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Abstract: Failures of cast-resin transformers not only reduce the reliability of power systems, but also
have great effects on power quality. Partial discharges (PD) occurring in epoxy resin insulators of
high-voltage electrical equipment will result in harmful effects on insulation and can cause power
system blackouts. Pattern recognition of PD is a useful tool for improving the reliability of high-voltage
electrical equipment. In this work, a fuzzy logic clustering decision tree (FLCDT) is proposed to
diagnose the PD concerning the abnormal defects of cast-resin transformers. The FLCDT integrates
a hierarchical clustering scheme with the decision tree. The hierarchical clustering scheme uses
splitting attributes to divide the data set into suspended clusters according to separation matrices.
The hierarchical clustering scheme is regarded as a preprocessing stage for classification using a
decision tree. The whole data set is divided by the hierarchical clustering scheme into some suspended
clusters, and the patterns in each suspended cluster are classified by the decision tree. The FLCDT
was successfully adopted to classify the aberrant PD of cast-resin transformers. Classification results
of FLCDT were compared with two software packages, See5 and CART. The FLCDT performed much
better than the CART and See5 in terms of classification precisions.

Keywords: cast-resin transformers; abnormal defects; partial discharge; pattern recognition;
hierarchical clustering; decision tree

1. Introduction

The power transformer is an important equipment in a power system, which directly affects the
safety of the power station and the safe operation of the power grid. Among them, the cast-resin
transformer provides the products numerous excellent characters such as low no-load loss, oilless,
anti-flaming, maintenance-free, good moisture resistance and crazing resistance, etc. The cast-resin
transformer is perfectly matched to the requirement on inflammable and explosive site such as
commercial center, high-tech factory, hospital, underground, airport, train station, tower building,
industrial and mining enterprise, etc. Disturbances of power quality will result in significant financial
consequences to network operators and customers. Since many uncertainties are involved, it is
difficult to obtain exact financial losses due to poor power quality. Therefore, online monitoring of the
cast-resin transformers has been an important challenge for power engineers. Failures of cast-resin
transformers not only reduce reliability of power system, but also have great effects on power quality.
Power engineers are devoted to intensifying diagnosis on the cast-resin transformer for discovering
hidden troubles timely and guaranteeing the normal operation of the cast-resin transformer. Partial
discharge (PD) is one of the main causes which leads to internal insulation deterioration of the
cast-resin transformer. Online monitoring of PD can reduce the risk of insulation failure of cast-resin
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transformers [1]. There are many methods, such as ultrasound, acoustic emission, electrical contact,
optical and radio frequency sensing, could be used to detect and locate PD in a cast-resin transformer [2].
For electrical detection, UHF antenna is widely used in the PD measurements because it is more
sensitive than other methods with regard to the noise issue.

PD is a localized electrical discharge that occurs repetitively in a small region. In general, PD
can be categorized into six forms from their occurring causes: corona discharge, surface discharge,
internal discharge, electrical tree, floating partial discharge and contact noise. Corona discharge takes
place at atmospheric pressure in the presence of inhomogeneous fields. Surface discharge appears
in arrangements with tangential field distribution along the boundary of two different insulation
materials. Internal discharge occurs within cavities or voids inside solid or liquid dielectrics. Electric
trees occur at points where gas voids, impurities, mechanical defects or conducting projections cause
excessive local electrical field stresses within small regions of the dielectric. Floating PD occurs when
there is an ungrounded conductor within the electric field between conductor and ground. Contact
noise occurs if the ground connection to a bushing is poor.

PD occurs in high-voltage electrical equipment, such as cables, transformers, motors and generators.
It is a kind of very small spark that occurs due to a high electrical field. Since a PD occurring in
high-voltage electrical equipment has a specific pattern, pattern recognition of PD is a useful tool for
improving the reliability of high-voltage electrical equipment [3]. With the development of electricity,
the PD diagnosis is a useful tool for evaluation of the cast-resin transformer and prevention of the
possible failures. It is essential to determine the different types of faults by PD diagnosis to estimate
the likely defect type and severity. The use of PD pattern recognition can identify potential faults and
inspect insulation defects from the measured data. Then, the potential effects are used to estimate
the risk of insulation failure in high-voltage electrical equipment. This information is important to
evaluate the risk of discharge in the insulation. PD pattern recognition in the past depended on expert
judgments for classification and defect level determination. Such a process is unscientific and needs
professional experience from years’ practice.

To date, artificial intelligent techniques were adopted for pattern recognition and classification of
PD. Mor et al. used the cross wavelet transform to perform automatic PD recognition [4]. The wavelet
analysis has been regarded as a promising tool to denoising and fault diagnosis, however it is difficult
to determine the composition level that yields the best result. Gu et al. proposed a fractional Fourier
transform-based approach for gas-insulated switchgear PD recognition [5]. Ma et al. proposed a fractal
theory-based PD recognition technique for medium-voltage motors [6]. However, some clusters of PD
patterns are very close in the fractal map, which may result in incorrect identification.

As a more scientific approach, machine learning technique for PD recognition is utilized to bypass
human errors [7].

There exist numerous machine learning techniques for the pattern recognition of PD such as the
artificial neural network [8], clustering [9,10], support vector machine [11] and deep learning [12–14].
The artificial neural network constitutes an information processing model which contains empirical
knowledge using a learning process. However, it is computationally expensive and lack of rules
for determining the proper network structure. The clustering technique is set up based on the
stream density and the clustering theory, however the zero-weight problem exists in the general
clustering approach. The support vector machines belong to supervised learning techniques based on
statistical learning theory which may be applied for PD pattern recognition, however the classification
performance of SVM is conveniently affected by the setting of parameters. Deep learning was
successfully applied in pattern recognition and image segmentation, however it is a challenging task
due to the limited data availability.

The contribution of this work is to develop a fuzzy logic clustering decision tree (FLCDT) to classify
the abnormal defects of cast-resin transformers. Fuzzy logic methods have been successfully applied
to many applications in renewable energy. Liu et al. developed an ultra-short-time forecasting method
based on the Takagi–Sugeno fuzzy model for wind power and wind speed [15]. In [16], an offline time
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series forecasting approach with an adaptive neuro-fuzzy inference system was conducted for electrical
insulator fault forecast. Wang et al. proposed a fuzzy hybrid model to evaluate the energy policies
and investments in renewable energy resources [17]. Thao et al. presented an improved interval
fuzzy modeling technique to estimate solar photovoltaic, wind and battery power in a demonstrative
renewable energy system under large data changes [18].

A 60-MVA cast resin transformer with a rated voltage of 22.8 kV is used in this study. The IEC
60,270 standard [19] is utilized to perform an off-line PD measurement on electrical equipment.
The training dataset has three continuous attributes and three abnormal defects. Three continuous
attributes are the number of discharge (n) over the chosen block, discharge magnitude (q) and the
corresponding phase angle (φ) where PD pulses occur. Three abnormal defects are failure in S-phase
cable termination, failure in R-phase cable and failure in T-phase cable termination. The FLCDT
integrates a hierarchical clustering scheme with the decision tree. The hierarchical clustering scheme
uses splitting attributes to divide the data set into suspended clusters according to a separation matrix
and fuzzy rules. The suspended clusters consist of more than one pattern, which can be further
classified by the decision tree [20].

In the remaining part of the study, the Section 2 is used to present the fuzzy logic clustering
decision tree. Section 3 introduces the PD measurements of cast-resin transformers and describes the
pattern recognition of PD. In Section 4, the FLCDT is applied to classify the aberrant PD of cast-resin
transformers and compared with two software packages, See5 and CART. Finally, Section 5 makes
a conclusion.

2. The Fuzzy Logic Clustering Decision Tree

2.1. Motivation

Since the number of possible attributes and the number of classes are rather large, data mining
techniques have been receiving increasing attention from the research community. For example, the fault
detection of the ion implantation processes is a challenging issue in semiconductor fabrication because
of the large number of wafer recipes. Fuzzy-rule-based classification algorithms [21,22] have received
significant attention among researchers due to a finer fuzzy partition and good behavior in the real-time
databases. These advantages may be suppressed if the number of attributes and number of classes
become large, a finer partition of fuzzy subsets is required and results in a large size of the fuzzy-rule
sets. To resolve this disadvantage, the main characteristic of the developed method is to divide the
classes into specific clusters to accomplish a finer partition of fuzzy subsets. Figure 1 illustrates an
eight-class example of cluster splitting, which is divided into four suspended clusters. In each cluster,
the recognizability now is four times larger than the original structure. Thus, the approach not only
can achieve higher classification accuracy, but also spend less computational complexity.

Energies 2020, 13, x FOR PEER REVIEW 3 of 19 

 

In [16], an offline time series forecasting approach with an adaptive neuro-fuzzy inference system 

was conducted for electrical insulator fault forecast. Wang et al. proposed a fuzzy hybrid model to 

evaluate the energy policies and investments in renewable energy resources [17]. Thao et al. 

presented an improved interval fuzzy modeling technique to estimate solar photovoltaic, wind and 

battery power in a demonstrative renewable energy system under large data changes [18]. 

A 60-MVA cast resin transformer with a rated voltage of 22.8 kV is used in this study. The IEC 

60,270 standard [19] is utilized to perform an off-line PD measurement on electrical equipment. The 

training dataset has three continuous attributes and three abnormal defects. Three continuous 

attributes are the number of discharge (n) over the chosen block, discharge magnitude (q) and the 

corresponding phase angle ( ) where PD pulses occur. Three abnormal defects are failure in S-phase 

cable termination, failure in R-phase cable and failure in T-phase cable termination. The FLCDT 

integrates a hierarchical clustering scheme with the decision tree. The hierarchical clustering scheme 

uses splitting attributes to divide the data set into suspended clusters according to a separation matrix 

and fuzzy rules. The suspended clusters consist of more than one pattern, which can be further 

classified by the decision tree [20]. 

In the remaining part of the study, the Section 2 is used to present the fuzzy logic clustering 

decision tree. Section 3 introduces the PD measurements of cast-resin transformers and describes the 

pattern recognition of PD. In Section 4, the FLCDT is applied to classify the aberrant PD of cast-resin 

transformers and compared with two software packages, See5 and CART. Finally, Section 5 makes a 

conclusion. 

2. The Fuzzy Logic Clustering Decision Tree 

2.1. Motivation 

Since the number of possible attributes and the number of classes are rather large, data mining 

techniques have been receiving increasing attention from the research community. For example, the 

fault detection of the ion implantation processes is a challenging issue in semiconductor fabrication 

because of the large number of wafer recipes. Fuzzy-rule-based classification algorithms [21,22] have 

received significant attention among researchers due to a finer fuzzy partition and good behavior in 

the real-time databases. These advantages may be suppressed if the number of attributes and number 

of classes become large, a finer partition of fuzzy subsets is required and results in a large size of the 

fuzzy-rule sets. To resolve this disadvantage, the main characteristic of the developed method is to 

divide the classes into specific clusters to accomplish a finer partition of fuzzy subsets. Figure 1 

illustrates an eight-class example of cluster splitting, which is divided into four suspended clusters. 

In each cluster, the recognizability now is four times larger than the original structure. Thus, the 

approach not only can achieve higher classification accuracy, but also spend less computational 

complexity. 

 

Figure 1. Cluster splitting in an eight-class example. 

Since the cluster can be further classified by data mining techniques, the concept of clustering of 

the proposed method is hierarchical. The hierarchical concept had been adopted fairly widely in 

various classification methods, including the hierarchical decision trees [23,24], hierarchical Bayesian 
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Since the cluster can be further classified by data mining techniques, the concept of clustering
of the proposed method is hierarchical. The hierarchical concept had been adopted fairly widely in
various classification methods, including the hierarchical decision trees [23,24], hierarchical Bayesian
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networks [25,26] and hierarchical neural networks [27,28], to improve the computation time and
accuracy of classification. Accordingly, the FLCDT scheme is proposed to achieve a finer fuzzy partition
without expensive computation. The motivation of the FLCDT is to measure the distance between two
classes of an attribute. A separability factor is used to decide whether the two classes belong to the
same cluster or not. After performing the FLCDT, a cluster spanning tree containing a cluster leader
and some suspended clusters will be constructed. A cluster leader is the root of the cluster spanning
tree. The classes in any suspended cluster is much less than the cluster leader. The flow diagram of the
FLCDT scheme is displayed in Figure 2.
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2.2. Splitting Cluster

2.2.1. Separation Matrix Based on the Chebyshev Inequality

Since not all the attributes are indispensable to separate classes, a specified criterion can be used
to select few critical and effective ones to split clusters. The attribute values for members in the given
training data spread over a specific range with a particular probability density function. Thus, the
overlapping degree of the attribute values is used to decide the separability between two classes.
For instances, Figure 3 shows two classes Ci and C j for the kth attribute are separable, while Figure 4
shows two classes are not separable.
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The separability factor is used to determine whether two classes Ci and C j for the kth attribute are
separable or not, which is defined as

S(Ci, C j)k =

{
0, if Ci and C j are separable for the kth attribute,
1, otherwise.

(1)
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classes Ci and C j are more easily separable as illustrated in Figure 5. Thus, a threshold value p̂ can be
used to determine the separation factor for two classes Ci and C j.
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Now, the separation matrix for the kth attribute is defined as [S(Ci, C j)k], whose (i, j)th element
is S(Ci, C j)k.

2.2.2. Divide Cluster

To select the classes which are belong to a same cluster, a separability graph according to the
separability matrix [S(Ci, C j)k] is constructed. Regarding a class as a node, [S(Ci, C j)k] is treated as an
incidence matrix of the kth attribute. If S(Ci, C j)k = 1, two nodes Ci and C j are connected by an arc.
The separability graph contains several disjoint connectivity sub-graphs. A connectivity sub-graph
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indicates a cluster, and the amount of disjoint connectivity sub-graphs is the number of suspended
clusters which are obtained by the kth attribute. For example, Figure 6 shows a separability graph,
which is constructed according to the separability matrix shown in Figure 7. The separability graph has
two clusters, the first one comprises classes 1, 2, 3 and 4, and the other comprises classes 5, 6, 7 and 8.
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2.3. Selection of Crucial Attributes

It is possible that all classes are not separable using an attribute. The separability graph may be a
connectivity graph using this attribute. Thus, an attribute which can divide all classes into at least
two clusters is defined as a crucial attribute (CA). Since there are several CAs in the training data,
a disjoint cluster obtained using some CA can be further divide using other CA. This is the reason
that we claim the proposed cluster splitting is a hierarchical cluster splitting. Because the priority of
CAs utilized to split the classes will influence the classification accuracy, we describe the procedures
of the hierarchical cluster splitting as below. First, the set of overall classes is defined as the cluster
leader Cr0. After successively applying two CAs, say CA1 and CA2, to Cr0, the connectivity is resulted
from the conjunction operation of [S(Ci, C j)k1

] and [S(Ci, C j)k2
], where k1 and k2 represent the selecting

attribute of CA1 and CA2, respectively. The conjunction operation of two matrices is defined as the
(i, j)th entry of [S(Ci, C j)k1

] ∧ [S(Ci, C j)k2
] is performed by Boolean algebra, S(Ci, C j)k1

∧ S(Ci, C j)k2
.

Figure 8 displays a typical cluster spanning tree of m CAs, where CAi represents the CA used in the ith
level, L is the number of clusters in the first level, and nL denotes the number of clusters in the second
level of the cluster CL. The suspended cluster (SC) is a cluster obtained from the last CA in the CA
priority sequence or contains only one class.

For any priority sequence of CAs, the number of SCs in the cluster spanning tree are the same.
However, an improper splitting of former clusters will affect the accuracy of the latter cluster splitting
along the path of cluster spanning tree. For example, Figures 9 and 10 show the separability matrices
of a classification problem with 8 classes, C1~C8 and two attributes, k1 and k2. If the k1 attribute is used
first to split the 8 classes in Figure 9, there are three clusters after splitting. One comprises 1 class, and
the other two comprise 3 and 4 classes. If the k2 attribute is used first to split the 8 classes in Figure 10,
there are four clusters after splitting and each cluster contain 2 classes. The k2 attribute is chosen to
split the cluster leader because it results in more SCs.
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To describe the criterion, we define Lk and nk,l(Cr j) as the amount of SCs and the amount of
classes in the lth SC obtained by the kth attribute to divide the cluster Cr j, respectively. The criterion
for selecting the attribute k to divide Cr j is

minυk(Cr j) =
1
Lk
×


 Lk∑

l=1

(
nk,l(Cr j) − nk,l

(
Cr j

))2
/(Lk − 1)

+ 1

 (3)

where nk,l
(
Cr j

)
=

Lk∑
l=1

nk,l
(
Cr j

)
/Lk is the average amount of classes in the obtained SCs. Obviously, the

attribute will result in more SCs if it has a smaller variation concerning the number of classes in the
SCs. This attribute is the CA that we seek. Consider the separability matrices shown in Figures 9
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and 10, if the k1 attribute is used to divide the cluster first, there are three SCs. One comprises one class
the other two comprise three and four classes. The value of υk1

(Cr0) is 1.11. If the k2 attribute is used
first, there are four SCs and each SC comprises two classes. The value of υk2(Cr0) is 0.25. Since the
value of υk2(Cr0) is the smallest, the k2 attribute is chosen to split Cr0.

Now, the algorithm (Algorithm 1) to determine the priority of CAs for constructing the cluster
spanning tree is described below.

Algorithm 1: Determine the priority of CAs

Step 1: Use the training data set to calculate the separation matrix for each attribute. Configure the set of
Non-Split Clusters (NSC) = {Cr0}.

Step 2: Determine the splitting attribute k according to equation (3) for each cluster in NSC, then use this
attribute to divide the clusters and move these SCs into NSC.

Step 3: Remove the clusters which was divided and those cannot be divided by any attribute.
Step 4: If NSC = ϕ, stop; else, go to Step 2.

2.4. The Hierarchical Clustering Scheme

The hierarchical clustering scheme has two phases: the training phase for generating the fuzzy
logic rules and the classifying phase to classify a new data pattern. In the training phase, a data set
with predetermined SCs is given. The fuzzy logic rules are generated according to the given data
patterns. In the classifying phase, a fuzzy inference mechanism is utilized to classify an unknown data
pattern according to the fuzzy logic rules.

2.4.1. The Fuzzy Rules Generation

Consider a given training data set for a non-SC cluster Cr j in the cluster spanning tree, an attribute
ki can split the cluster into SCs. The g given data patterns for attribute ki are denoted as xp

ki
, p = 1, . . . , g,

with M known SCs, SCr j1, . . . , SCr jM. These g data patterns are trained to split the non-SC cluster Cr j.
The fuzzy if-then rule [30,31] is defined as follows.

Ri: If xp
ki

is AI
i , then xp

ki
belongs to SCr ji with CFI

i , where I denotes the amount of fuzzy subsets, AI
i

denotes the ith fuzzy subset, i = 1, . . . , I, SCr ji represents the consequent, which is one of the M SCs
and CFI

i denotes the certainty grade of rule Ri.
Let µi(·) represent the membership function of (·) with respect to the fuzzy subset AI

i . Therefore,
µi(x

p
ki
) can be treated as a compatibility grade of xp

ki
corresponding to AI

i . Define

βSCr jl(Ri) =
∑

xp∈SCr jl

µi(x
p
ki
) (4)

as the sum of compatibility grade for SCr jl corresponding to AI
i . The generation of fuzzy logic rules to

split cluster Cr j is summarized as follows.
The step-wise process of the Algorithm 2 is given below.
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Algorithm 2: Generate the fuzzy rules

Step 1: Given the g training data xp
ki

, p = 1, . . . , g and the splitting attribute ki for cluster Cr j with M known
SCr jm, m = 1, . . . , M and set i = 1.

Step 2: Compute the sum of compatibility grade for SCr jm, m = 1, . . . , M, by (4).
Step 3: Determine the SCr jx with the maximum sum of compatibility grade

βSCr jx (Ri) = max
{
βSCr j1 (Ri), . . . , βSCr jM (Ri)

}
(5)

Step 4: Calculate the certainty grade CFi of rule Ri

CFi =
(
βSCrix (Ri) − β(Ri)

)
/

M∑
m=1

βSCr jm (Ri) (6)

where β(Ri) =
∑

SCr jm,SCr jx

βSCr jm (Ri)/(M− 1) denotes the mean of the sum of compatibility grade for the

rest SCs corresponding to AI
i .

Step 5: If i = I, then stop; else, set i = i + 1 and go to Step 2.

The hierarchical clustering scheme (Algorithm 3) is summarized as follows.

Algorithm 3: Hierarchical clustering scheme

Step 0: Set the threshold value p̂.
Step 1: Calculate µk

i and σk
i and determine [S(Ci, C j)k] for attribute k.

Step 2: Use Algorithm I to determine the priority sequence of CAs for constructing the cluster spanning tree.
Step 3: Apply Algorithm II to create the fuzzy if-then rules.

2.4.2. The Classification Processes

After creation of the fuzzy if-then rules for each cluster, we can identify a new data pattern to a
suitable SC. Let x′k j represent the k j attribute value of a new data pattern at cluster Cr j. The weighted
certainty grade of x′k j corresponding to the SCr jm is defined as αSCr jm =

∑
Ri

µ(x′k j) ·CFI
i , which sum of

the multiplication of the compatibility grade of x′k j corresponding to AI
i and the certainty grade of all

fuzzy rules Ri. Therefore, the classification processes are stated below.
Classification Processes: The SC has the maximum weighted certainty grade of x′k j is the desired

cluster SCr jl, i.e., SCr jl = arg(max
{
αSCr j1 , . . . ,αSCr jM

}
).

The step-wise procedure of the Algorithm 4 is explained below.

Algorithm 4: Classification

Step 1: Configure Current Cluster (CCr)=Cr0 and given the new data pattern x′.
Step 2: The cluster SCr jl with maximum weighted certainty grade of x′k j is the desired cluster of x′.

Step 3: Classify x′ into a SC (SCr jl). If the SCr jl is not a SC, then set CCr=SCr jl and repeat step 3; else, stop.

2.5. Classify the Suspended Cluster Using C4.5

Decision trees is one of the more popular classification algorithms being used in classification
problems, which provides a good visualization that helps in decision making. The entropy-based
algorithms which build multi-way decision trees, such as ID3 and C4.5 [32], are the most commonly
used classification models designed for structured data. The Gini index based crisp decision tree
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algorithms, such as CART [33], Quest [34] and SLIQ [35], applies a numerical splitting criterion to build
binary decision trees. C4.5 utilizes a minimum number of significant rules and some minor rules for
classification. C4.5 has the characteristic of the instability such that few variations of data can produce
significant differences on the model [20]. However, the run-time complexity of the C4.5 corresponds to
the tree depth, which is related to the number of training examples. To overcome the drawback of the
C4.5, a hierarchical clustering scheme is utilized as a preprocessing stage for classification. The whole
data set is divided by the hierarchical clustering scheme into a SC and the patterns in the SC is classified
using the C4.5. Since the number of patterns in the SC is reduced, the run-time complexity of the C4.5
can be resolved.

C4.5 is also composed of training phase and classifying phase. The goal of training phase is to
construct a decision tree and determine the splitting condition in each node. The critical attribute with
the largest gain ratio is chosen as the splitting attribute to make the decision. C4.5 prunes trees after
creation in an attempt to discard branches that are not helpful and replaces them with leaf nodes.

The mathematical basis of the C4.5 is described below. Let K denote the number of attributes
and T =

{
x1, x2, . . . , xg

}
denote the given training data set, where xg = (xg

1 , xg
2 , . . . , xg

K) is a data pattern
and xg

k denotes the kth attribute value of xg. Let N denote the number of classes and Ci denote the

ith class. The probability of a data pattern selected from T which belongs to Ci is pi =
|Ci |
|T| , where |Ci|

denote the amount of data patterns in Ci. The information conveyed by a probability distribution
P = (p1, p2, . . . , pN) is called the entropy, which is defined as

I(T) = −
N∑

i=1

pi∗ log2(pi) (7)

The value of I(T) measures the uncertainty associated with the probability distribution.
The expected information requirement to partition T into n subsets is

I(ak, T) =
n∑

i=1

|Ti|

|T|
× I(Ti) (8)

where T1, T2, . . . , Tn denote the partition of T using the kth attribute, ak. The value of G(ak, T) represents
the expected reduction in entropy due to sorting on ak, which is defined as

G(ak, T) = I(T) − I(ak, T) (9)

C4.5 chooses the splitting attribute based on the gain ratio R(ak, T), which is defined as follows.

R(ak, T) =
G(ak, T)
SI(ak, T)

(10)

where SI(ak, T) is the split information, which can be obtained by

SI(ak, T) = −
n∑

i=1

|Ti|

|T|
× log2

(
|Ti|

|T|

)
(11)

The partition values of a continuous attribute ak are first, arranged in ascending order, a1
k , a2

k , . . . , am
k .

For each partition value a j
k, j = 1, 2, . . . , m, the data patterns are partitioned into two sets. The first

one contains the values less than or equal to a j
k and the other one contains the parts greater than a j

k.

We compute the R(a j
k, T) for each partition value a j

k, then select the best partition value such that the
gain ratio is maximized.
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3. Abnormality Detection of Cast-Resin Transformers

3.1. Matrix Transformation of 3D PD Patterns

Figure 11 shows a typical 2D PD patterns, where the horizontal axis represents the discharge
phase angle ranging from 0◦~360◦, the vertical axis represents the size of the discharge ranging from 0
pC~60 pC and the point is the discharge signal.
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Figure 11. Typical 2D partial discharges (PD) pattern.

Figure 12 shows a typical 3D PD pattern. The key attributes of typical 3D PD patterns include
phase angle (φ), discharge magnitude (q) and number of discharges (n). In the data sets, the format of
different categories may not be the same as expected. To meet the data formulation of FLCDT, data
transformation for 3D PD pattern is necessary. Figure 13 shows the three steps of data transformation
for 3D PD pattern. In step 1, the 3D PD pattern is transformed into a 360 × 60 matrix, where the row
index indicates the phase angle and column index indicates discharge magnitude and the elements on
the matrix is the number of discharges. In step 2, the original sparse matrix is compressed into a dense
matrix after removing all the zero elements in each row. In step 3, feature vectors of the 3D PD pattern
are extracted from the dense matrix. Each feature vector also consists of three key attributes, which are
phase angle, discharge magnitude and number of discharges. Thus, the dimension of a feature vector
is 3. For example, the first and last feature vector for the 3D PD pattern shown in Figure 13 are [19, 74,
22] and [301, 15, 25], respectively.
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3.2. 3D PD Patterns Characteristics

There are four kinds of PD patterns used in this work, which are failure in S-phase cable termination,
failure in R-phase cable, failure in T-phase cable termination and normal operation. Figure 14 shows
the 3D PD pattern of failure in S-phase cable termination. Most of the discharges are between 50–70 pC.
Figure 15 shows the 3D PD pattern of failure in R-phase cable. Most of the discharges are between
20–55 pC and the phase angle is widely distributed. Figure 16 shows the 3D PD pattern of failure in
T-phase cable termination. Most of the discharges are between 10–35 pC. Figure 17 shows the 3D PD
pattern of normal operation. Most of the discharges are between 10–25 pC. After applying the three
steps of data transformation for 3D PD pattern, we can obtain the feature vectors of the corresponding
3D PD pattern. Then, the Algorithm I is utilized to determine the priority of CAs using the training
feature vectors to construct the cluster spanning tree.
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4. Experiment Results and Comparison

This work uses data collected by a well-known foundry company in Taiwan. A PD measurement
based on the IEC 60,270 standard was performed on a 60-MVA cast resin transformer with a rated
voltage of 22.8 kV. Three RF sensors are installed near the surfaces of the power transformer to detect
the PD signals. The positions of RF sensors are adjusted to obtain the same performance. Three phase
voltages are obtained from voltage output. Phase voltage and three PD signals are connected to a
4-channel oscilloscope to identify where the PD occurs. The R-S-T sensors capture the PD signal and
send them to the scope through three wideband RF cables. The phase voltages are adjusted to measure
the PD from the power transformer.

Table 1 shows the three attributes used in the PD detection, which are phase angle (φ), discharge
magnitude (q) and number of discharges (n). Table 2 lists the four classes of PD patterns, which are
failure in S-phase cable termination, failure in R-phase cable, failure in T-phase cable termination and
normal operation. Three cable defects were created artificially on the cable prior to the cable joints
installation. Each PD pattern is experimented on 40 times. In total, this experiment produced 160 sets
of PD patterns, 128 of which are for training and 32 of which are for testing. Each class has 32 training
patterns and 8 testing patterns. After three steps of data transformation, 84,368 feature vectors were
used for training and 21,092 feature vectors were used for testing. After applying Algorithm I, the CA
utilized to split the root cluster is the charge pC. Three threshold values p̂ = 0.5, 0.7 and 0.9 were used
in Algorithm III. The FLCDT was compared with two software packages, See5 and CART. See5 is a
data mining tool to extract informative patterns from data and assemble them into classifiers to make
predictions [36]. See5 is developed based on the C4.5 to operate on large databases and incorporate
innovations such as boosting. The classification and regression tree (CART) in the classification toolbox
for MATLAB was utilized to compare the accuracy [37]. CART selects the best decision split that
maximizes the improvement in Gini index over all possible splits of all predictors.

Table 1. Three attributes used in the PD pattern recognition.

Notation Attribute

k1 Phase angle
k2 Charge pC
k3 Cycle Number
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Table 2. Four kinds of PD patterns.

Notation PD Pattern

1 Failure in S-phase cable termination
2 Failure in R-phase cable
3 Failure in T-phase cable termination
4 Normal operation

Figure 18 shows the cluster spanning tree and the corresponding CA, where a block represents a
cluster and the classes are displayed inside the parenthesis in each cluster. The CA is listed above the
outgoing branch. There are two SCs in the cluster spanning tree for p̂ = 0.5, where each SC consists of
two patterns. There are three SCs in the cluster spanning tree for p̂ = 0.7 and 0.9, where SC3 consists of
two patterns. Finally, the C4.5 algorithm is applied to SC3 and construct the decision tree. Figure 19
displays the decision tree of SC3, which consists of patterns 3 and 4. Two attributes including phase
angle and charge pC are utilized in the decision tree of SC3. Since the attribute values of cycle number
has a higher overlapping degree, different classes in a dataset are not easily separable. Thus, attribute
of cycle number is never used in the cluster spanning tree and decision tree of SC3.
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Figure 20 shows the pattern distributions of the 21,092 testing feature vectors. In Figure 20, ‘#’
represents the failure in S-phase cable termination (pattern 1), ‘�’ represents the failure in R-phase
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Figure 20 shows the pattern distributions of the 21,092 testing feature vectors. In Figure 20, ‘○’ 
represents the failure in S-phase cable termination (pattern 1), ‘□’ represents the failure in R-phase 
cable (pattern 2), ‘Δ’ represents the failure in T-phase cable termination (pattern 3), ‘☆’ represents the 
normal operation of the equipment (pattern 4). From the pattern distributions, it is clear that three 
SCs can be classified using the charge pC (k2), and pattern 3 and 4 can be classified using the phase 
angle (k1) and the charge pC (k2). 

’ represents the
normal operation of the equipment (pattern 4). From the pattern distributions, it is clear that three SCs
can be classified using the charge pC (k2), and pattern 3 and 4 can be classified using the phase angle
(k1) and the charge pC (k2).
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Figure 20. Distribution of the 21,092 testing feature vectors.

The classification precision of FLCDT was compared with the existing software CART and See5.
The classification precision is defined as the number of correctly classified patterns to the total number
of patterns. Table 3 shows the resulting classification precisions of four patterns, training time and
classification time. Consider the three threshold values, we found that case ‘p̂ = 0.5′ resulted in a smaller
classification precision, while the results of other two cases are the same. Since a larger threshold
value p̂ allows a higher overlapping degree, two classes are more easily separable. The classification
precisions, training times and classification times obtained by the software CART and See5 are also
shown in Table 3. Test results show that the FLCDT with p̂ = 0.7 and p̂ = 0.9 performs better than CART
and See5 for classification precisions. The reason is that overfitting arises when the decision trees
are directly applied to the training data set. Overfitting happens when a decision tree is excessively
dependent on irrelevant features of the training data so that its predictive ability for untrained data is
reduced. For patterns 1 and 4, See5 has a better performance than CART. Furthermore, the training
time required by FLCDT is much shorter than those required by CART and See5. The FLCDT not only
performs better than CART and See5 in the aspect of classification precision, but also requires less
training time. This also reveals that the hierarchical clustering scheme helps reduce the time complexity
of C4.5 algorithm. Figure 21 shows the confusion matrix of four patterns. The confusion matrix shows
that all the measurements belonging to pattern 1 are classified correctly. For pattern 2, 12.5% of the
data measurement are misclassified into pattern 3. In addition, 12.5% of the data measurement known
to be in pattern 3 are misclassified into pattern 4. For pattern 4, 12.5% of the data measurements are
misclassified into pattern 2 and 3, respectively. Table 4 shows the classification recall, precision, F-score
and the average results of four patterns using FLCDT with p̂ = 0.7. The overall accuracy of the FLCDT
with p̂ = 0.7 is 87.5%. Currently, there is no way to plot a ROC curve for multi-class classification
problems as it is defined only for binary class classification. The ROC-AUC score for considered
problem is not provided in this work.
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Table 3. Test results.

Pattern
Classification Precision (%)

FLCDT
^
p= 0.5 FLCDT

^
p= 0.7 FLCDT

^
p = 0.9 CART See5

1 87.5 100.0 100.0 87.5 87.5
2 87.5 87.5 87.5 62.5 75
3 75 87.5 87.5 75 75
4 75 75 75 62.5 62.5

Training time (sec.) 11.217 9.136 8.962 26.458 18.625
Classification time (sec.) 0.036 0.035 0.032 0.085 0.061
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Table 4. Classification recall, precision and F-score of FLCDT with p̂ = 0.7.

Pattern 1 2 3 4 Average

Recall (%) 100 87.5 87.5 75 87.5
Precision (%) 100 87.5 77.78 85.71 87.75
F-score (%) 100 87.5 82.35 80.00 87.46

5. Conclusions

PD diagnosis is a useful tool for evaluating insulation condition of the transformer and prevention
of the possible failures. Classification of different types of PDs is import for the diagnosis of the quality
of high-voltage electrical equipment. In this work, a fuzzy logic clustering decision tree (FLCDT) is
proposed to classify the aberrant PD of cast-resin transformers. The proposed method integrates a
hierarchical clustering scheme with the decision tree. The FLCDT not only consumes less training time,
but also improves the classification precision. PD measurements based on the IEC 60,270 standard were
performed on a 60-MVA cast resin transformer with a rated voltage of 22.8 kV. The test dataset has three
continuous attributes and three abnormal defects. Test results demonstrate that the FLCDT performs
better than the CART and See5 with respect to the classification accuracies. Accordingly, the proposed
FLCDT can serve as an effective abnormality detection of cast-resin transformers where real-time
processing of data is required. Future research will focus on the application of the proposed method to
resolve complicated fault detection problems, such as the incipient winding and core deformations of
power transformers, linear induction motors and brushless direct current motors.
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