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Abstract: Photoinduced charge separation (PCS) plays an essential role in various solar energy
conversions such as photovoltaic conversion in solar cells. Usually, PCS in solar cells occurs stepwise
via solar energy absorption by light absorbers (dyes, inorganic semiconductors, etc.) and the
subsequent charge transfer at heterogeneous interfaces. Unfortunately, this two-step PCS occurs
with a relatively large amount of the energy loss (at least ca. 0.3 eV). Hence, the exploration of a
new PCS mechanism to minimize the energy loss is a high-priority subject to realize efficient solar
energy conversion. Interfacial charge-transfer transitions (ICTTs) enable direct PCS at heterogeneous
interfaces without energy loss, in principle. Recently, several progresses have been reported for ICTT
at organic-inorganic semiconductor interfaces by our group. First of all, new organic-metal oxide
complexes have been developed with various organic and metal-oxide semiconductors for ICTT.
Through the vigorous material development and fundamental research of ICTT, we successfully
demonstrated efficient photovoltaic conversion due to ICTT for the first time. In addition, we revealed
that the efficient photoelectric conversion results from the suppression of charge recombination,
providing a theoretical guiding principle to control the charge recombination rate in the ICTT system.
These results open up a way to the development of ICTT-based photovoltaic cells. Moreover, we
showed the important role of ICTT in the reported efficient dye-sensitized solar cells (DSSCs) with
carboxy-anchor dyes, particularly, in the solar energy absorption in the near IR region. This result
indicates that the combination of dye sensitization and ICTT would lead to the further enhancement
of the power conversion efficiency of DSSC. In this feature article, we review the recent progresses of
ICTT and its application in solar cells.

Keywords: photovoltaic conversion; dye-sensitized solar cell; direct charge separation; interfacial
charge-transfer transition

1. Introduction

Photoinduced charge separation (PCS) at heterogeneous interfaces between electron-donating (D)
and -accepting (A) substances (organic compounds, inorganic semiconductors, metals, etc.) play an
important role in various solar energy conversions ranging from photovoltaic conversion in solar cells
to photocatalytic reactions such as solar-to-fuel energy conversion. Usually, PCS at heterogeneous
interfaces takes place by the following two steps; the absorption of solar energy by light absorbers
and the subsequent charge transfer at D–A heterogeneous interfaces, as shown in Figure 1a. In the
two-step PCS mechanism, the interfacial charge transfer process requires the energy level offset of
at least ca. 0.3 eV between heterogeneous D and A substances. Accordingly, the two-step PCS
occurs with a relatively large energy loss of at least ca. 0.3 eV. In order to realize efficient solar
energy conversion, the exploration of a new PCS mechanism to minimize the energy loss is of great
importance. Interfacial charge-transfer transitions (ICTTs) enable direct PCS at D–A heterogeneous
interfaces without energy loss in principle, as shown in Figure 1b. However, the research field of
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ICTT has not been cultivated yet. Recently, several progresses have been reported in the research of
ICTT between organic compounds and inorganic semiconductors by our group, ranging from the
material development to the application of ICTT in solar cells. At first, we developed several new
organic-metal oxide hybrids for ICTT. By applying these hybrid materials in photovoltaic cells, we
successfully demonstrated efficient photoelectric conversion based on the direct PCS via ICTT for
the first time [1]. We revealed that the efficient photoelectric conversion originates from the effective
suppression of charge recombination in the hybrid materials, providing a theoretical insight into the
control of charge recombination after ICTT [2]. Moreover, we showed that ICTT can be successfully
applied to dye-sensitized solar cells (DSSCs), particularly, in the photovoltaic conversion in the near IR
region [3]. This result indicates that the appropriate combination of dye sensitization and ICTT would
be useful for the improvement of the energy conversion efficiency of DSSC. We introduce the current
situation of DSSC concisely below.
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Figure 1. Schematic pictures of photoinduced charge separation (PCS) between heterogeneous
electron-donating and -accepting substances. (a) Conventional two-step PCS mechanism and (b) direct
PCS mechanism based on interfacial charge-transfer transitions (ICTT).

Dye-sensitized solar cells (DSSCs) have attracted much attention as a next-generation solar
cell [4–6] and recently gained increasing interest in the potential indoor application, for example,
as a power supply for the Internet of Things (IoT) because of the efficient power generation in low
light conditions [7–10]. DSSC works by the two-step PCS mechanism via light absorption by dyes
and the subsequent electron transfer from excited dyes into the conduction band of wide band-gap
semiconductors such as TiO2, as shown in Figure 2a. So far, considerable effort has been devoted to
the research and development of DSSC using various dyes (organic dyes and metal-complex dyes)
and hole-transporting redox electrolytes [11–19]. Recently, the power conversion efficiency (PCE)
over 14% under the standard solar irradiation (AM1.5G, 1 sun) was achieved by two groups [15,19].
In addition, solid-state DSSC with PCE over 11% was developed [20–22]. However, the highest PCE
of DSSC is still lower than those (>20%) of other solar cells such as crystalline Si solar cells and
perovskite solar cells [23]. To realize more efficient solar energy conversion is a high-priority subject
for DSSC. As mentioned above, the two-step PCS occurs with a large amount of energy loss. In DSSC,
the electron injection from excited dyes to TiO2 occurs with an energy loss of ca. 0.3 eV that corresponds
to the energy level offset between the LUMO of dyes and the conduction band minimum (CBM)
of TiO2 [5,6,24–27], as shown in Figure 2a. ICTT between organic compounds including dyes and
inorganic semiconductors is anticipated to overcome the energy loss issue in the electron injection
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process due to the direct PCS nature. There are two schemes for the application of ICTT to photovoltaic
conversion, in which solar energy is absorbed only by ICTT and by both dye sensitization and ICTT,
as shown in Figure 2b,c, respectively. In the former scheme, ICTT opens up a new potentiality of
organic compounds for photovoltaic conversion. Photovoltaic materials with two functions of solar
energy absorption and direct PCS can be prepared by using low-cost organic compounds with a
wide HOMO–LUMO gap. Because of the different PCS mechanisms and light absorbing materials
and methods to realize efficient photovoltaic conversion, ICTT-based photovoltaic cells should be
distinguished from DSSC. In the latter scheme, on the other hand, ICTT between dyes and TiO2 can
expand the spectral sensitivity of DSSC on the longer wavelength side. This scheme is included in the
framework of DSSC. We have examined the two approaches of ICTT to the development of solar cells.
Here, we review the background and the recent progresses in the research of ICTT and the application
in solar cells.
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Figure 2. Schematic energy level diagrams of (a) dye sensitization of TiO2 (two-step PCS), (b) ICTT
between an organic compound with a wide HOMO–LUMO gap and TiO2 (direct PCS), and (c) dye
sensitization and ICTT between a dye and TiO2. CB and VB denote the conduction band and valence
band, respectively. HOMO and LUMO stand for the highest occupied molecular orbital and the lowest
unoccupied molecular orbital, respectively.

2. Interfacial Charge-transfer Transitions and Their Photovoltaic Conversion Properties

First, we briefly introduce the history of the fundamental research of ICTT. To our best knowledge,
ICTT between organic compounds and inorganic semiconductors was first reported in 1983 by
Houlding et al. [28]. They observed that TiO2 nanoparticles were colored bright yellow orange
upon the chemisorption of 8-hydroxyquinoline (HOQ) via the hydroxy group and showed a broad
absorption band in the visible region. They predicted that the visible light absorption is due to ICTT
from the chemisorbed OQ molecule to TiO2. Interestingly, they also demonstrated photocatalytic H2

generation via the ICTT excitation, showing the high potentiality of ICTT in the solar energy conversion.
Then, Moser et al. and Rajh et al. reported in 1991 and 1999 that catechol (CA) [29] and ascorbic
acid (AA) [30] show ICTT bands in the visible region upon the chemisorption on TiO2 surfaces via
their two hydroxy groups, respectively, as shown in Table 1. Persson et al. computationally verified
ICTT between TiO2 and CA with quantum chemical calculations [31]. Stimulated by their pioneering
studies, ICTTs in the surface complexes of TiO2 nanoparticles with aromatic hydroxy compounds
(mono-hydroxy compounds [32–36], enediol compounds [37–41], etc.) have been examined in detail.

Against the background, photovoltaic conversion properties of ICTT have been examined from
around 1996 employing the surface complexes of TiO2 nanoparticles with aromatic hydroxy compounds.
In 1996, Tennakone et al. first reported the photocurrent generation by ICTT using TiO2-CA and
TiO2-gallic acid surface complexes [42]. Unfortunately, they did not estimate incident photon-to-current
conversion efficiencies (IPCEs) in their experiments. Then, Xagas el al. [43] and Sirimanne et al. [44]
reported in 2000 and 2003 photovoltaic conversion due to ICTT in the TiO2-AA surface complex and
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estimated IPCE to be ca. 5% and ca. 12%, respectively, as shown in Table 2. In 2005, Tae et al. reported
low IPCE (ca. 9%) for ICTT in the TiO2-CA surface complex [45]. Contrary to the anticipation, it
was seen that ICTTs in the TiO2-enediol surface complexes give rise to quite inefficient photovoltaic
conversion with the low IPCE values. In order to examine the charge recombination process after ICTT,
Wang et al. performed femtosecond transient absorption measurements of the TiO2-CA complex [46].
They found that the charge recombination occurs very rapidly after the ICTT excitation, in which
ca. 80% of electrons injected into the conduction band of TiO2 by ICTT recombine with holes on the
adsorbed CA molecules within ca. 10 psec [46]. This result is consistent with the above IPCE data.
Accordingly, the charge recombination should be suppressed for efficient photovoltaic conversion.
These results show that enediol compounds such as CA and AA are not suitable for direct PCS
photovoltaic conversion. Since organic-inorganic semiconductor hybrids for ICTT were quite limited
at that time, there had been no further progress on the photovoltaic conversion based on direct PCS
until around 2010.

Table 1. Representative organic-inorganic semiconductor complexes for ICTT, bridging atoms, and the
year of the first report for each organic-inorganic complex.

Inorganic Semiconductor Organic Compound Bridging Atom Year

TiO2 Aromatic
hydroxy

compound

Mono-hydroxy compound O 1983
TiO2 Catechol O 1991
TiO2 Ascorbic acid O 1999
TiO2 Aromatic carboxylic acid O 2008
TiO2 Bis(dicyanomethylene) compound O 2009
TiO2 Aromatic amine N 2011
TiO2 Benzenedithiol S 2015

BaTiO3 Catechol O 2016
SrTiO3 Catechol O 2018
ZnO Benzenethiol S 2020

Table 2. Incident photon-to-current conversion efficiency (IPCE) maximum values reported for ICTT
based photovoltaic conversion in organic-metal oxide complexes.

Organic-Metal Oxide Complex IPCE Maximum Value

TiO2-AA 5%
TiO2-AA 12%
TiO2-CA 9%

TiO2-TCNQ 81%
TiO2-ATCA 86%

New kinds of organic-inorganic semiconductor complexes for ICTT have been developed
with various organic compounds and inorganic semiconductors since around 2010, as shown in
Table 1 [47–69]. In 2011, our group reported unique surface complexes of bis(dicyanomethylene)
compounds (TCNXs) such as tetracyanoquinodimethane (TCNQ), which are well-known to be strong
electron acceptors, with TiO2 nanoparticles [51,52]. As mentioned above, organic compounds typically
chemisorb on metal-oxide surfaces (TiO2, ZnO, etc.) via their chemical anchoring groups (-OH, -SH,
-COOH, -NH2, etc.) through the dehydration condensation reaction with surface hydroxy groups on
TiO2, as shown in Figure 3a. In contrast, TCNQ has no chemical anchoring groups and chemisorbs
on TiO2 surfaces via the nucleophilic addition reaction of a surface hydroxy group, producing the
negatively-charged TCNQ adsorbate on TiO2, as shown in Figure 2b. Upon the surface complex
formation, the color of TiO2 nanoparticles is drastically changed to violet, as shown in Figure 4.
The TiO2-TCNQ complex shows a broad ICTT band in the visible region between 400 and ca. 700 nm,
in which ICTT takes place from the HOMO of the adsorbed TCNQ to the conduction band of TiO2.
The coloration and the wavelength range of ICTT band are drastically changed by introducing
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electron-donating or -withdrawing substituent groups or modification of the benzene ring, as shown in
Figure 4 [52,55]. These spectral changes are directly associated to the variation in the HOMO energy of
the adsorbed TCNX due to the chemical modifications [56]. With increasing and decreasing the electron
accepting property of TCNX, the ICTT band blue- and red-shifts, respectively. Notably, our research
showed that the adsorption mechanism and structure of organic compounds can be clarified by means
of FT-IR measurements and density functional theory (DFT) calculations and the electronic structure
and ICTT excitation can be clarified by ionization potential measurements based on photoelectron
yield spectroscopy (PYS) and DFT and time-dependent DFT (TD-DFT) calculations, which provide a
firm basis for the research of ICTT [51–56].
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We examined photovoltaic properties of ICTT in the TiO2-TCNQ surface complex [50].
The TiO2-TCNQ photovoltaic cell was fabricated with an anatase TiO2-TCNQ nanoporous
photoelectrode and iodide electrolyte (I-/I3

- in acetonitrile). The fundamental structure is shown
in Figure 5a. We observed efficient photovoltaic conversion with IPCE of ca. 80%, as shown in
Figure 5b. This IPCE value is remarkably higher than those (IPCE < ca. 10%) reported for the direct
PCS photovoltaics with the TiO2-enediol complexes. Figure 5c shows the current density-voltage (J-V)
curve of the TiO2-TCNQ photovoltaic cell under simulated solar irradiation (AM1.5G, 100 mW/cm2).
The short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and PCE were
estimated to be 9.9 mA/cm2, 0.36 V, 0.62, and 2.2%, respectively. Although VOC is rather low, this is the
first time that such high JSC was obtained by ICTT.
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Figure 5. (a) Structure of TiO2-TCNQ photovoltaic cells fabricated in our study and (b) incident
photon-to-current conversion efficiency (IPCE) excitation spectrum and (c) J-V curve under simulated
solar irradiation (AM1.5G, 100 mW/cm2) of TiO2-TCNQ photovoltaic cell with iodide electrolyte (LiI:
ca. 2 M, I2: 0.025 M, solvent: acetonitrile).

More efficient photoelectric conversion due to ICTT was achieved by employing the surface
complex of TiO2 with 2-anthracene carboxylic acid (ATCA) [1]. Upon the immersion into the ATCA
solution, anatase TiO2 nanoparticles were colored yellow, as shown in Figure 6a. The TiO2-ATCA
complex is formed via a carboxy group similarly to the TiO2-dye system in DSSC and shows an ICTT
band in the visible region between 400 and ca. 650 nm. Figure 6b,c shows IPCE spectrum and J-V curve
under simulated solar irradiation (AM1.5G, 100 mW/cm2) of the TiO2-ATCA photovoltaic cell with
iodide electrolyte (LiI: 1 M, I2: 0.025 M, solvent: acetonitrile), respectively, which was fabricated in a
similar way to the TiO2-TCNQ photovoltaic cell. The TiO2-ATCA photovoltaic cell showed higher IPCE
(86% at 440 nm) than that obtained for the TiO2-TCNQ cell, as shown in Figure 6b. Taking into account
the reflection (ca. 90%) of incident light on the FTO surface, almost all incident photons were absorbed
by ICTT and converted to photocurrent. JSC, VOC, FF, and PCE were estimated to be 6.6 mA/cm2, 0.50 V,
0.66, and 2.2%, respectively [1]. The JSC value is lower than that of the TiO2-TCNQ photovoltaic cell
because of the narrower spectral range despite the higher IPCE maximum value. Table 2 summarizes
the IPEC values reported for the direct PCS photovoltaic conversion. Inefficient photovoltaic conversion
with IPCE values lower than ca. 10% was reported with the enediol compounds. In contrast, efficient
photoelectric conversion with high IPCE values was realized with TCNQ and ATCA. Since the low
IPCE is attributed to the rapid charge recombination after ICTT, it is likely that charge recombination is
suppressed significantly in the TiO2-TCNQ and TiO2-ATCA systems. We theoretically analyzed the
charge recombination process based on the Marcus theory with DFT and TD-DFT calculations [2].Energies 2020, 13, x FOR PEER REVIEW 7 of 14 

Energies 2020, 13, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

 

Figure 6. (a) Coloration of anatase TiO2 nanoparticles immersion into the ATCA solution and (b) 
IPCE spectrum and (c) J-V curve under simulated solar irradiation (AM1.5G, 100 mW/cm2) of 
TiO2-ATCA photovoltaic cell with iodide electrolyte (LiI: 1 M, I2: 0.025 M, solvent: acetonitrile). 
Adapted with permission from Reference 1. Copyright 2015 Elsevier. 

3. Suppression of Charge Recombination for Direct PCS Photovoltaics 

Figure 7a shows the harmonic potential curves of the ground singlet state (S0) and lowest 
excited charge-separated state (S1) with the same curvature. The aforementioned ICTT systems 
correspond to the so-called inverted region in the Marcus theory, in which the energy gap (ΔE) 
between the S0 and S1 potential minima is larger than the reorganization energy (λ) in the S1 state. 
Charge recombination occurs via thermal activation in the S1 state and the subsequent jumping to 
the S0 potential curve at the cross point, as shown by the dotted arrows in Figure 7a. The activation 
energy (Ea) for charge recombination is a key factor to reduce the charge recombination rate (krecom). 

 
Figure 7. (a) Potential energy curves of the ground state (S0) and the lowest excited charge-separated 
state (S1) and (b) DFT optimized structures of the model complexes in the S0 state. Gray: carbon, 
white: hydrogen, blue: nitrogen, red: oxygen, large white: titanium atom. Adapted with permission 
from Reference 2. Copyright 2015 the PCCP Owner Societies. 

According to the Marcus theory, krecom after ICTT is given by the following equation. = 2πℎ π exp −  (1)

h, kB, T, and β are the Plank constant, Boltzmann constant, absolute temperature, and the transfer 
integral between the S0 and S1 states at the cross point, respectively. From this equation, it is seen 
that krecom is predominantly governed by Ea, which is given by the following equation. = − ∆4  (2)
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3. Suppression of Charge Recombination for Direct PCS Photovoltaics

Figure 7a shows the harmonic potential curves of the ground singlet state (S0) and lowest excited
charge-separated state (S1) with the same curvature. The aforementioned ICTT systems correspond to
the so-called inverted region in the Marcus theory, in which the energy gap (∆E) between the S0 and S1

potential minima is larger than the reorganization energy (λ) in the S1 state. Charge recombination
occurs via thermal activation in the S1 state and the subsequent jumping to the S0 potential curve at
the cross point, as shown by the dotted arrows in Figure 7a. The activation energy (Ea) for charge
recombination is a key factor to reduce the charge recombination rate (krecom).
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According to the Marcus theory, krecom after ICTT is given by the following equation.

krecom =
2π2

h
β2

√
πλkBT

exp
(
−

Ea

kBT

)
(1)

h, kB, T, and β are the Plank constant, Boltzmann constant, absolute temperature, and the transfer
integral between the S0 and S1 states at the cross point, respectively. From this equation, it is seen that
krecom is predominantly governed by Ea, which is given by the following equation.

Ea =
(λ− ∆E)2

4λ
(2)

this equation indicates that Ea increases with decreasing λ, slowing down the charge recombination
and vice versa. By DFT and TD-DFT calculations using very simple model complexes shown in
Figure 7b, λ values for the four ICTT surface complexes in Table 2 were calculated to be 0.79 eV for AA,
0.71 eV for CA, 0.34 eV for TCNQ, and 0.25 eV for ATCA [2]. Note that the geometrical optimization
of each model complex in the S1 state for the estimation of λwas carried out by fixing the Cartesian
coordinates of OH and H2O ligands to those in the S0 optimized structure and relaxing other atoms.
Accordingly, the reorganization energies originate from structural changes of the Ti atom and each
adsorbed molecule in the S1 state. Figure 8a shows the relationship between the reported IPCE values
and the calculated reorganization energies. The TiO2-ATCA and -TCNQ model complexes featuring
high IPCE show relatively small reorganization energies, while the TiO2-CA and -AA model complexes
showing low IPCE exhibit much larger reorganization energies. This correlation is consistent with the
tendency predicted from Equations (1) and (2). Ea for each the organic molecule was estimated from
Equation (2) using the calculated λ and ∆E experimentally estimated from the absorption onset of the
ICTT band. Figure 8b shows the relationship between the reported IPCE values and the calculated
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activation energies. We confirm a reasonable correlation between IPCE and Ea, which indicates that
the high IPCE is attributed to the higher activation energy (slow charge recombination) and the low
IPCE is due to the low activation energy (fast charge recombination). In addition, it is seen that IPCE
abruptly decreases with Ea around 1.5 eV. In order to understand this behavior, we formulated IPCE
based on the two kinetic processes including charge recombination and escape from the TiO2 surface
generating free electron-hole pairs that are detected as photocurrent, as shown in Figure 9a. Based on
the kinetic scheme in Figure 9b, IPCE is given by the following equation [2]:

IPCE (%) =
100× LHE

1 + c× exp
(
−

Ea
kBT

) (3)

c =
2π2

kescapeh
β2

√
πλkBT

(4)Energies 2020, 13, x FOR PEER REVIEW 8 of 14 
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Figure 9. (a) Schematic picture of two kinetic processes of electrons injected into TiO2 by ICTT and
(b) kinetic scheme of the charge-separated state. Adapted with permission from Reference 2. Copyright
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LHE is the light-absorption quantum efficiency. Since the dependence of c on λ is much weaker
than the dependence of IPCE on Ea, we tentatively treat c as a constant. Figure 8b shows the dependence
of IPCE on Ea with LHE of 0.86 and c of 1 × 1016 and 1 × 1026. The calculated Ea dependence of IPCE
well reproduces the IPCE-Ea correlation. This result clearly reveals that the reorganization energy
should be small to suppress charge recombination for obtaining high IPCE. Our DFT analysis indicates
that the reorganization energy strongly depends on the kind of chemical anchoring group and a
carboxy group is the most useful anchor to suppress the charge recombination [2].
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4. Photovoltaic Conversion Based on ICTT in DSSC

Generally, it has been reported that carboxy-anchor dyes adsorbed on TiO2 exhibit light absorption
at longer wavelengths than their intra-molecular electronic transitions. Figure 10a shows the energy
level diagram of TiO2 and the LEG4 dye, which was employed in the DSSC achieving the highest PCE
(14.3%) [15]. The absorption onset of the LEG4 dye red-shifts from ca. 620 to ca. 780 nm upon the
adsorption on TiO2, enabling photovoltaic conversion in the near IR region, as shown in Figure 10b.
However, the origin of the near IR light absorption was not unknown. The above-mentioned result
of the efficient photoelectric conversion due to ICTT in the TiO2-ATCA complex suggests that the
red-shift of the absorption band is attributable to ICTT from LEG4 to TiO2. In fact, the absorption
onset energy (1.6 eV) of the TiO2-LEG4 complex well corresponds to the energy difference between the
CBM of TiO2 and the LUMO of the dye, as shown in Figure 10a. In order to get an insight into the
near IR absorption, we examined the absorption properties of the TiO2-LEG4 surface complex with
TD-DFT calculations [3]. Figure 11a shows HOMO and LUMO of the bridge- and chelate-type model
complexes. For the both models, the HOMO is delocalized over the LEG4 molecule and the LUMO
is predominantly distributed in the TiO2 cluster, but slightly delocalized on the carboxylate group
and cyclopentadithiophene moiety of the dye. Figure 11b shows the TD-DFT calculated electronic
excitation spectra of the model complexes. The TD-DFT calculations indicate that dye-to-TiO2 ICTTs
appear at longer wavelengths than the intra-dye electronic transition consistent with the experimental
result. Since the lowest electronic excitation is assigned to the HOMO⇒LUMO transition, the ICTT
undergoes direct electron injection into the conduction band. We confirmed that other DSSC dyes
bearing a carboxy anchoring group also show ICTT bands on longer wavelength side than their
intra-dye absorption. From the DFT analysis, it is seen that the energy levels in the conduction
band close in energy to the LUMO of the dyes are strongly coupled with the LUMO, which results
in the delocalization on the dyes, rendering ICTT dipole-allowed. The magnitude of the electronic
coupling with LUMO for each conduction-band level tends to decrease with increasing the energy
difference between them. In addition, the density of states (DOS) of the conduction band of anatase
TiO2 gradually increases with the energy of the conduction band [70]. Taking into account these factors,
the absorption intensity of ICTT decreases as the excitation energy approaches to ECBM-EHOMO, as
observed experimentally in the absorption spectra of the TiO2-dye complexes and IPCE spectra of the
DSSCs. Based on these results, it is concluded that ICTT plays an important role in the photovoltaic
conversion in the near IR region for enhancing PCE of DSSC effectively.Energies 2020, 13, x FOR PEER REVIEW 10 of 14 
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5. Summary

In summary, we reviewed the background and recent progresses on ICTT between organic
compounds and metal-oxide semiconductors and its application in solar cells. As mentioned above,
there are two approaches of ICTT to solar cells, in which solar energy is absorbed only by ICTT and
by both dye sensitization and ICTT. The former approach widely opens up the novel functionality
of organic compounds for photovoltaic conversion. ICTT enables to prepare photovoltaic materials
with two functions of light absorption and direct PCS using low-cost organic compounds with a large
HOMO-LUMO gap. Recently, new organic-metal oxide semiconductor hybrids for ICTT have been
developed using various organic compounds and metal-oxide semiconductors. Based on the vigorous
material development and fundamental research of ICTT, efficient ICTT-based photovoltaic conversion
was demonstrated with the TiO2-TCNQ and TiO2-ATCA complexes. The obtained IPCE values
(>ca. 80%) are much higher than those (<ca. 10%) reported for the TiO2-enediol complexes. Our DFT
analysis indicates that the efficient photoelectric conversion results from the effective suppression
of charge recombination in the surface complexes and reveals that the charge recombination rate
strongly depends on the kind of chemical anchoring group. These studies provide an important basis
for the development of direct PCS photovoltaic devices. In the latter approach, we found that the
carboxy-anchor dyes typically used in DSSC show ICTT in the visible to near IR region. Particularly,
ICTT plays a crucial role in the absorption of near IR sunlight in DSSC. This result indicates the
possibility that appropriate combination of dye sensitization and ICTT could improve the PCE of DSSC
exceeding 14%. For both the approaches, further material development and fundamental research of
ICTT is necessary to realize efficient direct PCS photovoltaic conversion.
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