ESS controlling can improve energy efficiency or economic performance of the 
storage device in LV network applications and RTG crane networks. This section will introduce the 
main literature for energy control algorithms for storage devices with stochastic loads [3]. The energy 
storage controllers for an LV network and RTG crane applications are commonly split into two main 
research areas in the literature: 
1. Conventional or traditional controllers such as set-point controller and proportional integral 

(PI): this type of storage controllers is limited to a specific target or reference value. These 
controllers generate control decisions based on a determined target or reference value such as 
current, energy level and voltage. The reference value is determined based on an a priori 
network data together with domain-expert knowledge. Due to the simplicity of these 
conventional controllers, they have been widely used in RTG crane systems with storage devices 
for reducing gas emissions and peak demand [5–8]. Furthermore, the set-point controller is also 
used as a standard benchmark control system for an ESS in LV applications [9] and RTG cranes 
[2]. However, these controllers are principally limited for controlling volatile and nonsmooth 
demands, solving complex energy problems and targeting the energy savings and peak 
reduction over long periods of time such as an entire day. In addition, the set-point and PI 
controllers are sensitive to the set-point and use no knowledge of the potential future demand. 

2. Optimal controllers: this energy control category can be further divided into optimal controllers 
that use, or do not use, forecast of the demand. Both controllers in this category work to find the 
optimal (the best) ESS operation plan based on the parameters and limitations of the electrical 
network and storage device [10,11]. However, the optimal controllers are more complex, with 
higher computational costs, compared to the conventional controllers [11,12]. While many 
papers have discussed and investigated optimal energy control strategies for LV demands such 
as residential customers, there is limited literature on using these strategies for reducing peak 
demand or energy costs for RTG crane networks. In 2017, Pena-Bello et al., presented an 
optimisation operation algorithm for a battery storage system for grid-connected housing with 
a PV system [13]. The model in [13] assumed a perfect forecast for the residential load and PV 
generation, which is unrealistic in practice. The research does not consider the impact of forecast 
error or the variability of the PV generation on the operational model and results. The literature 
[13–15] has shown that accurate forecasts are important to optimise the control of an ESS. The 
literature has introduced the optimal control of ESS with load forecasts as a key feature for 
improving the peak reduction and the cost savings. However, it has widely focused on 
developing different planning, operation schedules based on full future knowledge to increase 
the energy savings by assuming a perfect forecast for the residential load and PV generation 
[13], which is unrealistic in practice and assumes that the charged energy was fixed and equal 
to a specific magnitude in [16]. 
Throughout the literature, optimal controllers that use forecasts can be classified into two main 

groups: First, consider optimal controller which assume a complete future knowledge of the demand 
(perfect forecast). These controllers employ a perfect forecast without taking into account the 
prediction errors or the uncertainty in the demand over the forecast horizon. Many planning 
operation schedules for the ESS in an LV network based on perfect forecast rules has been developed 
in the literature in order to reduce peak demand and energy cost savings. For example, an optimal 
energy controller for a diesel RTG crane was developed by Hellendoorn et al. [16] by assuming a 
perfect knowledge of the diesel fuel consumption and fuel costs to increase energy saving and reduce 
costs. Similar to Hellendoorn et al., Alonso et al. created optimal controllers for charging electric 
vehicles based on the assumption that the ESS charging time and the initial and final state of charge 



Energies 2020, 13, 2596 3 of 19 

 

are known to minimise the peak demand in LV networks. In general, the literature shows that perfect 
and accurate forecast demand models are an important component for optimising the energy storage 
operation [10]. However, having perfect load forecast profiles is not practical in practice, especially 
for applications with highly volatile behaviours such as RTG cranes and LV demand where the 
demand uncertainty is a core feature of the data. 

Secondly, there are optimal energy control models based on load forecasting. These controllers 
aim to find the optimal ESS operation plan by using actual forecast models. The load forecast models 
estimate future demand profile which are not perfectly accurate, forecasting errors can therefore have 
a significant impact on the energy storage performance and results [10]. The volatile demand 
behaviour on LV network applications increases the challenge of accurately predicting the LV 
demand. In general, forecast error and uncertainty have a significant impact on optimal ESS control 
algorithms. Uncertainty and forecast error impacts on an optimal controller such as model predictive 
controller (MPC) solutions have been discussed in the literature [17–19]. The research, in [20], 
formulated a hybrid renewable energy system with battery energy storage in a family residential 
home, using an optimal energy operation strategy based on an MPC algorithm to minimise the 
energy costs and meet the electricity demand. Due to the high level of uncertainty regarding weather 
conditions that effect the renewable sources output, Wang et al. [20] used real time hourly weather 
forecast data to reduce the impact of uncertainty. Forecast errors in the prediction demand model 
used in an optimal energy controller are discussed in [21]. Holjevac et al. presented a microgrid 
system including electricity demand and energy storage that operated to meet consumer needs and 
minimise costs by using a receding horizon controller. The work of Holjevac et al. [21] showed that 
the efficiency of the energy operation model depends on demand and generation prediction output, 
and daily correction of the MPC controller schedule. The corrective schedule aimed to update the 
initial operation points, this helped to reduce the impact of the forecast errors by updating the 
demand and control model data at successive time steps. However, the receding horizon controller 
was designed to minimise the energy costs only based on the energy and balancing prices and did 
not investigate the peak demand reduction for the households in the network. Receding horizon 
controllers, such as MPCs and stochastic model predictive controllers (SMPCs), have often been 
effectively used within stochastic load applications such as LV peak demand reduction [22–24], and 
they use rolling forecasts to improve the energy storage performance without assuming perfect 
knowledge of future demand. In general, receding horizon controllers are an ideal candidate for 
reducing the impact of forecast errors and increasing energy storage device efficacy [25,26] since they 
are continually updated with the most recent data. To the best of the author’s knowledge, there has 
been limited literature on using predictive controllers such as MPCs and SMPCs for electrified RTG 
crane system to reduce peak demand or increase energy efficiency. The energy saving and peak 
demand reduction for networks of electrified RTGs have been presented only in the previous work 
of the authors who developed on-line receding horizon controllers (MPC and SMPC) in [10] and [11], 
based on a rolling forecast model. An artificial neural network (ANN) forecast model was designed 
to provide the MPC controller [9] the future demand profile. However, the MPC controller did not 
consider the uncertainty in the RTG crane demand or the forecast profile [11]. The RTG crane demand 
analysis in [3] showed that crane demands have a much higher degree of uncertainty compared to 
other low voltage applications due to the lack of any strong patterns, trends or seasonalities. Such 
volatile demand behaviour in the crane can affect the MPC controller performance. Therefore, Alasali 
et al. [11] investigated the benefits of generating different future demand scenarios to estimate the 
demand uncertainty and hence improve the storage control performance using an SMPC model [11]. 

Challenges in creating an accurate crane demand profile increase the difficulties of developing 
an optimal predictive controller compared to say, medium voltage (MV) or LV demand applications 
[3,12]. It also requires further and deeper analysis to investigates the stability and robustness of the 
proposed controllers on larger data sets, which has been limited in the literature. This work aims to 
fill this gap by developing and comparing different predictive optimal controllers for a network of 
electrified RTG cranes equipped with an ESS. The main applications of the storage controllers 
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presented here are to minimise both the energy cost and peak demand. This paper presents the 
following key novel contributions. 

• Firstly, we develop three predictive optimal controllers (MPC, SMPC and optimal controller 
with fixed forecast) for an ESS within an RTG crane network and compare the corresponding 
ESS performance. The comparison in this paper investigates the stability and robustness of the 
proposed controllers by using different forecast models and data sets to test the proposed ESS 
controllers. This evaluation is significant to understand the impact of forecast errors on the ESS 
control algorithms and due to the limited literature on developing predictive control algorithms 
for stochastic load, such as RTG crane demand. 

• Secondly, unlike the limited literature [10,11], which do not investigate the complexity and 
computational cost of the predictive control model, this paper analyses the ESS performance by 
taking into consideration the main characteristics of the proposed optimal energy controllers. 
The analysis in this paper aims to introduce an initial assessment of the complexity for a practical 
implementation of the proposed optimal control systems. 

The remainder of this work is organised as follows: the RTG crane and ESS model’s topology is 
introduced in Section 2. The electrified RTG crane demand analysis is presented in Section 3. In 
Section 4, the predictive optimal controllers are presented. Then, Section 5 discusses and presents the 
simulation results and analysis. The last section presents the summary of this work and conclusions. 

2. RTG Cranes and ESS Models Topology 

This section presents the topology of the network of two electrified RTG cranes equipped with 
ESS used in the study. Connected to a real network in the Port of Felixstowe (PoF), the electrified 
RTG cranes are connected to the low voltage side of an 11 kV / 0.415 kV rated retrofitted substation. 
In order to support peak demand reductions, the ESS is located on the 0.415 kV side. Figure 1 shows 
the RTGs in the PoF. Both cranes were manufactured and retrofitted by Shanghai Zhenhua Heavy 
Industries (ZPMC, Shanghai, China) [11,12] in order to be powered by the 0.415 kV distribution 
network through a conductor bar. The conductor bar length is 217 meters and it was manufactured 
by Vahle (Germany). In sea port terminals, container ships wait in the berths for the quay crane to 
load/unload the containers onto lorries. Then, the cargo is transferred by yard truck from the 
quayside to the yard, where the port stores the containers until transferring them to the cargo owner, 
using the yard crane [1,2]. The RTG cranes at the Port of Felixstowe have mainly three main types of 
motors to drive the crane and move containers as follows [4–6]: 
• Four gantry motors to move the crane around the site. 
• Hoist motor to raise container weights of up to 40 tones. 
• Two trolley motors to move the hoisting unit across the span of the crane. 

The LV network at the port aims to provide enough power to allow different RTG crane moves 
and tasks. Generally, the highest percentage of energy (65%) consumed by the RTG comes from the 
hoist motor from lifting the containers rather than the gantry and trolley motors [1–4,6]. In this article, 
unlike in the literature, two electrified RTG cranes in the LV network are connected to a central storage 
device, [2,4–8] which focuses on energy saving for a single RTG model. Figure 1 shows the single line 
diagram together with an actual electrical RTG cranes connected at the Port of Felixstowe, UK [10]. This 
connection shows that two RTGs are fed from the same step-down transformer. The storage device 
location in Figure 1 is motivated by the literature [9] that used a central storage device in a LV substation 
(close to transformer) for residential customers. Generally, the step-down transformer location at a port 
is close to the electrical RTGs which helps the ESS give extra support to the substation, reduce the 
power, energy losses and thermal issues in this zone. The aggregated demand for the cranes is matched 
by the power source and the ESS, as illustrated in Figure 1. In this section, the half hourly electrified 
RTG crane energy data over Q days for the complete historical data set is described by P = (P(1), . . . . , P(48Q) )୘ ∈ ℝସ଼୕, (1) 

The LV network (step-down transformer), as seen in Figure 1, feeds all the required demand 
consumption to operate the RTGs and the changes in the storage device energy. The research 
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objective of this study is to minimise the peak demand and the electricity bill for the RTG crane 
network by generating an optimal operation plan for an ESS over a 24-hour period. Equation (2) 
describes the RTG cranes demand including the ESS. 

D (t)  = ൭෍ P୧(∆t)஼ୀଶ
୧ୀଵ ൱  + ∆E(t), (2) 

where D(t) is the total substation demand supplied at half hour t, ∑ P୧(∆t)஼ୀଶ୧ୀଵ  is the aggregation load 
of two electrified cranes (C = 2), and ∆E(t) is the charged or discharged energy in the storage device 
at each half hour t of the day of interest, t = 1, 2,…, 48, i.e. (∆E  =  (∆E(1), . . . , ∆E(t))୘ ∈ ℝ). 

In this paper, the optimal controller aims to determine the ∆E(t) value over the following day in 
order to maximize the reduction of the peak demand and electricity bill. The values of the storage 
device constraints and operation are typically given in terms of the average power flow, P in kW, 
and the stored energy in the ESS is therefore P∆t in kWh during a period of time, ∆t, (hours or half 
hours). However, in this paper, the storage device controller aims to determine an optimal value of 
the increase or decrease of the stored energy, ∆E, [9,10]. The value of ∆E(t) can reflect a positive or 
negative change which describe the increase (charging mode) or decrease (discharging mode) 
respectively in the energy in the storage device [18,26]. Furthermore, the SoC(t) describes the stored 
energy (State of Charge) at the end of each time step t and is given by Equation (3). SoC(t)  = SoC(t − 1)  + ɳ∆E(t). (3) 

The energy storage model considers the efficiency [8–10] by adding a variable, ɳ ∈ [0, 1], to the 
change in stored energy, ∆E(t), as described in Equation (3). When ∆E < 0, the ESS efficiency is set to ଵɳ  
and when ∆E is ≥ 0, the ESS efficiency is ɳ. Furthermore, the storage device is subject to operation 
constraints, as described in Equations 4 and 5. The SoC୫୧୬ and SoC୫ୟ୶ represent the upper and lower 
limit of the energy stored in the ESS, respectively. The ∆E୫୧୬ and ∆E୫ୟ୶ is the minimum and maximum 
step change in energy, respectively [10,26], in other words, a limit on the speed of charging and 
discharging the ESS. SoC୫୧୬ ≤  SoC(t)  ≤  SoC୫ୟ୶∆E୫୧୬ ≤  ∆E(t) ≤  ∆E୫ୟ୶ ቋ,    ∀ t. (4) 

(5) 

 
Figure 1. The electrical distribution network of two electrified rubber tyre gantry (RTG) 
cranes equipped with an energy storage system (ESS) at the Port of Felixstowe, UK. 
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3. The Electrified RTG Crane Demand 

The previous section introduced the problem of high peak demand and energy costs on the LV 
network system, in particular on ports with electrified RTG cranes. Load forecasting was highlighted 
as one potential solution for supporting the network by facilitating a more optimal control of the 
energy storage system. To develop an accurate forecast model for LV applications, it is significant to 
understand the electrical demand behaviour and investigate the correlation between the demand and 
any exogenous variables. Due to the lack of understanding of the ports and the RTG crane energy 
demand behaviour, this section will analyse the demand characteristics of RTG cranes and explore 
the relationship between crane electrical demand and different exogenous variables. The detailed 
background and key findings in this section will be useful to develop and determine the most 
appropriate parameters for an accurate forecast model. To the author’s knowledge, there are no 
current studies which specifically investigate the characteristics of electrified RTG crane demand for 
forecasting or ESS control applications.  
The RTG crane demand analysis in this section will be focused on finding patterns or cycles in crane 
demand based on the following: 
• Overview of the electrified RTG crane demand; 
• Time series analysis. 

3.1. Overview of the Electrified RTG Crane Demand 

In this paper, smart meters data was collected for two RTGs over a period of three months (from 1ୱ୲ of March to 30୲୦ of May 2018) at the Port of Felixstowe in the UK. The RTGs collected data on 
half hourly demand, number of cranes moves and the overall container weight. Typically, seaports 
have standard energy meters based on half hourly resolution for billing purposes since high-
resolution substation monitoring systems are expensive, and for this reason, for the data and 
prediction model, we consider half hourly resolution data. The RTGs data represent the crane 
behaviour during several typical operational days. In order to present and investigate the RTG 
demand behaviour, the half hourly demand is plotted in Figure 2 for the first two months of the data 
set. This plot aims to highlight potential longer-term seasonal (daily or weekly) patterns. In addition, 
in order to examine any linear long-term trend in the RTG data, a line of best fit is also included in 
Figure 2 described by Equation (6) below, P෡(t) =  a + b t, (6) 

where P෡ ∈ ℝ୘ is the RTG demand, T is the total length of analysed data and t is a half hour time step 
over the data set period. The coefficients a, b ∈ ℝ are found via least squares estimation and found 
to be a = 21.1 and b= −0.0003.  

To measure and present how well the crane data fit with the regression line, R-squared (Rଶ) 
statistics were used in this section. The plotted trend line in Figure 2 show that the average demand 
(21.1 kWh) exhibits a significantly little linear trend and is quite flat from the start to the end of the 
data. The linear fit gives an Rଶ value of 0.017. In other words, the linear model only explains 1.7% of 
the RTG crane load variability. Therefore, the linear model is an insufficient tool for explaining the 
majority of the RTG demand behaviour. However, clearly it is difficult to extrapolate to the full year, 
but the results are expected to be similar as crane operation is continuous throughout the year. As 
seen in Figure 2, the crane is relatively volatile without strong seasonalities or patterns from month-
to-month or week to week, which is in contrast with typical residential or LV level demand. 
Furthermore, Figure 3 presents an alternative representation of the distribution of RTG demand at 
the Port of Felixstowe. The half hourly RTG crane demand values are distributed between 0 kWh and 
73 kWh, which gives a wide range of possible crane demand values and illustrates the uncertainty in 
the crane demand. In Figure 3, the mean value of the crane demand, μ, is 21.1 kWh and the standard 
deviation, σ, is 14.85 kWh. It is observed that a high number of instances are clustered between 0 
kWh to 15 kWh and not around the μ value, leading to further emphasis that the normal distribution 
is not able to accurately describe the distribution of the crane data. Furthermore, the lognormal gives 
a better fit compared to the normal distribution but still does not completely explain the data. The 
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histogram distribution has a long tail compared to that expressed by a normal distribution, better 
describing the large values of demand which are more likely to occur. The high number of 
occurrences for the low demand, as presented in Figure 3, is mainly related to the large amount of 
low activity at the port including maintenance periods. In general, due to the nonsmooth behaviour 
of the RTGs load and the lack of seasonal behaviour in the time series and motivated by the literature 
[3,11], the gap in the time series or the longer time series is expected to have a negligible effect on the 
data analysis and forecast results. The irregular crane behaviour is likely due to the effect of the 
decisions of the crane operator individual and random distribution of containers within the site. In 
ports, work activity depends on the occurrence of shipments which do not have obvious or standard 
seasonal patterns. For example, a port may have two or three ships berthed at the same time and this 
would require increased crane activity.  

 
Figure 2. The half hourly RTG demand (blue line) with linear model fit to the data (dotted). 
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Figure 3. Illustration of RTG crane demand data in a histogram along with a normal 
distribution fit and lognormal. 
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3.2. Time Series Analysis 

The previous RTG demand analysis shows no obvious seasonality over the time period 
considered, however more subtle seasonalities can be found by considering the partial 
autocorrelation function (PACF). This is shown in in Figure 4 for 350-time lags (just over one week) 
[3]. The PACF calculation and plot can help to find intraday patterns or correlations [3]. The PACF 
can be defined as follows: PACF (i) = corr ቀ൫ P (t),  P (t − i)ห P (t − 1), . . . . ,  P (t − i − 1)൯ቁ. (7) 

The PACF plot in Figure 4 shows only small values after lag number 4 and the distribution of 
the PACF plot does not show any clear patterns or seasonalities compared to other more typical LV 
demands, which often show significant lags at 48 (daily) for half hourly data, and further multiples. 
Similar to PACF, there are other tools and techniques to investigate the different periodicities in 
data—the most common being the Fourier transform [3]. 

 
Figure 4. Partial autocorrelation function (PACF) plot for RTG crane demand time series 
for 350-time lags and the cut off after lag number 4. 

Overall, the data for the RTGs shows random and volatile behaviour without clear half hourly 
or daily seasonalities. Hence, they are not useful features to include in a forecast model. The 
nonsmooth behaviour of RTG crane demand is mainly due to the effects of human and work 
environmental behaviour factors during the crane and port operation time [3,11]. The activity inside 
ports mainly depends on the relatively random occurrence and movement of shipments [27,28]. For 
example, a port may have many ships berthed at the same time and this requires increased crane 
activity. The terms “volatile” or “stochastic” have been defined as variables that change rapidly with 
low regularity These terms are used throughout the paper to qualitatively define and describe RTG 
crane demand. This paper aims to show how the forecast error affects the performance of the optimal 
controllers. As discussed in the literature, energy storage controllers for LV network applications 
have typically been developed with full knowledge of future demand [29,30] or using forecast models 
with relatively small errors of around 10% [26,29]. Therefore, in this paper, accurate and inaccurate 
forecast models have been used to feed the optimal energy controllers and evaluate the impact of 
forecast errors on the performance of the ESS. The two forecast models in this paper are as follows: 
• Accurate forecasts: the half hourly demand for the next 48-time steps are generated by using the 

most accurate forecast model with the mean absolute percentage error (MAPE) forecast errors 
between 8% and 24%, as presented in [3]. This forecast model estimates the number of RTG 
moves, while assuming the container gross weight is known in advance. 

• Inaccurate forecasts: the load forecast profile is generated by using an inaccurate forecast model 
with forecast errors between 21% and 39% [3]. This forecast model does not require any of the 
external variables data such as number of cranes moves or container weight [3]. 
In this section, the collected data from the RTGs network are divided into training data set (two 

months of demand data) and testing data (one month of data). The Mean Absolute Percentage Error 
(MAPE), as described in Equation (8), is used to evaluate the forecast models.  
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MAPE = 100N ෍ ቤP୧ − P෡୧P୧ ቤ୒
୲ ୀଵ  (8) 

where P୧ is the RTGs network demand at the time step i; P෡is the forecasted demand at the time step 
i; N is the number of observations. 

4. Optimal Energy Controllers for RTG Crane Network 

The optimal controllers can be designed for multiple objectives compared to standard PI 
controllers or set-point algorithms. In this article, three optimisation controllers are presented to 
control the ESS as follow: 
1 Optimal energy controller with a fixed load forecast profile: a 24 hour-ahead RTG crane demand 

forecast and electricity price data are fed into the optimal control system. The control model will 
be updated once every 24 hours. As discussed previously, the RTG crane demand profile is 
volatile and nonsmooth; therefore, developing an optimal controller for an RTG crane network 
is difficult and challenging [3,10]. 

2 Model Predictive Controller: the MPC aims to minimise the peak demand and electricity cost 
by finding the optimal ESS output and using a rolling forecast model to predict the RTG cranes 
demand. In this control model, the rolling forecasting minimises the impact of forecast error 
within the day on the ESS performance compared to the previous model with fixed load 
forecasts. However, in realistic scenarios, the RTG crane demand profile includes a high level of 
uncertainty. For example, the crane electrical demand is quite variable even when the RTG is 
lifting the same container gross weight [3,11], and this is mainly due to the human behavioural 
element (crane operator) during the lifting mode. The container gross weight and numbers of 
crane moves is used in [3] as input variables for the RTG demand forecast model. 

3Stochastic Model Predictive Controller: the SMPC is designed to handle the diverse and high 
level of uncertainty of the RTGs demand and the rolling forecast error. The SMPC aims to solve 
the RTG crane energy optimisation problem under the uncertainty conditions for the forecast 
demand. In this paper, the future crane demand is modelled as a stochastic variable by 
generating several future profiles, which is in contrast to the single-point forecast profile used 
in the MPC model [11]. 

4.1. Optimal Energy Controller with a Fixed Load Forecast Profile 

The objective of the optimal controller is to minimise peak demand and energy costs for an RTG 
crane network, by finding an optimal charging regime, as described by Equation (9). The peak 

demand of the port substation is represented through max ቀ∑ P෡୧(∆t)஼ୀଶ୧ୀଵ + ∆E(t)ቁଶ
. The cost function 

in Equation (9) is optimised by generating a control signal to the ESS that aims to minimise the peak 
demand over the daily prediction horizon period subject to the ESS and RTG models described in 
Equations (10) to (12). The quadratic indices in Equation (9) are widely used in the literature and are 
the most common indices within energy and smart grid applications. Where it has a unique 
minimum, it penalises the larger deviation heavily in comparison to smaller deviation control. 
Generally, the optimal energy controllers are designed using a cost function that penalises deviation 
of a given reference point trajectory. The MATLAB MPC tool and optimisation solver has been used 
to minimise the cost function. 

 arg min∆୉   ෍ max ቌ෍ P෡୧(∆t)஼ୀଶ
୧ୀଵ + ∆E(t)ቍଶ ,୘

୲ୀଵ  (9) 

where ∆E(n) is the change in the ESS energy, ∑ P෡୧(∆t)஼ୀଶ୧ୀଵ  is a fixed RTG crane network demand 
forecast profile for day ahead, t is the current time step and T is the number of half the hour time 
steps in one day (T = 48) [9,11]. 
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In this paper, the electrical energy cost saving is equal to the amount of shifted demand from 
high to low electricity price tariffs multiplied by the difference between the high and low electricity 
tariff. The high energy tariff (Costୢୟ୷) in PoF is between 7:00 a.m. and midnight (t ୱୣ୲ = 14), and the 
lower energy tariff is during the rest of the day period (Cost୬୧୥୦୲) [10,11]. Cost (t) ≔ ൜ Costୢୟ୷ ∀ t ≥  t ୱୣ୲  Cost୬୧୥୦୲   ∀t < t ୱୣ୲ , (10) 

In this paper, the reduction in the energy cost of the network of cranes is achieved by finding 
the optimal operation of the ESS that minimises the peak demand under the following constraints: SoC(t ୱୣ୲ ) = SoC୫ୟ୶ (11) SoC(T) = SoC୫୧୬ (12) 

Under the constraints described in Equations (11) and (12), the aim is to fully charge the ESS 
during the low tariff period and fully discharge it during the high tariff period in order to achieve 
the maximum energy cost saving based on the electricity price term, Cost(t), as described in Equation 
(9). The optimal controller as a real-time controller is computationally expensive and the above 
control procedure helps to achieve the maximum cost saving and reduce the computational cost by 
simplifying the cost function. However, this procedure could affect the peak reduction term in order 
to satisfy the cost constraints. The optimal controller with a fixed load forecast in this section uses the 
peak shaving technique to achieve the minimum peak demand and electricity bill by finding the 
optimal charge and discharge schedule for the ESS which minimises the cost function in Equation (9). 
The storage device operation schedule is determined by solving Equation (9) under constraint 
Equations (11) and (12). 

4.2. Model Predictive Controller 

For an MPC controller, the model uses a rolling forecast model for the time period between t 
(current time step) and t + k, where k is the prediction horizon step and t + k ≤ T and T is the end of 
the day period T = 48, as illustrated in Figure 5. The rolling forecast model is designed to predict the 
load for one day ahead with half hourly updating procedure. The MPC controller uses the rolling 
forecast data to feed and update the MPC plan for each time step and regenerates a new future 
demand profile. The planned control moves, ∆E, are calculated from minimising a cost function as 
presented in Equation (9). The quadratic cost function has been widely used in the literature, as it is 
easy to solve and has useful theoretical properties. Generally, the MPC controller is designed using 
a cost function that penalises deviation of a given reference point trajectory. The MPC controller then 
recalculates and update the optimal control decisions for the rest of the day by solving Equation (9) 
in order to optimize the ESS actions on the RTG crane network. The previous steps are continuously 
repeated at every time step t + 1 throughout the day by using the updated forecast profile t + 1 + i and 
the ESS and crane system variables to compute the optima control signal. This control process is 
mainly referred to as the receding horizon controller [25,26], as illustrated in Algorithm 1. The current 
literature on LV network applications and microgrids [26] is increasingly investigating the benefits 
of treating the volatile demand as a stochastic element and developing a stochastic control in order 
to increase the efficiency performance of the ESS on the distribution network. In the next section the 
MPC method will be updated to consider a stochastic model predictive controller. 
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Figure 5. A simple illustration of the receding horizon used in a model predictive controller 
(MPC). 

Algorithm 1: Basic concept of MPC for RTGs network with storage device. 
1. Determine the control horizon, prediction horizon and the time step. 
2. Determine the objective function and constraints for RTGs network with ESS model. 
3. Initialise: the RTGs network, storage device and forecast. 
4. For t= 1 to T, do 

a. Solve optimal Equation (8) to find the optimal operation for the RTGs network 
with ESS, 

subject to the following constraints: 
• The RTGs crane network Equation (2). 
• Storage device model Equations (3) to (5). 
• Electrical cost saving Equations (10) to (12). 
• For (t = 1), the controller model computes the optimal solution 

based on the crane forecast profile and initial data. 
b. Find the optimal signal for (t + 1) and apply the control to the crane and ESS model. 
c. Update the crane demand forecast model for time step (t + 1) to T by regenerating 

the forecast profile with the new model information and observation. 
d. Set t = t + 1, 

5. An optimal control policy solution is achieved for the RTGs network with an ESS for the 
specific day. 

6. Repeat all steps for the next day. 

4.3. Stochastic Model Predictive Controller 

The high uncertainty in the RTG crane network and ESS applications have a significant impact 
on the performance of the energy controller. SMPC technique is a special subset of MPC algorithms 
that evaluate the objective function (Equation (9)) under uncertainty conditions. In this paper, 
generating a range of potential scenarios estimates the uncertainty in the optimisation problem by 
modelling some of the possible future scenarios. The future RTG crane demand for a day ahead, P෡ , is 
probabilistically modelled by generating M possible future demand profiles called ensembles (in this 
case, the forecast is generated using Monte Carlo realisations as inputs to an autoregressive integrated 
moving average with an explanatory variable (ARIMAX) model) [11,12]. The half hourly future RTG 
cranes demand of a day for ensemble m, where 𝑚 ∈ ሼ1, . . . . , Mሽ can be written as 
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P෡୑ = ൫P෡௠ (1), . . . . , P෡௠ (48)൯୘ ∈ ℝସ଼ (13)

The SMPC controller aims to create an optimal charge and discharge operation schedule for the 
storage device (ESS control policy) to minimise the peak demand over the M ensembles for the future 
periods t, …, T by finding the empirical mean for the cost function [10]. In SMPC, a dynamic 
programming model is used to achieve the minimum value of the cost function by controlling 
decisions at each discrete time point. This is represented in Equation (14), where J is the cost function 
from Equation (9). 

∆E∗(t, t + 1, , . . . . T) = arg min ∆୉(୲:୘) 1M ෍ J൫P෡௠, ∆E൯.୑
୫ ୀଵ  (14) 

The dynamic programming model solves the RTG crane demand problem by first minimising 
the cost function at the end of the day from N = 48 and then working backward to the t୲୦ time step. 
The cost function is updated as follow based on the dynamic programming model and the empirical 
mean tool as follows: 

J∗(୲)  = 1M ෍ max  ൜ቀP෡m (t) + ∆E(t)ቁଶ ൠ୑
୫ ୀଵ + J∗(୲ାଵ). (15) 

In Equations (16), we find the ESS control decision, ∆E, that minimise the cost function over all 
paths in the search space from t to t + 1. The main goal of using the proposed SMPC model is the 
control decision for the storage device at each time step that minimise the RTG crane demand over 
all ensembles. The chosen ESS control policy is specified as: π∗(t) = ൫∆E∗(t), ∆E∗(t + 1) , . . , ∆E∗(48)൯୘. 
The SMPC controller is computationally expensive compared to other methods, such as the set-point 
controller. Section 5.2 will investigate the complexity and computational cost of the different 
controllers. 

5. Results and Discussion 

The previous section presented optimal energy management systems for controlling an ESS in 
an RTG crane network. This section introduces a comparison analysis of these energy storage control 
strategies. The comparison aims to investigate and present the stability and robustness of the energy 
storage controllers by considering a specific RTG data set as presented in the previous section. This 
analysis is divided in two main categories: 
• Optimality for peak demand reduction and cost saving: the following section compares and 

evaluates the potential peak reduction and cost saving results for the predictive controllers 
(SMPC and MPC) with different levels of forecast accuracy, the set-point controller and the 
optimal energy controller model with perfect forecast profiles. In order to evaluate the 
predictive controllers, two future demand profiles from accurate and inaccurate forecast models 
have been used. This evaluation is significant in understanding the impact of forecast errors on 
the ESS control algorithms. 

• Complexity and computational cost: Section 5.2 presents indicators regarding the complexity of 
a practical implementation of the predictive optimal controllers. 

5.1. Analysis of Energy Storage Control Strategies 

In order to determine the appropriate optimal control decisions sequence for the ESS, the 
predictive optimal controllers (MPC and SMPC) require a rolling forecast model. Table 1 presents 
two forecast models (accurate and inaccurate models) that have been used to implement the 
predictive optimal controllers’ which were developed in [11,12]. The parameters of the energy storage 
system and energy costs are described in [11,12] and have been used in this paper to operate the 
storage device on the RTGs network. This section aims to show how the forecast error affects the 
performance of the optimal controllers. As discussed in the literature, energy storage controllers for 
LV network applications have typically been developed with full knowledge of future demand 
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[29,30] or using forecast models with relatively small errors of around 10% [26,29]. Therefore, in this 
section, accurate and inaccurate forecast models have been used to feed the optimal energy 
controllers and evaluate the impact of forecast errors on the performance of the ESS, as presented in 
Section 3. In Table 1, the MAPE decreased to 14.2% for the Artificial Neural Network (ANN) model 
(Model B) from 28.3% for Model (A) and to 17.2% for model (C) from 30.1% for the ARIMA model 
(Model D). 

Table 1. The average peak demand reduction and the mean absolute percentage error 
(MAPE) forecast errors for the model predictive controller (MPC) and the stochastic model 
predictive controller (SMPC). 

ESS 
control 
model 

Accurate forecast 
model 

MAPE 
Peak 

reduction% 
Inaccurate forecast 

model 
MAPE 

Peak 
reduction

% 
MPC ANN (Model B) 14.2% 30.2% ANN (Model A) 28.3% 20.2% 

SMPC ARIMAX (Model C) 17.2% 32.6% ARIMA (Model D) 30.1% 24.2% 

The results for the MPC and SMPC controllers are shown in Table 1. Figure 6 shows that the 
SMPC outperforms all controllers except the optimal controller which has full future knowledge, and 
thus ignores the volatile and uncertain nature of the RTG demand. The predictive controllers (MPC 
and SMPC) with receding horizon procedure and the rolling forecast model improve the energy 
storage performance considerably compared to a set-point controller when an accurate forecast is 
used. As presented in Figure 6 for the data given, the SMPC with accurate forecast improves the 
energy storage performance by increasing the peak demand reduction compared to using an 
inaccurate forecast. Furthermore, the SMPC controller achieved a 32.6% peak demand reduction 
compared to 30.2% for MPC, 23.9% for set-point and 36.1% for the optimal controller with a perfect 
load forecast. An ideal energy storage model has also been suggested as a benchmarking model 
where the ESS has infinite capacity and no charging or discharging limitations. This ideal model 
basically generates a flat demand profile, reached a highest possible peak reduction of 64.8%. 

The predictive optimal controller results, shown in Figure 6 and Table 1, demonstrate that the 
accurate forecast profile is essential in order to maximise the ESS performance by increasing the peak 
demand reduction via optimal energy controllers. For illustration, the percentage of peak reduction 
increased to 30.2% from 20.2% for the MPC and to 32.6% from 24.2% for the SMPC, when using 
accurate versus inaccurate forecasts respectively. However, the stochastic algorithms allow the SMPC 
controller using an inaccurate forecast profile to outperform the MPC and set-point control 
algorithms. The SMPC generate an ESS operation plan based on a number of future RTG demand 
scenarios, which aims to reflect and minimises the impact of the high RTG demand volatility. 

Figure 7 presents the relationship between the forecast accuracy and potential peak demand 
reduction for a predictive optimal controller (SMPC). The results in Figure 7 and Table 1 show that 
more accurate forecast models are directly related to greater peak demand reductions. The forecast 
error is a significant factor for potential energy cost saving and peak demand reduction in optimal 
energy controllers, and a high ESS performance is more likely when utilizing a more accurate forecast 
estimate [29]. However, Figure 7 shows that accurate forecast estimates do not always guarantee 
relatively high energy savings or peak reduction. This could be due to the forecast errors in some 
days of the experiment being concentrated at the peak period rather than distributed over the day. 
MAPE focuses on the mean value of the error and therefore root-mean squared errors may be 
preferable in this application. 
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Figure 6. The average percentage of peak reduction for a specific case study. 

 
Figure 7. The daily peak reduction for the SMPC controller over different forecast accuracy 
level. 

The cost function used in the optimal energy control models aim to reduce the electricity costs 
and create substantial peak reduction in the RTGs network using the electrical tariff term and peak 
shifting strategy. Table 2 presents the annual cost saving in the Port of Felixstowe, UK for the 
proposed control strategies based on the data collected from the port. However, clearly it is difficult 
to extrapolate to the full year, but the results are expected to be similar as crane operation is 
continuous throughout the year, as discussed in Section 3. The SMPC achieves annual cost savings 
of around 7.9% when utilising accurate forecasts, this cost saving is near the maximum possible 
energy cost savings of 8.01%. Similar to the peak demand reduction results, the optimal controller 
with accurate forecasts improves the ESS performance by increasing the cost savings with an 
improvement of 19% on average compared to the control models with inaccurate forecasts. For 
example, the percentage of annual cost saving decreased to 5.88% from 7.26% for the MPC and to 
6.69% from 7.98% for the SMPC, when using inaccurate versus accurate forecasts respectively. 
Furthermore, the peak demand reduction on the RTGs network infrastructure introduces extra 
economic and technical benefits. As presented in Figure 6, all predictive optimal controllers utilizing 
an accurate forecast model outperform the standard set-point controller. In RTGs networks, the set-
point controller usually depletes the stored energy quickly at insignificant earlier peaks. However, 
RTG demand is highly stochastic and thus the peak demands are randomly distributed over the 24 
hours a day. On the other hand, the resulting improvement for optimal controllers is due to the high 
energy costs at peak demand periods (during the latter half of the day). Furthermore, the rolling 
forecast model in MPC and SMPC controllers help to increase the peak reduction even more and 
increase the robustness of the controllers by better reacting to the most recent demand changes.   
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Table 2. The percentage of annual electric energy cost saving to the annual electricity 
energy bill. 

Controller 
 Percentage of cost saving 

No forecast/ perfect forecast Accurate Inaccurate 
Set-point 5.47 - - 

Optimal controller with perfect forecast 8.01 - - 
MPC - 7.26% 5.88% 

SMPC - 7.98% 6.96% 

5.1.1. Results and Discussion for Optimal ESS Controllers 

The results for the predictive controllers (MPC and SMPC) based on the accurate forecast models, 
set-point, and an optimal controller with fixed demand forecast are presented in Figure 8. Each box plot 
in Figure 8 presents the distribution of daily peak reductions for RTGs network with ESS. The box plot of 
the SMPC controller shows that the stochastic model outperforms all other energy controllers with a 
median peak reduction of around 33%. As seen in Figure 8, the set-point controller peak reduction box 
plot overlaps with other optimal controllers, and this is related to the high forecast error that affects the 
ESS performance for the optimal controller. However, optimal controllers using accurate forecast models 
show a better performance compared to the standard set-point controller. In receding horizon controllers 
with rolling load forecast models, the ESS performance is further increased over the full day time 
compared to the set-point controller or the optimal model with a fixed daily load forecast. 

 
Figure 8. The distribution of the daily peak demand reduction as box plot achieved by 
predictive controllers, optimal energy controller with fixed load forecast and set-point 
controller. 

5.2. Complexity and Computational Cost 

The MPC and SMPC algorithms with rolling forecast model allow use of the updated 
information of the forecast and RTGs network models data for each time step to generate the 
operation plan for the ESS. The rolling forecast models allow one to update to the control process as 
new information becomes available and thus reduce the impact of the forecast error and volatile 
behaviour of RTG demand on the ESS performance. The results of the receding horizon controllers 
showed decreased energy costs and increased peak reduction, compared to the standard set-point 
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controller. However, for MPC and SMPC, the larger the control horizon size the higher the 
complexity and computational cost, but this also increases the possibility of reducing the daily peak 
demands as it encapsulates those which occur later in the horizon window. Small horizon windows 
reduce the computational cost but will decrease the possibility of reducing the maximum daily peak. 

Furthermore, the MPC and SMPC controller must calculate the optimal operation plan every 
updated time step for the ESS by using the new available observations. Therefore, the SMPC and 
MPC has an additional cost compared to the set-point and fixed optimal controllers. In addition, the 
MPC and SMPC controllers require more technical skills and training processes to implement 
compared to set-point control, which is wildly used and tested in port energy saving applications. 

5.2.1. SMPC and the Computational Effort 

The performance of the SMPC must be considered in relation to the computational effort of the 
controller. The computational effort (total time duration) of the control simulation can be significant 
when the controller is developed and designed for a daily cycle where the optimisation process needs 
to be calculated at every time step. In the SMPC, the total computational cost relies on the number of 
RTG demand forecast scenarios, as shown in Table 3. More ensembles generally mean more possible 
scenarios are modelled, and hence the controller is more likely to be optimised. In daily optimisation 
with half hourly time step updating, each computational step for the model needs to be finished in 
approximately less than 30 sec, which for 48-time step will sum up to 25 minutes, Equation (16) [30]. t୲୭୲  =  N tୱ + tୢ, (16) 

where t୲୭୲ is the total duration of time for the simulation, tୱ is the time for each step, N the number 

of the time steps during the day (N = 48) and tୢ is the time duration for data cycling (tୢ = 2 minutes). 
The SMPC model with 5 and 10 demand future scenarios is finished within the required time 

duration frame (≤25 minutes). The average of the total time duration is 10.8 and 18.8 minutes for the 
SMPC model with 5 and 10 demand future scenarios options, respectively. There are a few 
simulations that exceed the time limit (30 sec) for the 10 demand future scenarios case with maximum 
time (33 sec). However, the sum up of time for this case was 28.4 minutes which is still within the half 
hour time. The SMPC with the option of 15 demand future scenarios exceed the total duration limit 
and requires on average 30.8 minutes. Therefore, the number of demand future scenarios chosen was 
10 for the SMPC model in Section 4.3, where the model simulated within the time frame and included 
the highest possible number of future demand scenarios. The model was run on PC Windows 8.1 
with Intel(R) i5-4590 @ 3.3GHz processer with 8 GB RAM. However, a faster computer will reduce 
the computational time and improve the practicality of implementing the model. In addition, a higher 
data resolution such as minute of seconds will introduce more computational cost in the forecast 
model and the SMPC controller due to the large window size for peak reduction and cost saving over 
a day. 

Table 3. The computational effort for SMPC. 

Number of forecast 
demand scenarios 

Average simulation 
duration (sec) 

Maximum simulation 
duration (sec) 

5 11 25 
10 21 33 
15 36 49 

6. Conclusions 

In this paper, the ESS performance analysis and comparison of different optimal energy control 
strategies have been presented and discussed. Different RTG demand forecast scenarios were used 
to evaluate the stability and robustness of the proposed optimal controllers. Energy cost savings and 
peak demand reduction were calculated to present the performance of each control strategy. The 
MPC and SMPC controllers showed operational improvements over the standard set-point control 
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algorithm. This improvement relies on the forecast model’s accuracy, which is a significant factor in 
increasing the potential peak reduction in optimal controllers, and generally, more accurate forecasts 
are more likely increase peak reduction. Furthermore, each of the proposed control strategies has a 
number of advantages and drawbacks which were also discussed. 

The performance of the energy storage system has been compared based on the specification 
and characteristics of different proposed control strategies. The set-point controller was too sensitive 
to the reference value compared to other control methods which were sensitive to the cost function 
and accuracy of the forecast profile. Overall, the SMPC outperforms other controllers and shows the 
best performance in terms of energy costs and peak reduction. The SMPC controller option was thus 
shown to be a potentially economically viable solution for peak demand reduction with much better 
performance compared to all other methods considered for the data given. 
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Abbreviation 

The following abbreviation are used in this paper 

RTG Rubber tyre gantry 
MPC Model predictive control 
SMP Stochastic model predictive control 
ESS Energy storage system 
LV Low voltage 
MV Medium voltage 
PI Proportional integral 
PoF Port of Felixstowe 
ARIMAX Autoregressive integrated moving average with explanatory variable 
SoC State of charge P(t) Power demand (RTG crane) D(t) Power grid at time t P෡(t) Estimated crane demand at time t ∆E(t) The stored energy in the ESS at time t SoC୫ୟ୶ Greatest stored energy SoC୫୧୬ Lowest stored energy Cost (t) Represent the real-time electricity cost at Port of Felixstowe 𝐶𝑜𝑠𝑡− 𝑑𝑎𝑦 

The electricity price during daytime (07:00 to 24:00) Cost− night 
The electricity price during night-time (24:00 to 7:00) 
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